Spaces:
Running
on
Zero
Running
on
Zero
RageshAntony
commited on
dymaic gen
Browse files- check_app.py +88 -49
check_app.py
CHANGED
@@ -1,37 +1,88 @@
|
|
1 |
-
import spaces
|
2 |
import torch
|
3 |
-
from diffusers import
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import gradio as gr
|
7 |
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
# Function to generate images with progress
|
12 |
def generate_image_with_progress(pipe, prompt, num_steps, guidance_scale=None, seed=None, progress=gr.Progress()):
|
13 |
generator = None
|
14 |
if seed is not None:
|
15 |
generator = torch.Generator("cuda").manual_seed(seed)
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
if step_index == None:
|
21 |
step_index = 0
|
22 |
cur_prg = step_index / num_steps
|
23 |
-
print(f"Progressing {cur_prg} Step {step_index}/{num_steps}")
|
24 |
progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
|
25 |
return callback_kwargs
|
26 |
|
27 |
-
if
|
28 |
image = pipe(
|
29 |
prompt,
|
30 |
num_inference_steps=num_steps,
|
31 |
guidance_scale=guidance_scale,
|
32 |
callback_on_step_end=callback,
|
33 |
).images[0]
|
34 |
-
|
35 |
image = pipe(
|
36 |
prompt,
|
37 |
num_inference_steps=num_steps,
|
@@ -39,58 +90,46 @@ def generate_image_with_progress(pipe, prompt, num_steps, guidance_scale=None, s
|
|
39 |
output_type="pil",
|
40 |
callback_on_step_end=callback,
|
41 |
).images[0]
|
|
|
42 |
return image
|
43 |
|
44 |
-
|
45 |
-
def
|
46 |
-
|
47 |
-
@spaces.GPU(duration=170)
|
48 |
-
def tab1_logic(prompt_text):
|
49 |
progress = gr.Progress()
|
50 |
num_steps = 30
|
|
|
51 |
seed = 42
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
).to("cuda")
|
56 |
image = generate_image_with_progress(
|
57 |
-
|
58 |
)
|
59 |
return f"Seed: {seed}", image
|
60 |
-
|
61 |
-
@spaces.GPU(duration=170)
|
62 |
-
def tab2_logic(prompt_text):
|
63 |
-
progress = gr.Progress()
|
64 |
-
num_steps = 28
|
65 |
-
guidance_scale = 3.5
|
66 |
-
print(f"Start tab {prompt_text}")
|
67 |
-
# Initialize pipelines
|
68 |
-
stable_diffusion_pipe = StableDiffusion3Pipeline.from_pretrained(
|
69 |
-
"stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16
|
70 |
-
).to("cuda")
|
71 |
-
image = generate_image_with_progress(
|
72 |
-
stable_diffusion_pipe, prompt_text, num_steps=num_steps, guidance_scale=guidance_scale, progress=progress
|
73 |
-
)
|
74 |
-
return "Seed: None", image
|
75 |
|
|
|
|
|
|
|
|
|
76 |
with gr.Blocks() as app:
|
77 |
-
gr.Markdown("# Multiple Model Image Generation
|
78 |
|
79 |
prompt_text = gr.Textbox(label="Enter prompt")
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
output_2 = gr.Textbox(label="Status")
|
90 |
-
img_2 = gr.Image(label="StableDiffusion3", height=300)
|
91 |
-
button_2.click(fn=tab2_logic, inputs=[prompt_text], outputs=[output_2, img_2])
|
92 |
|
93 |
app.launch()
|
94 |
|
|
|
95 |
if __name__ == "__main__":
|
96 |
main()
|
|
|
|
|
1 |
import torch
|
2 |
+
from diffusers import (
|
3 |
+
FluxPipeline,
|
4 |
+
StableDiffusion3Pipeline,
|
5 |
+
PixArtSigmaPipeline,
|
6 |
+
SanaPipeline,
|
7 |
+
AuraFlowPipeline,
|
8 |
+
Kandinsky3Pipeline,
|
9 |
+
HunyuanDiTPipeline,
|
10 |
+
LuminaText2ImgPipeline,
|
11 |
+
OneDiffusionPipeline,
|
12 |
+
)
|
13 |
import gradio as gr
|
14 |
|
15 |
+
cache_dir = '/workspace/hf_cache'
|
16 |
|
17 |
+
MODEL_CONFIGS = {
|
18 |
+
"FLUX": {
|
19 |
+
"repo_id": "black-forest-labs/FLUX.1-dev",
|
20 |
+
"pipeline_class": FluxPipeline,
|
21 |
+
"cache_dir": cache_dir,
|
22 |
+
},
|
23 |
+
"Stable Diffusion 3.5": {
|
24 |
+
"repo_id": "stabilityai/stable-diffusion-3.5-large",
|
25 |
+
"pipeline_class": StableDiffusion3Pipeline,
|
26 |
+
"cache_dir": cache_dir,
|
27 |
+
},
|
28 |
+
"PixArt": {
|
29 |
+
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
|
30 |
+
"pipeline_class": PixArtSigmaPipeline,
|
31 |
+
"cache_dir": cache_dir,
|
32 |
+
},
|
33 |
+
"SANA": {
|
34 |
+
"repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
|
35 |
+
"pipeline_class": SanaPipeline,
|
36 |
+
"cache_dir": cache_dir,
|
37 |
+
},
|
38 |
+
"AuraFlow": {
|
39 |
+
"repo_id": "fal/AuraFlow",
|
40 |
+
"pipeline_class": AuraFlowPipeline,
|
41 |
+
"cache_dir": cache_dir,
|
42 |
+
},
|
43 |
+
"Kandinsky": {
|
44 |
+
"repo_id": "kandinsky-community/kandinsky-3",
|
45 |
+
"pipeline_class": Kandinsky3Pipeline,
|
46 |
+
"cache_dir": cache_dir,
|
47 |
+
},
|
48 |
+
"Hunyuan": {
|
49 |
+
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
|
50 |
+
"pipeline_class": HunyuanDiTPipeline,
|
51 |
+
"cache_dir": cache_dir,
|
52 |
+
},
|
53 |
+
"Lumina": {
|
54 |
+
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
|
55 |
+
"pipeline_class": LuminaText2ImgPipeline,
|
56 |
+
"cache_dir": cache_dir,
|
57 |
+
},
|
58 |
+
"OneDiffusion": {
|
59 |
+
"repo_id": "lehduong/OneDiffusion",
|
60 |
+
"pipeline_class": OneDiffusionPipeline,
|
61 |
+
"cache_dir": cache_dir,
|
62 |
+
},
|
63 |
+
}
|
64 |
|
|
|
|
|
65 |
def generate_image_with_progress(pipe, prompt, num_steps, guidance_scale=None, seed=None, progress=gr.Progress()):
|
66 |
generator = None
|
67 |
if seed is not None:
|
68 |
generator = torch.Generator("cuda").manual_seed(seed)
|
69 |
+
|
70 |
+
def callback(pipe, step_index, timestep, callback_kwargs):
|
71 |
+
print(f" callback => {pipe}, {step_index}, {timestep}")
|
72 |
+
if step_index is None:
|
|
|
73 |
step_index = 0
|
74 |
cur_prg = step_index / num_steps
|
|
|
75 |
progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
|
76 |
return callback_kwargs
|
77 |
|
78 |
+
if hasattr(pipe, "guidance_scale"):
|
79 |
image = pipe(
|
80 |
prompt,
|
81 |
num_inference_steps=num_steps,
|
82 |
guidance_scale=guidance_scale,
|
83 |
callback_on_step_end=callback,
|
84 |
).images[0]
|
85 |
+
else:
|
86 |
image = pipe(
|
87 |
prompt,
|
88 |
num_inference_steps=num_steps,
|
|
|
90 |
output_type="pil",
|
91 |
callback_on_step_end=callback,
|
92 |
).images[0]
|
93 |
+
|
94 |
return image
|
95 |
|
96 |
+
|
97 |
+
def create_pipeline_logic(model_name, config):
|
98 |
+
def logic(prompt_text):
|
|
|
|
|
99 |
progress = gr.Progress()
|
100 |
num_steps = 30
|
101 |
+
guidance_scale = 7.5 # Example guidance scale, can be adjusted per model
|
102 |
seed = 42
|
103 |
+
|
104 |
+
pipe_class = config["pipeline_class"]
|
105 |
+
pipe = pipe_class.from_pretrained(
|
106 |
+
config["repo_id"], cache_dir=config["cache_dir"], torch_dtype=torch.bfloat16
|
107 |
).to("cuda")
|
108 |
image = generate_image_with_progress(
|
109 |
+
pipe, prompt_text, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, progress=progress
|
110 |
)
|
111 |
return f"Seed: {seed}", image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
return logic
|
114 |
+
|
115 |
+
|
116 |
+
def main():
|
117 |
with gr.Blocks() as app:
|
118 |
+
gr.Markdown("# Dynamic Multiple Model Image Generation")
|
119 |
|
120 |
prompt_text = gr.Textbox(label="Enter prompt")
|
121 |
|
122 |
+
for model_name, config in MODEL_CONFIGS.items():
|
123 |
+
with gr.Tab(model_name):
|
124 |
+
button = gr.Button(f"Run {model_name}")
|
125 |
+
output = gr.Textbox(label="Status")
|
126 |
+
img = gr.Image(label=model_name, height=300)
|
127 |
|
128 |
+
logic = create_pipeline_logic(model_name, config)
|
129 |
+
button.click(fn=logic, inputs=[prompt_text], outputs=[output, img])
|
|
|
|
|
|
|
130 |
|
131 |
app.launch()
|
132 |
|
133 |
+
|
134 |
if __name__ == "__main__":
|
135 |
main()
|