Spaces:
Running
on
Zero
Running
on
Zero
RageshAntony
commited on
added ProgressAuraFlowPipeline
Browse files- check_app.py +54 -0
check_app.py
CHANGED
@@ -12,6 +12,60 @@ from diffusers import (
|
|
12 |
LuminaText2ImgPipeline,AutoPipelineForText2Image
|
13 |
)
|
14 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
cache_dir = '/workspace/hf_cache'
|
17 |
|
|
|
12 |
LuminaText2ImgPipeline,AutoPipelineForText2Image
|
13 |
)
|
14 |
import gradio as gr
|
15 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
16 |
+
|
17 |
+
class ProgressAuraFlowPipeline(DiffusionPipeline):
|
18 |
+
def __init__(self, original_pipeline):
|
19 |
+
super().__init__()
|
20 |
+
self.original_pipeline = original_pipeline
|
21 |
+
# Register all components from the original pipeline
|
22 |
+
for attr_name, attr_value in vars(original_pipeline).items():
|
23 |
+
setattr(self, attr_name, attr_value)
|
24 |
+
|
25 |
+
@torch.no_grad()
|
26 |
+
def __call__(
|
27 |
+
self,
|
28 |
+
prompt,
|
29 |
+
num_inference_steps=30,
|
30 |
+
generator=None,
|
31 |
+
guidance_scale=7.5,
|
32 |
+
callback=None,
|
33 |
+
callback_steps=1,
|
34 |
+
**kwargs
|
35 |
+
):
|
36 |
+
# Initialize the progress tracking
|
37 |
+
self._num_inference_steps = num_inference_steps
|
38 |
+
self._step = 0
|
39 |
+
|
40 |
+
def progress_callback(pipe, step_index, timestep, callback_kwargs):
|
41 |
+
if callback and step_index % callback_steps == 0:
|
42 |
+
callback(step_index, timestep, callback_kwargs)
|
43 |
+
return callback_kwargs
|
44 |
+
|
45 |
+
# Monkey patch the original pipeline's progress tracking
|
46 |
+
original_step = self.original_pipeline.scheduler.step
|
47 |
+
def wrapped_step(*args, **kwargs):
|
48 |
+
self._step += 1
|
49 |
+
if callback:
|
50 |
+
progress_callback(self, self._step, None, {})
|
51 |
+
return original_step(*args, **kwargs)
|
52 |
+
|
53 |
+
self.original_pipeline.scheduler.step = wrapped_step
|
54 |
+
|
55 |
+
try:
|
56 |
+
# Call the original pipeline
|
57 |
+
result = self.original_pipeline(
|
58 |
+
prompt=prompt,
|
59 |
+
num_inference_steps=num_inference_steps,
|
60 |
+
generator=generator,
|
61 |
+
guidance_scale=guidance_scale,
|
62 |
+
**kwargs
|
63 |
+
)
|
64 |
+
|
65 |
+
return result
|
66 |
+
finally:
|
67 |
+
# Restore the original step function
|
68 |
+
self.original_pipeline.scheduler.step = original_step
|
69 |
|
70 |
cache_dir = '/workspace/hf_cache'
|
71 |
|