Spaces:
Runtime error
Runtime error
added ProgressAuraFlowPipeline
Browse files- check_app.py +54 -0
check_app.py
CHANGED
|
@@ -12,6 +12,60 @@ from diffusers import (
|
|
| 12 |
LuminaText2ImgPipeline,AutoPipelineForText2Image
|
| 13 |
)
|
| 14 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
cache_dir = '/workspace/hf_cache'
|
| 17 |
|
|
|
|
| 12 |
LuminaText2ImgPipeline,AutoPipelineForText2Image
|
| 13 |
)
|
| 14 |
import gradio as gr
|
| 15 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 16 |
+
|
| 17 |
+
class ProgressAuraFlowPipeline(DiffusionPipeline):
|
| 18 |
+
def __init__(self, original_pipeline):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.original_pipeline = original_pipeline
|
| 21 |
+
# Register all components from the original pipeline
|
| 22 |
+
for attr_name, attr_value in vars(original_pipeline).items():
|
| 23 |
+
setattr(self, attr_name, attr_value)
|
| 24 |
+
|
| 25 |
+
@torch.no_grad()
|
| 26 |
+
def __call__(
|
| 27 |
+
self,
|
| 28 |
+
prompt,
|
| 29 |
+
num_inference_steps=30,
|
| 30 |
+
generator=None,
|
| 31 |
+
guidance_scale=7.5,
|
| 32 |
+
callback=None,
|
| 33 |
+
callback_steps=1,
|
| 34 |
+
**kwargs
|
| 35 |
+
):
|
| 36 |
+
# Initialize the progress tracking
|
| 37 |
+
self._num_inference_steps = num_inference_steps
|
| 38 |
+
self._step = 0
|
| 39 |
+
|
| 40 |
+
def progress_callback(pipe, step_index, timestep, callback_kwargs):
|
| 41 |
+
if callback and step_index % callback_steps == 0:
|
| 42 |
+
callback(step_index, timestep, callback_kwargs)
|
| 43 |
+
return callback_kwargs
|
| 44 |
+
|
| 45 |
+
# Monkey patch the original pipeline's progress tracking
|
| 46 |
+
original_step = self.original_pipeline.scheduler.step
|
| 47 |
+
def wrapped_step(*args, **kwargs):
|
| 48 |
+
self._step += 1
|
| 49 |
+
if callback:
|
| 50 |
+
progress_callback(self, self._step, None, {})
|
| 51 |
+
return original_step(*args, **kwargs)
|
| 52 |
+
|
| 53 |
+
self.original_pipeline.scheduler.step = wrapped_step
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
# Call the original pipeline
|
| 57 |
+
result = self.original_pipeline(
|
| 58 |
+
prompt=prompt,
|
| 59 |
+
num_inference_steps=num_inference_steps,
|
| 60 |
+
generator=generator,
|
| 61 |
+
guidance_scale=guidance_scale,
|
| 62 |
+
**kwargs
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
return result
|
| 66 |
+
finally:
|
| 67 |
+
# Restore the original step function
|
| 68 |
+
self.original_pipeline.scheduler.step = original_step
|
| 69 |
|
| 70 |
cache_dir = '/workspace/hf_cache'
|
| 71 |
|