Spaces:
Runtime error
Runtime error
aura and lum progress
Browse files- check_app.py +31 -43
check_app.py
CHANGED
|
@@ -8,48 +8,18 @@ from diffusers import (
|
|
| 8 |
AuraFlowPipeline,
|
| 9 |
Kandinsky3Pipeline,
|
| 10 |
HunyuanDiTPipeline,
|
| 11 |
-
LuminaText2ImgPipeline
|
| 12 |
)
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
cache_dir = '/workspace/hf_cache'
|
| 16 |
|
| 17 |
MODEL_CONFIGS = {
|
| 18 |
-
|
| 19 |
-
"repo_id": "black-forest-labs/FLUX.1-dev",
|
| 20 |
-
"pipeline_class": FluxPipeline,
|
| 21 |
-
"cache_dir": cache_dir,
|
| 22 |
-
},
|
| 23 |
-
"Stable Diffusion 3.5": {
|
| 24 |
-
"repo_id": "stabilityai/stable-diffusion-3.5-large",
|
| 25 |
-
"pipeline_class": StableDiffusion3Pipeline,
|
| 26 |
-
"cache_dir": cache_dir,
|
| 27 |
-
},
|
| 28 |
-
"PixArt": {
|
| 29 |
-
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
|
| 30 |
-
"pipeline_class": PixArtSigmaPipeline,
|
| 31 |
-
"cache_dir": cache_dir,
|
| 32 |
-
},
|
| 33 |
-
"SANA": {
|
| 34 |
-
"repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
|
| 35 |
-
"pipeline_class": SanaPipeline,
|
| 36 |
-
"cache_dir": cache_dir,
|
| 37 |
-
},
|
| 38 |
-
"AuraFlow": {
|
| 39 |
"repo_id": "fal/AuraFlow",
|
| 40 |
"pipeline_class": AuraFlowPipeline,
|
| 41 |
"cache_dir": cache_dir,
|
| 42 |
},
|
| 43 |
-
"Kandinsky": {
|
| 44 |
-
"repo_id": "kandinsky-community/kandinsky-3",
|
| 45 |
-
"pipeline_class": Kandinsky3Pipeline,
|
| 46 |
-
"cache_dir": cache_dir,
|
| 47 |
-
},
|
| 48 |
-
"Hunyuan": {
|
| 49 |
-
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
|
| 50 |
-
"pipeline_class": HunyuanDiTPipeline,
|
| 51 |
-
"cache_dir": cache_dir,
|
| 52 |
-
},
|
| 53 |
"Lumina": {
|
| 54 |
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
|
| 55 |
"pipeline_class": LuminaText2ImgPipeline,
|
|
@@ -57,33 +27,44 @@ MODEL_CONFIGS = {
|
|
| 57 |
}
|
| 58 |
}
|
| 59 |
|
| 60 |
-
def generate_image_with_progress(pipe, prompt, num_steps, guidance_scale=None, seed=None, progress=gr.Progress()):
|
| 61 |
generator = None
|
| 62 |
if seed is not None:
|
| 63 |
generator = torch.Generator("cuda").manual_seed(seed)
|
| 64 |
|
| 65 |
def callback(pipe, step_index, timestep, callback_kwargs):
|
| 66 |
-
print(f" callback => {
|
| 67 |
if step_index is None:
|
| 68 |
step_index = 0
|
| 69 |
cur_prg = step_index / num_steps
|
| 70 |
progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
|
| 71 |
return callback_kwargs
|
| 72 |
|
| 73 |
-
if hasattr(pipe, "guidance_scale"):
|
| 74 |
image = pipe(
|
| 75 |
prompt,
|
| 76 |
num_inference_steps=num_steps,
|
| 77 |
guidance_scale=guidance_scale,
|
| 78 |
callback_on_step_end=callback,
|
| 79 |
).images[0]
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
image = pipe(
|
| 82 |
prompt,
|
| 83 |
num_inference_steps=num_steps,
|
| 84 |
generator=generator,
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
).images[0]
|
| 88 |
|
| 89 |
return image
|
|
@@ -97,11 +78,18 @@ def create_pipeline_logic(prompt_text, model_name):
|
|
| 97 |
seed = 42
|
| 98 |
config = MODEL_CONFIGS[model_name]
|
| 99 |
pipe_class = config["pipeline_class"]
|
| 100 |
-
pipe =
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
image = generate_image_with_progress(
|
| 106 |
pipe, prompt_text, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, progress=progress
|
| 107 |
)
|
|
|
|
| 8 |
AuraFlowPipeline,
|
| 9 |
Kandinsky3Pipeline,
|
| 10 |
HunyuanDiTPipeline,
|
| 11 |
+
LuminaText2ImgPipeline,AutoPipelineForText2Image
|
| 12 |
)
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
cache_dir = '/workspace/hf_cache'
|
| 16 |
|
| 17 |
MODEL_CONFIGS = {
|
| 18 |
+
"AuraFlow": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
"repo_id": "fal/AuraFlow",
|
| 20 |
"pipeline_class": AuraFlowPipeline,
|
| 21 |
"cache_dir": cache_dir,
|
| 22 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
"Lumina": {
|
| 24 |
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
|
| 25 |
"pipeline_class": LuminaText2ImgPipeline,
|
|
|
|
| 27 |
}
|
| 28 |
}
|
| 29 |
|
| 30 |
+
def generate_image_with_progress(pipe, prompt, num_steps, guidance_scale=None, seed=None, progress=gr.Progress(track_tqdm=True)):
|
| 31 |
generator = None
|
| 32 |
if seed is not None:
|
| 33 |
generator = torch.Generator("cuda").manual_seed(seed)
|
| 34 |
|
| 35 |
def callback(pipe, step_index, timestep, callback_kwargs):
|
| 36 |
+
print(f" callback => {step_index}, {timestep}")
|
| 37 |
if step_index is None:
|
| 38 |
step_index = 0
|
| 39 |
cur_prg = step_index / num_steps
|
| 40 |
progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
|
| 41 |
return callback_kwargs
|
| 42 |
|
| 43 |
+
if hasattr(pipe, "guidance_scale") and hasattr(pipe, "callback_on_step_end"):
|
| 44 |
image = pipe(
|
| 45 |
prompt,
|
| 46 |
num_inference_steps=num_steps,
|
| 47 |
guidance_scale=guidance_scale,
|
| 48 |
callback_on_step_end=callback,
|
| 49 |
).images[0]
|
| 50 |
+
elif not hasattr(pipe, "callback_on_step_end") and hasattr(pipe, "guidance_scale"):
|
| 51 |
+
print("NO callback_on_step_end")
|
| 52 |
+
image = pipe(
|
| 53 |
+
prompt,
|
| 54 |
+
num_inference_steps=num_steps,
|
| 55 |
+
guidance_scale=guidance_scale,
|
| 56 |
+
).images[0]
|
| 57 |
+
elif hasattr(pipe, "callback_on_step_end") and not hasattr(pipe, "guidance_scale"):
|
| 58 |
image = pipe(
|
| 59 |
prompt,
|
| 60 |
num_inference_steps=num_steps,
|
| 61 |
generator=generator,
|
| 62 |
+
callback_on_step_end=callback
|
| 63 |
+
).images[0]
|
| 64 |
+
elif not hasattr(pipe, "callback_on_step_end") and not hasattr(pipe, "guidance_scale"):
|
| 65 |
+
image = pipe(
|
| 66 |
+
prompt,
|
| 67 |
+
num_inference_steps=num_steps,
|
| 68 |
).images[0]
|
| 69 |
|
| 70 |
return image
|
|
|
|
| 78 |
seed = 42
|
| 79 |
config = MODEL_CONFIGS[model_name]
|
| 80 |
pipe_class = config["pipeline_class"]
|
| 81 |
+
pipe = None
|
| 82 |
+
if model_name == "Kandinsky":
|
| 83 |
+
print("Kandinsky Special")
|
| 84 |
+
pipe = AutoPipelineForText2Image.from_pretrained(
|
| 85 |
+
"kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16
|
| 86 |
+
)
|
| 87 |
+
else:
|
| 88 |
+
pipe = pipe_class.from_pretrained(
|
| 89 |
+
config["repo_id"],
|
| 90 |
+
#cache_dir=config["cache_dir"],
|
| 91 |
+
torch_dtype=torch.bfloat16
|
| 92 |
+
).to("cuda")
|
| 93 |
image = generate_image_with_progress(
|
| 94 |
pipe, prompt_text, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, progress=progress
|
| 95 |
)
|