File size: 165,256 Bytes
069adbe d9db89f 069adbe 40fb788 2e3cd9d 069adbe 7852820 069adbe 4f8d205 8e0da46 43df572 936a186 119b2bf cc0edce 1c0e798 68208b0 2e3cd9d 158eaa8 60f791f 872a007 069adbe 10ea178 69a388c d1401a0 291f3d7 d1401a0 291f3d7 d1401a0 69a388c dd94c84 069adbe 82d70c9 ad242a2 f8485d4 449ebce 4162581 f8485d4 ad242a2 cf0e214 ad242a2 044bb1e ad242a2 044bb1e ad242a2 044bb1e ad242a2 044bb1e ad242a2 bfa4569 ad242a2 f8485d4 6a84d90 f8485d4 52391b5 6a84d90 d884d9a f8485d4 bbf380a 50ce3f6 bbf380a cefd40a bbf380a 56fb76a cefd40a 87bb04e b9049ff 87bb04e bbf380a 2022d2c e354cc6 d503c02 e354cc6 2022d2c e354cc6 82d70c9 069adbe 43df572 069adbe 52391b5 069adbe 0c21721 ad242a2 bf8ac3e 069adbe 43df572 7852820 069adbe 28cb5be 7852820 ad242a2 28cb5be 7852820 d6a9410 7852820 ad242a2 7852820 28cb5be d6a9410 28cb5be ad242a2 28cb5be d6a9410 28cb5be 2e3cd9d 28cb5be 069adbe 43df572 069adbe ad242a2 069adbe 901bbc5 4af194e 901bbc5 5492e06 6ba45c0 604e91a 61dd8c5 f396a8d 069adbe b9049ff 069adbe 2e3cd9d 680a8ac 2e3cd9d 680a8ac 069adbe 680a8ac 1a21253 680a8ac 265891c d01aca2 265891c 291f3d7 265891c d01aca2 265891c 291f3d7 265891c 2e3cd9d 40fb788 680a8ac 2e3cd9d 05f2b9c 2e3cd9d 05f2b9c 2e3cd9d ad14b7e 2e3cd9d 680a8ac 2e3cd9d 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 255a179 069adbe 82d70c9 2e3cd9d cefd40a 851f97e 8ae5fd1 cefd40a 379368b 517ef17 8ae5fd1 a589040 8ae5fd1 4088be2 37c59a0 efb1867 642b27d 28cb5be 37c59a0 ba4c85f 2e3cd9d 642b27d 2e3cd9d 37c59a0 05f2b9c 37c59a0 fdf735a 37c59a0 fdf735a 37c59a0 fdf735a 37c59a0 05f2b9c fdf735a 2e3cd9d 37c59a0 87e0fcb 37c59a0 fdf735a 87e0fcb 37c59a0 fdf735a 87e0fcb 37c59a0 fdf735a 87e0fcb 43f4453 2e3cd9d 520ddc7 517ef17 ab5ff8c 520ddc7 20a3bf0 7a8cb18 0b4291c efb1867 7a8cb18 e16cb76 57a5f25 0da9464 5404e76 0da9464 0b4291c efb1867 0da9464 74f9c17 9251b5c 74f9c17 b88e69e 4166ef5 b88e69e 4166ef5 b88e69e 3b75b70 13857b8 2e3cd9d 13857b8 2e3cd9d 74f9c17 4f967b3 fba063e 4f967b3 fba063e 4f967b3 fba063e 379368b 4f967b3 b88e69e 4f967b3 b88e69e 4f967b3 b88e69e 4f967b3 379368b c618f4d b88e69e 20a3bf0 b88e69e 20a3bf0 b88e69e 13857b8 20a3bf0 37c59a0 20a3bf0 13857b8 20a3bf0 13857b8 4f967b3 37c59a0 74f9c17 37c59a0 74f9c17 37c59a0 3daeb17 5481883 3b75b70 5481883 69d924b 74f9c17 fba063e 379368b 20a3bf0 37c59a0 3daeb17 6a37505 fa47128 3daeb17 6a37505 3daeb17 20a3bf0 37c59a0 3daeb17 6a37505 fa47128 3daeb17 6a37505 3daeb17 20a3bf0 646dbbe 3daeb17 fa47128 3daeb17 fa47128 3daeb17 fa47128 3daeb17 646dbbe 3daeb17 fa47128 3daeb17 fa47128 3daeb17 fa47128 3daeb17 646dbbe 911d70e 4f967b3 fba063e 7ac9771 fba063e 7ac9771 fba063e 7ac9771 fba063e 7ac9771 fba063e 55d145d 37c59a0 74f9c17 ff85862 74f9c17 efb1867 74f9c17 2e3cd9d 74f9c17 2e3cd9d 74f9c17 fba063e 379368b 74f9c17 b3c964e 4f967b3 fba063e 43df572 f591d4e 43df572 eb50f14 82d3e88 fba063e 379368b 4f967b3 fba063e 2e3cd9d 42c2829 fba063e 2e3cd9d 99b9aa9 4f967b3 fba063e 99b9aa9 fba063e a281a4f e7a0def a281a4f e7a0def a281a4f 9b90f9a 439e0ac 9b90f9a a281a4f da65172 a281a4f 9b90f9a 439e0ac 9b90f9a a281a4f 9b90f9a 439e0ac 9b90f9a a281a4f 9b90f9a 439e0ac 9b90f9a a281a4f da65172 a281a4f da65172 a281a4f 9b90f9a 439e0ac 9b90f9a a281a4f dce062f a281a4f dce062f a281a4f dce062f a281a4f da65172 dce062f a281a4f dce062f a281a4f dce062f a281a4f dce062f a281a4f dce062f a281a4f dce062f a281a4f dce062f a281a4f dce062f da65172 a281a4f dce062f a281a4f da65172 dce062f a281a4f dce062f a281a4f dce062f a281a4f dce062f a281a4f 158eaa8 d918500 d148196 01c1482 b2bcefd dd1aa56 1b89d01 3a20f4f 388f2db 84f3f0b fba063e cc4f407 58b86c3 8913211 cc4f407 4f967b3 1e4e9b8 b42fc89 1e4e9b8 b42fc89 1e4e9b8 b42fc89 1e4e9b8 4f967b3 b42fc89 4f967b3 b42fc89 4f967b3 b42fc89 4f967b3 1e4e9b8 4f967b3 b42fc89 4f967b3 1e4e9b8 4f967b3 b42fc89 4f967b3 f548d53 4f967b3 b01e348 0543ffc 4f967b3 fba063e 58b86c3 8913211 f548d53 fba063e b42fc89 fba063e b42fc89 fba063e b42fc89 fba063e b42fc89 fba063e b42fc89 fba063e e8c9dac f548d53 fba063e b01e348 0543ffc fba063e 1e4e9b8 6b15752 e39607b 57d6a24 e39607b 57d6a24 e39607b f8485d4 ad242a2 f8485d4 e39607b 5647915 a589040 5647915 8ae5fd1 5647915 90fa87c a589040 e39607b a4a0f62 57d6a24 a4a0f62 57d6a24 a589040 11d73be a589040 11d73be a589040 409a345 a589040 e39607b 57d6a24 fbd7505 ab4dc7d 069adbe ab4dc7d 069adbe ab4dc7d 069adbe ab4dc7d 069adbe ab4dc7d 57d6a24 ab4dc7d 23ffbed 85260c1 ac28920 1fe7139 ab4dc7d 68208b0 6c81ee5 2e3cd9d e43f97d 2e3cd9d 9682eff 00b2e24 9682eff 65b348b 9682eff 57d6a24 d23b397 9682eff 00b2e24 9682eff 65b348b 9682eff 57d6a24 d23b397 9682eff 00b2e24 9682eff 65b348b 9682eff 57d6a24 d23b397 9682eff 2e3cd9d 05f2b9c 2e3cd9d 00b2e24 2e3cd9d 65b348b 2e3cd9d 57d6a24 d23b397 2e3cd9d 00b2e24 2e3cd9d 65b348b 2e3cd9d 57d6a24 d23b397 2e3cd9d 05f2b9c 2e3cd9d 00b2e24 2e3cd9d 65b348b 2e3cd9d 57d6a24 d23b397 2e3cd9d e43f97d 2e3cd9d 6c81ee5 2e3cd9d 6c81ee5 0abd3e1 d23b397 6c81ee5 2e3cd9d 57d6a24 2e3cd9d 57d6a24 2e3cd9d 57d6a24 2e3cd9d 57d6a24 d23b397 2e3cd9d d23b397 2e3cd9d 6c81ee5 68208b0 9c68c67 c4992bf 9c68c67 68208b0 d23b397 b7746b2 68208b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 |
import streamlit as st
st.set_page_config(layout="wide")
import pandas as pd
from rapidfuzz import process
import random
from collections import Counter
import io
## import global functions
from global_func.clean_player_name import clean_player_name
from global_func.load_file import load_file
from global_func.load_ss_file import load_ss_file
from global_func.load_dk_fd_file import load_dk_fd_file
from global_func.find_name_mismatches import find_name_mismatches
from global_func.predict_dupes import predict_dupes
from global_func.highlight_rows import highlight_changes, highlight_changes_winners, highlight_changes_losers
from global_func.load_csv import load_csv
from global_func.find_csv_mismatches import find_csv_mismatches
from global_func.trim_portfolio import trim_portfolio
from global_func.get_portfolio_names import get_portfolio_names
from global_func.small_field_preset import small_field_preset
from global_func.large_field_preset import large_field_preset
from global_func.hedging_preset import hedging_preset
from global_func.volatility_preset import volatility_preset
from global_func.reduce_volatility_preset import reduce_volatility_preset
from global_func.analyze_player_combos import analyze_player_combos
from global_func.stratification_function import stratification_function
from global_func.exposure_spread import exposure_spread
from global_func.reassess_edge import reassess_edge
from global_func.recalc_diversity import recalc_diversity
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
stacking_sports = ['MLB', 'NHL', 'NFL', 'LOL', 'NCAAF']
stack_column_dict = {
'Draftkings': {
'Classic': {
'MLB': ['C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3'],
'NHL': ['C', 'W', 'D'],
'NFL': ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX'],
'LOL': ['TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM'],
'NCAAF': ['QB', 'WR1', 'WR2', 'WR3', 'FLEX', 'SFLEX'],
},
'Showdown': {
'MLB': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'NHL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'NFL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'LOL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'NCAAF': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
},
},
'Fanduel': {
'Classic': {
'MLB': ['C/1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL'],
'NHL': ['C', 'W', 'D'],
'NFL': ['QB', 'RB1', 'RB2', 'WR1', 'WR2', 'WR3', 'TE', 'FLEX'],
'LOL': ['TOP', 'JNG', 'MID', 'ADC', 'SUP', 'TEAM'],
'NCAAF': ['QB', 'WR1', 'WR2', 'WR3', 'FLEX', 'SFLEX'],
},
'Showdown': {
'MLB': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'NHL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'NFL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'LOL': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
'NCAAF': ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'],
},
},
}
player_wrong_names_mlb = ['Enrique Hernandez', 'Joseph Cantillo', 'Mike Soroka', 'Jakob Bauers', 'Temi Fágbénlé']
player_right_names_mlb = ['Kike Hernandez', 'Joey Cantillo', 'Michael Soroka', 'Jake Bauers', 'Temi Fagbenle']
st.markdown("""
<style>
/* Tab styling */
.stElementContainer [data-baseweb="button-group"] {
gap: 2.000rem;
padding: 4px;
}
.stElementContainer [kind="segmented_control"] {
height: 2.000rem;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 20px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stElementContainer [kind="segmented_controlActive"] {
height: 3.000rem;
background-color: #DAA520;
border: 3px solid #FFD700;
border-radius: 10px;
color: black;
}
.stElementContainer [kind="segmented_control"]:hover {
background-color: #FFD700;
cursor: pointer;
}
div[data-baseweb="select"] > div {
background-color: #DAA520;
color: white;
}
</style>""", unsafe_allow_html=True)
def create_position_export_dict(column_name, csv_file, site_var, type_var, sport_var):
try:
# Remove any numbers from the column name to get the position
import re
position_filter = re.sub(r'\d+$', '', column_name)
# Filter CSV file by position
if 'Position' in csv_file.columns:
if type_var == 'Showdown':
filtered_df = csv_file.copy()
else:
if position_filter == 'SP':
filtered_df = csv_file[
csv_file['Roster Position'] == 'P'
]
elif position_filter == 'CPT':
filtered_df = csv_file.copy()
elif position_filter == 'FLEX' or position_filter == 'UTIL':
if sport_var == 'NFL':
filtered_df = csv_file[csv_file['Position'].isin(['RB', 'WR', 'TE'])]
elif sport_var == 'SOC':
filtered_df = csv_file[csv_file['Position'].str.contains('D|M|F', na=False, regex=True)]
elif sport_var == 'NCAAF':
filtered_df = csv_file[csv_file['Position'].str.contains('RB|WR', na=False, regex=True)]
elif sport_var == 'NHL':
filtered_df = csv_file[csv_file['Position'].str.contains('C|W|D', na=False, regex=True)]
else:
filtered_df = csv_file.copy()
elif position_filter == 'SFLEX':
filtered_df = csv_file.copy()
elif position_filter == 'C/1B':
filtered_df = csv_file[
csv_file['Position'].str.contains(['C', '1B'], na=False, regex=False)
]
else:
filtered_df = csv_file[
csv_file['Position'].str.contains(position_filter, na=False, regex=False)
]
else:
# Fallback to all players if no position column found
filtered_df = csv_file
# Create the export dictionary for this position
if site_var == 'Draftkings':
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Name'])
return dict(zip(filtered_df['Name'], filtered_df['Name + ID']))
else:
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Nickname'])
return dict(zip(filtered_df['Nickname'], filtered_df['Id']))
except Exception as e:
st.error(f"Error creating position export dict for {column_name}: {str(e)}")
return {}
with st.container():
col1, col2, col3, col4 = st.columns([1, 4, 4, 4])
with col1:
if st.button('Clear data', key='reset3'):
st.session_state.clear()
with col2:
site_var = st.selectbox("Select Site", ['Draftkings', 'Fanduel'])
with col3:
sport_var = st.selectbox("Select Sport", ['NFL', 'MLB', 'NBA', 'NHL', 'NCAAF', 'MMA', 'CS2', 'LOL', 'TENNIS', 'NASCAR', 'GOLF', 'WNBA', 'F1'])
with col4:
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'])
if sport_var == 'GOLF':
position_var = 'G'
team_var = 'GOLF'
elif sport_var == 'TENNIS':
position_var = 'T'
team_var = 'TENNIS'
elif sport_var == 'MMA':
position_var = 'F'
team_var = 'MMA'
elif sport_var == 'NASCAR':
position_var = 'D'
team_var = 'NASCAR'
elif sport_var == 'F1':
position_var = 'D'
team_var = 'F1'
else:
position_var = None
team_var = None
if site_var == 'Draftkings':
salary_max = 50000
elif site_var == 'Fanduel':
if type_var == 'Classic':
if sport_var == 'MLB':
salary_max = 40000
elif sport_var == 'WNBA':
salary_max = 40000
elif sport_var == 'GOLF':
salary_max = 60000
elif sport_var == 'MMA':
salary_max = 100
elif sport_var == 'NFL':
salary_max = 60000
elif sport_var == 'NASCAR':
salary_max = 50000
else:
salary_max = 60000
elif type_var == 'Showdown':
salary_max = 60000
try:
selected_tab = st.segmented_control(
"Select Tab",
options=["Data Load", "Manage Portfolio"],
selection_mode='single',
default='Data Load',
label_visibility='collapsed',
width='stretch',
key='tab_selector'
)
except:
selected_tab = st.segmented_control(
"Select Tab",
options=["Data Load", "Manage Portfolio"],
selection_mode='single',
default='Data Load',
label_visibility='collapsed',
key='tab_selector'
)
if selected_tab == 'Data Load':
# Add file uploaders to your app
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("Draftkings/Fanduel CSV")
st.info("Upload the player pricing CSV from the site you are playing on")
upload_csv_col, csv_template_col = st.columns([3, 1])
with upload_csv_col:
csv_file = st.file_uploader("Upload CSV File", type=['csv'])
if 'csv_file' in st.session_state:
del st.session_state['csv_file']
with csv_template_col:
if site_var == 'Draftkings':
csv_template_df = pd.DataFrame(columns=['Name', 'ID', 'Roster Position', 'Salary'])
else:
csv_template_df = pd.DataFrame(columns=['Nickname', 'Id', 'Roster Position', 'Salary'])
st.download_button(
label="CSV Template",
data=csv_template_df.to_csv(index=False),
file_name="csv_template.csv",
mime="text/csv"
)
st.session_state['csv_file'] = load_csv(csv_file)
try:
st.session_state['csv_file']['Salary'] = st.session_state['csv_file']['Salary'].astype(str).str.replace(',', '').astype(int)
except:
pass
if csv_file:
if type_var == 'Showdown':
st.session_state['csv_file']['Position'] = 'FLEX'
else:
if sport_var == 'GOLF':
st.session_state['csv_file']['Position'] = 'FLEX'
st.session_state['csv_file']['Team'] = 'GOLF'
elif sport_var == 'TENNIS':
st.session_state['csv_file']['Position'] = 'FLEX'
st.session_state['csv_file']['Team'] = 'TENNIS'
elif sport_var == 'MMA':
st.session_state['csv_file']['Position'] = 'FLEX'
st.session_state['csv_file']['Team'] = 'MMA'
elif sport_var == 'NASCAR':
st.session_state['csv_file']['Position'] = 'FLEX'
st.session_state['csv_file']['Team'] = 'NASCAR'
# st.session_state['csv_file'] = st.session_state['csv_file'].drop_duplicates(subset=['Name'])
st.success('Projections file loaded successfully!')
st.dataframe(st.session_state['csv_file'].head(10))
with col2:
st.subheader("Portfolio File")
st.info("Go ahead and upload a portfolio file here. Only include player columns.")
upload_toggle = st.selectbox("What source are you uploading from?", options=['SaberSim (Just IDs)', 'Draftkings/Fanduel (Names + IDs)', 'Other (Just Names)'])
if upload_toggle == 'SaberSim (Just IDs)' or upload_toggle == 'Draftkings/Fanduel (Names + IDs)':
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
if 'portfolio' in st.session_state:
del st.session_state['portfolio']
if 'export_portfolio' in st.session_state:
del st.session_state['export_portfolio']
else:
portfolio_file = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
if 'portfolio' in st.session_state:
del st.session_state['portfolio']
if 'export_portfolio' in st.session_state:
del st.session_state['export_portfolio']
if 'portfolio' not in st.session_state:
if portfolio_file:
if upload_toggle == 'SaberSim (Just IDs)':
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_ss_file(portfolio_file, st.session_state['csv_file'], site_var, type_var, sport_var)
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
elif upload_toggle == 'Draftkings/Fanduel (Names + IDs)':
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_dk_fd_file(portfolio_file, st.session_state['csv_file'], site_var, type_var, sport_var)
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
else:
st.session_state['export_portfolio'], st.session_state['portfolio'] = load_file(portfolio_file, site_var, type_var, sport_var, 'portfolio')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].dropna(how='all')
st.session_state['export_portfolio'] = st.session_state['export_portfolio'].reset_index(drop=True)
st.session_state['portfolio'] = st.session_state['portfolio'].dropna(how='all')
st.session_state['portfolio'] = st.session_state['portfolio'].reset_index(drop=True)
# Check if Stack column exists in the portfolio
if 'Stack' in st.session_state['portfolio'].columns:
# Create dictionary mapping index to Stack values
stack_dict = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Stack']))
st.write(f"Found {len(stack_dict)} stack assignments")
st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['Stack'])
else:
stack_dict = None
if st.session_state['portfolio'] is not None:
st.success('Portfolio file loaded successfully!')
st.session_state['portfolio'] = st.session_state['portfolio'].apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
st.dataframe(st.session_state['portfolio'].head(10))
with col3:
st.subheader("Projections File")
st.info("upload a projections file that has 'player_names', 'salary', 'median', 'ownership', and 'captain ownership' columns. Note that the salary for showdown needs to be the FLEX salary, not the captain salary.")
# Create two columns for the uploader and template button
upload_col, template_col = st.columns([3, 1])
with upload_col:
projections_file = st.file_uploader("Upload Projections File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
if 'projections_df' in st.session_state:
del st.session_state['projections_df']
with template_col:
# Create empty DataFrame with required columns
template_df = pd.DataFrame(columns=['player_names', 'position', 'team', 'salary', 'median', 'ownership', 'captain ownership'])
# Add download button for template
st.download_button(
label="Template",
data=template_df.to_csv(index=False),
file_name="projections_template.csv",
mime="text/csv"
)
if projections_file:
export_projections, projections = load_file(projections_file, site_var, type_var, sport_var, 'projections')
if projections is not None:
st.success('Projections file loaded successfully!')
try:
projections['salary'] = projections['salary'].str.replace(',', '').str.replace('$', '').str.replace(' ', '')
st.write('replaced salary symbols')
except:
pass
try:
projections['ownership'] = projections['ownership'].str.replace('%', '').str.replace(' ', '')
st.write('replaced ownership symbols')
except:
pass
projections['salary'] = projections['salary'].dropna().astype(int)
projections['ownership'] = projections['ownership'].astype(float)
if projections['captain ownership'].isna().all():
projections['CPT_Own_raw'] = (projections['ownership'] / 2) * ((100 - (100-projections['ownership']))/100)
cpt_own_var = 100 / projections['CPT_Own_raw'].sum()
projections['captain ownership'] = projections['CPT_Own_raw'] * cpt_own_var
projections = projections.drop(columns='CPT_Own_raw', axis=1)
projections = projections.apply(lambda x: x.replace(player_wrong_names_mlb, player_right_names_mlb))
### if the position column is empty, set to sport_var appropriate position
if position_var is not None:
projections['position'] = position_var
if team_var is not None:
projections['team'] = team_var
st.dataframe(projections.head(10))
if portfolio_file and projections_file:
if st.session_state['portfolio'] is not None and projections is not None:
st.subheader("Name Matching Analysis")
# Initialize projections_df in session state if it doesn't exist
# Get unique names from portfolio
portfolio_names = get_portfolio_names(st.session_state['portfolio'])
try:
csv_names = st.session_state['csv_file']['Name'].tolist()
except:
csv_names = st.session_state['csv_file']['Nickname'].tolist()
projection_names = projections['player_names'].tolist()
# Create match dictionary for portfolio names to projection names
portfolio_match_dict = {}
unmatched_names = []
for portfolio_name in portfolio_names:
match = process.extractOne(
portfolio_name,
csv_names,
score_cutoff=87
)
if match:
portfolio_match_dict[portfolio_name] = match[0]
if match[1] < 100:
st.write(f"{portfolio_name} matched from portfolio to site csv {match[0]} with a score of {match[1]}%")
else:
portfolio_match_dict[portfolio_name] = portfolio_name
unmatched_names.append(portfolio_name)
# Update portfolio with matched names
portfolio = st.session_state['portfolio'].copy()
player_columns = [col for col in portfolio.columns
if col not in ['salary', 'median', 'Own']]
# For each player column, update names using the match dictionary
for col in player_columns:
portfolio[col] = portfolio[col].map(lambda x: portfolio_match_dict.get(x, x))
st.session_state['portfolio'] = portfolio
# Create match dictionary for portfolio names to projection names
projections_match_dict = {}
unmatched_proj_names = []
for projections_name in projection_names:
match = process.extractOne(
projections_name,
csv_names,
score_cutoff=87
)
if match:
projections_match_dict[projections_name] = match[0]
if match[1] < 100:
st.write(f"{projections_name} matched from projections to site csv {match[0]} with a score of {match[1]}%")
else:
projections_match_dict[projections_name] = projections_name
unmatched_proj_names.append(projections_name)
# Update projections with matched names
projections['player_names'] = projections['player_names'].map(lambda x: projections_match_dict.get(x, x))
st.session_state['projections_df'] = projections
projections_names = st.session_state['projections_df']['player_names'].tolist()
portfolio_names = get_portfolio_names(st.session_state['portfolio'])
# Create match dictionary for portfolio names to projection names
projections_match_dict = {}
unmatched_proj_names = []
for projections_name in projection_names:
match = process.extractOne(
projections_name,
portfolio_names,
score_cutoff=87
)
if match:
projections_match_dict[projections_name] = match[0]
if match[1] < 100:
st.write(f"{projections_name} matched from portfolio to projections {match[0]} with a score of {match[1]}%")
else:
projections_match_dict[projections_name] = projections_name
unmatched_proj_names.append(projections_name)
# Update projections with matched names
projections['player_names'] = projections['player_names'].map(lambda x: projections_match_dict.get(x, x))
st.session_state['projections_df'] = projections
if sport_var in stacking_sports:
team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team']))
st.session_state['portfolio']['Stack'] = st.session_state['portfolio'].apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else '',
axis=1
)
st.session_state['portfolio']['Size'] = st.session_state['portfolio'].apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row[stack_column_dict[site_var][type_var][sport_var]]) else 0,
axis=1
)
st.session_state['stack_dict'] = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Stack']))
st.session_state['size_dict'] = dict(zip(st.session_state['portfolio'].index, st.session_state['portfolio']['Size']))
try:
st.session_state['export_dict'] = dict(zip(st.session_state['csv_file']['Name'], st.session_state['csv_file']['Name + ID']))
except:
st.session_state['export_dict'] = dict(zip(st.session_state['csv_file']['Nickname'], st.session_state['csv_file']['Id']))
if 'map_dict' not in st.session_state:
if site_var == 'Draftkings':
if type_var == 'Classic':
if sport_var == 'CS2' or sport_var == 'LOL':
st.session_state['map_dict'] = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
}
elif sport_var != 'CS2' and sport_var != 'LOL':
st.session_state['map_dict'] = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
}
elif type_var == 'Showdown':
if sport_var == 'GOLF':
st.session_state['map_dict'] = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership']))
}
if sport_var != 'GOLF':
st.session_state['map_dict'] = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
}
elif site_var == 'Fanduel':
st.session_state['map_dict'] = {
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
'proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'])),
'own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'])),
'own_percent_rank':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['ownership'].rank(pct=True))),
'cpt_salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'] * 1.5)),
'cpt_proj_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['median'] * 1.5)),
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
}
st.session_state['origin_portfolio'] = st.session_state['portfolio'].copy()
buffer = io.BytesIO()
st.session_state['portfolio'].to_parquet(buffer, compression='snappy')
st.session_state['origin_portfolio'] = buffer.getvalue()
del st.session_state['portfolio']
# with tab2:
# if st.button('Clear data', key='reset2'):
# st.session_state.clear()
# if 'portfolio' in st.session_state and 'projections_df' in st.session_state:
# optimized_df = None
# map_dict = {
# 'pos_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['position'])),
# 'salary_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['salary'])),
# 'proj_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['median'])),
# 'own_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['ownership'])),
# 'team_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['team']))
# }
# # Calculate new stats for optimized lineups
# st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
# )
# st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
# )
# st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
# )
# options_container = st.container()
# with options_container:
# col1, col2, col3, col4, col5, col6 = st.columns(6)
# with col1:
# curr_site_var = st.selectbox("Select your current site", options=['DraftKings', 'FanDuel'])
# with col2:
# curr_sport_var = st.selectbox("Select your current sport", options=['NBA', 'MLB', 'NFL', 'NHL', 'MMA'])
# with col3:
# swap_var = st.multiselect("Select late swap strategy", options=['Optimize', 'Increase volatility', 'Decrease volatility'])
# with col4:
# remove_teams_var = st.multiselect("What teams have already played?", options=st.session_state['projections_df']['team'].unique())
# with col5:
# winners_var = st.multiselect("Are there any players doing exceptionally well?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3)
# with col6:
# losers_var = st.multiselect("Are there any players doing exceptionally poorly?", options=st.session_state['projections_df']['player_names'].unique(), max_selections=3)
# if st.button('Clear Late Swap'):
# if 'optimized_df' in st.session_state:
# del st.session_state['optimized_df']
# map_dict = {
# 'pos_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['position'])),
# 'salary_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['salary'])),
# 'proj_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['median'])),
# 'own_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['ownership'])),
# 'team_map': dict(zip(st.session_state['projections_df']['player_names'],
# st.session_state['projections_df']['team']))
# }
# # Calculate new stats for optimized lineups
# st.session_state['portfolio']['salary'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
# )
# st.session_state['portfolio']['median'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
# )
# st.session_state['portfolio']['Own'] = st.session_state['portfolio'].apply(
# lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
# )
# if st.button('Run Late Swap'):
# st.session_state['portfolio'] = st.session_state['portfolio'].drop(columns=['salary', 'median', 'Own'])
# if curr_sport_var == 'NBA':
# if curr_site_var == 'DraftKings':
# st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'UTIL'], axis=1)
# else:
# st.session_state['portfolio'] = st.session_state['portfolio'].set_axis(['PG', 'PG', 'SG', 'SG', 'SF', 'SF', 'PF', 'PF', 'C'], axis=1)
# # Define roster position rules
# if curr_site_var == 'DraftKings':
# position_rules = {
# 'PG': ['PG'],
# 'SG': ['SG'],
# 'SF': ['SF'],
# 'PF': ['PF'],
# 'C': ['C'],
# 'G': ['PG', 'SG'],
# 'F': ['SF', 'PF'],
# 'UTIL': ['PG', 'SG', 'SF', 'PF', 'C']
# }
# else:
# position_rules = {
# 'PG': ['PG'],
# 'SG': ['SG'],
# 'SF': ['SF'],
# 'PF': ['PF'],
# 'C': ['C'],
# }
# # Create position groups from projections data
# position_groups = {}
# for _, player in st.session_state['projections_df'].iterrows():
# positions = player['position'].split('/')
# for pos in positions:
# if pos not in position_groups:
# position_groups[pos] = []
# position_groups[pos].append({
# 'player_names': player['player_names'],
# 'salary': player['salary'],
# 'median': player['median'],
# 'ownership': player['ownership'],
# 'positions': positions # Store all eligible positions
# })
# def optimize_lineup(row):
# current_lineup = []
# total_salary = 0
# if curr_site_var == 'DraftKings':
# salary_cap = 50000
# else:
# salary_cap = 60000
# used_players = set()
# # Convert row to dictionary with roster positions
# roster = {}
# for col, player in zip(row.index, row):
# if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
# roster[col] = {
# 'name': player,
# 'position': map_dict['pos_map'].get(player, '').split('/'),
# 'team': map_dict['team_map'].get(player, ''),
# 'salary': map_dict['salary_map'].get(player, 0),
# 'median': map_dict['proj_map'].get(player, 0),
# 'ownership': map_dict['own_map'].get(player, 0)
# }
# total_salary += roster[col]['salary']
# used_players.add(player)
# # Optimize each roster position in random order
# roster_positions = list(roster.items())
# random.shuffle(roster_positions)
# for roster_pos, current in roster_positions:
# # Skip optimization for players from removed teams
# if current['team'] in remove_teams_var:
# continue
# valid_positions = position_rules[roster_pos]
# better_options = []
# # Find valid replacements for this roster position
# for pos in valid_positions:
# if pos in position_groups:
# pos_options = [
# p for p in position_groups[pos]
# if p['median'] > current['median']
# and (total_salary - current['salary'] + p['salary']) <= salary_cap
# and p['player_names'] not in used_players
# and any(valid_pos in p['positions'] for valid_pos in valid_positions)
# and map_dict['team_map'].get(p['player_names']) not in remove_teams_var # Check team restriction
# ]
# better_options.extend(pos_options)
# if better_options:
# # Remove duplicates
# better_options = {opt['player_names']: opt for opt in better_options}.values()
# # Sort by median projection and take the best one
# best_replacement = max(better_options, key=lambda x: x['median'])
# # Update the lineup and tracking variables
# used_players.remove(current['name'])
# used_players.add(best_replacement['player_names'])
# total_salary = total_salary - current['salary'] + best_replacement['salary']
# roster[roster_pos] = {
# 'name': best_replacement['player_names'],
# 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
# 'team': map_dict['team_map'][best_replacement['player_names']],
# 'salary': best_replacement['salary'],
# 'median': best_replacement['median'],
# 'ownership': best_replacement['ownership']
# }
# # Return optimized lineup maintaining original column order
# return [roster[pos]['name'] for pos in row.index if pos in roster]
# def optimize_lineup_winners(row):
# current_lineup = []
# total_salary = 0
# if curr_site_var == 'DraftKings':
# salary_cap = 50000
# else:
# salary_cap = 60000
# used_players = set()
# # Check if any winners are in the lineup and count them
# winners_in_lineup = sum(1 for player in row if player in winners_var)
# changes_needed = min(winners_in_lineup, 3) if winners_in_lineup > 0 else 0
# changes_made = 0
# # Convert row to dictionary with roster positions
# roster = {}
# for col, player in zip(row.index, row):
# if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
# roster[col] = {
# 'name': player,
# 'position': map_dict['pos_map'].get(player, '').split('/'),
# 'team': map_dict['team_map'].get(player, ''),
# 'salary': map_dict['salary_map'].get(player, 0),
# 'median': map_dict['proj_map'].get(player, 0),
# 'ownership': map_dict['own_map'].get(player, 0)
# }
# total_salary += roster[col]['salary']
# used_players.add(player)
# # Only proceed with ownership-based optimization if we have winners in the lineup
# if changes_needed > 0:
# # Randomize the order of positions to optimize
# roster_positions = list(roster.items())
# random.shuffle(roster_positions)
# for roster_pos, current in roster_positions:
# # Stop if we've made enough changes
# if changes_made >= changes_needed:
# break
# # Skip optimization for players from removed teams or if the current player is a winner
# if current['team'] in remove_teams_var or current['name'] in winners_var:
# continue
# valid_positions = list(position_rules[roster_pos])
# random.shuffle(valid_positions)
# better_options = []
# # Find valid replacements with higher ownership
# for pos in valid_positions:
# if pos in position_groups:
# pos_options = [
# p for p in position_groups[pos]
# if p['ownership'] > current['ownership']
# and p['median'] >= current['median'] - 3
# and (total_salary - current['salary'] + p['salary']) <= salary_cap
# and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000
# and p['player_names'] not in used_players
# and any(valid_pos in p['positions'] for valid_pos in valid_positions)
# and map_dict['team_map'].get(p['player_names']) not in remove_teams_var
# ]
# better_options.extend(pos_options)
# if better_options:
# # Remove duplicates
# better_options = {opt['player_names']: opt for opt in better_options}.values()
# # Sort by ownership and take the highest owned option
# best_replacement = max(better_options, key=lambda x: x['ownership'])
# # Update the lineup and tracking variables
# used_players.remove(current['name'])
# used_players.add(best_replacement['player_names'])
# total_salary = total_salary - current['salary'] + best_replacement['salary']
# roster[roster_pos] = {
# 'name': best_replacement['player_names'],
# 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
# 'team': map_dict['team_map'][best_replacement['player_names']],
# 'salary': best_replacement['salary'],
# 'median': best_replacement['median'],
# 'ownership': best_replacement['ownership']
# }
# changes_made += 1
# # Return optimized lineup maintaining original column order
# return [roster[pos]['name'] for pos in row.index if pos in roster]
# def optimize_lineup_losers(row):
# current_lineup = []
# total_salary = 0
# if curr_site_var == 'DraftKings':
# salary_cap = 50000
# else:
# salary_cap = 60000
# used_players = set()
# # Check if any winners are in the lineup and count them
# losers_in_lineup = sum(1 for player in row if player in losers_var)
# changes_needed = min(losers_in_lineup, 3) if losers_in_lineup > 0 else 0
# changes_made = 0
# # Convert row to dictionary with roster positions
# roster = {}
# for col, player in zip(row.index, row):
# if col not in ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Lineup Edge']:
# roster[col] = {
# 'name': player,
# 'position': map_dict['pos_map'].get(player, '').split('/'),
# 'team': map_dict['team_map'].get(player, ''),
# 'salary': map_dict['salary_map'].get(player, 0),
# 'median': map_dict['proj_map'].get(player, 0),
# 'ownership': map_dict['own_map'].get(player, 0)
# }
# total_salary += roster[col]['salary']
# used_players.add(player)
# # Only proceed with ownership-based optimization if we have winners in the lineup
# if changes_needed > 0:
# # Randomize the order of positions to optimize
# roster_positions = list(roster.items())
# random.shuffle(roster_positions)
# for roster_pos, current in roster_positions:
# # Stop if we've made enough changes
# if changes_made >= changes_needed:
# break
# # Skip optimization for players from removed teams or if the current player is a winner
# if current['team'] in remove_teams_var or current['name'] in losers_var:
# continue
# valid_positions = list(position_rules[roster_pos])
# random.shuffle(valid_positions)
# better_options = []
# # Find valid replacements with higher ownership
# for pos in valid_positions:
# if pos in position_groups:
# pos_options = [
# p for p in position_groups[pos]
# if p['ownership'] < current['ownership']
# and p['median'] >= current['median'] - 3
# and (total_salary - current['salary'] + p['salary']) <= salary_cap
# and (total_salary - current['salary'] + p['salary']) >= salary_cap - 1000
# and p['player_names'] not in used_players
# and any(valid_pos in p['positions'] for valid_pos in valid_positions)
# and map_dict['team_map'].get(p['player_names']) not in remove_teams_var
# ]
# better_options.extend(pos_options)
# if better_options:
# # Remove duplicates
# better_options = {opt['player_names']: opt for opt in better_options}.values()
# # Sort by ownership and take the highest owned option
# best_replacement = max(better_options, key=lambda x: x['ownership'])
# # Update the lineup and tracking variables
# used_players.remove(current['name'])
# used_players.add(best_replacement['player_names'])
# total_salary = total_salary - current['salary'] + best_replacement['salary']
# roster[roster_pos] = {
# 'name': best_replacement['player_names'],
# 'position': map_dict['pos_map'][best_replacement['player_names']].split('/'),
# 'team': map_dict['team_map'][best_replacement['player_names']],
# 'salary': best_replacement['salary'],
# 'median': best_replacement['median'],
# 'ownership': best_replacement['ownership']
# }
# changes_made += 1
# # Return optimized lineup maintaining original column order
# return [roster[pos]['name'] for pos in row.index if pos in roster]
# # Create a progress bar
# progress_bar = st.progress(0)
# status_text = st.empty()
# # Process each lineup
# optimized_lineups = []
# total_lineups = len(st.session_state['portfolio'])
# for idx, row in st.session_state['portfolio'].iterrows():
# # First optimization pass
# first_pass = optimize_lineup(row)
# first_pass_series = pd.Series(first_pass, index=row.index)
# second_pass = optimize_lineup(first_pass_series)
# second_pass_series = pd.Series(second_pass, index=row.index)
# third_pass = optimize_lineup(second_pass_series)
# third_pass_series = pd.Series(third_pass, index=row.index)
# fourth_pass = optimize_lineup(third_pass_series)
# fourth_pass_series = pd.Series(fourth_pass, index=row.index)
# fifth_pass = optimize_lineup(fourth_pass_series)
# fifth_pass_series = pd.Series(fifth_pass, index=row.index)
# # Second optimization pass
# final_lineup = optimize_lineup(fifth_pass_series)
# optimized_lineups.append(final_lineup)
# if 'Optimize' in swap_var:
# progress = (idx + 1) / total_lineups
# progress_bar.progress(progress)
# status_text.text(f'Optimizing Lineups {idx + 1} of {total_lineups}')
# else:
# pass
# # Create new dataframe with optimized lineups
# if 'Optimize' in swap_var:
# st.session_state['optimized_df_medians'] = pd.DataFrame(optimized_lineups, columns=st.session_state['portfolio'].columns)
# else:
# st.session_state['optimized_df_medians'] = st.session_state['portfolio']
# # Create a progress bar
# progress_bar_winners = st.progress(0)
# status_text_winners = st.empty()
# # Process each lineup
# optimized_lineups_winners = []
# total_lineups = len(st.session_state['optimized_df_medians'])
# for idx, row in st.session_state['optimized_df_medians'].iterrows():
# final_lineup = optimize_lineup_winners(row)
# optimized_lineups_winners.append(final_lineup)
# if 'Decrease volatility' in swap_var:
# progress_winners = (idx + 1) / total_lineups
# progress_bar_winners.progress(progress_winners)
# status_text_winners.text(f'Lowering Volatility around Winners {idx + 1} of {total_lineups}')
# else:
# pass
# # Create new dataframe with optimized lineups
# if 'Decrease volatility' in swap_var:
# st.session_state['optimized_df_winners'] = pd.DataFrame(optimized_lineups_winners, columns=st.session_state['optimized_df_medians'].columns)
# else:
# st.session_state['optimized_df_winners'] = st.session_state['optimized_df_medians']
# # Create a progress bar
# progress_bar_losers = st.progress(0)
# status_text_losers = st.empty()
# # Process each lineup
# optimized_lineups_losers = []
# total_lineups = len(st.session_state['optimized_df_winners'])
# for idx, row in st.session_state['optimized_df_winners'].iterrows():
# final_lineup = optimize_lineup_losers(row)
# optimized_lineups_losers.append(final_lineup)
# if 'Increase volatility' in swap_var:
# progress_losers = (idx + 1) / total_lineups
# progress_bar_losers.progress(progress_losers)
# status_text_losers.text(f'Increasing Volatility around Losers {idx + 1} of {total_lineups}')
# else:
# pass
# # Create new dataframe with optimized lineups
# if 'Increase volatility' in swap_var:
# st.session_state['optimized_df'] = pd.DataFrame(optimized_lineups_losers, columns=st.session_state['optimized_df_winners'].columns)
# else:
# st.session_state['optimized_df'] = st.session_state['optimized_df_winners']
# # Calculate new stats for optimized lineups
# st.session_state['optimized_df']['salary'] = st.session_state['optimized_df'].apply(
# lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row if player in map_dict['salary_map']), axis=1
# )
# st.session_state['optimized_df']['median'] = st.session_state['optimized_df'].apply(
# lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row if player in map_dict['proj_map']), axis=1
# )
# st.session_state['optimized_df']['Own'] = st.session_state['optimized_df'].apply(
# lambda row: sum(map_dict['own_map'].get(player, 0) for player in row if player in map_dict['own_map']), axis=1
# )
# # Display results
# st.success('Optimization complete!')
# if 'optimized_df' in st.session_state:
# st.write("Increase in median highlighted in yellow, descrease in volatility highlighted in blue, increase in volatility highlighted in red:")
# st.dataframe(
# st.session_state['optimized_df'].style
# .apply(highlight_changes, axis=1)
# .apply(highlight_changes_winners, axis=1)
# .apply(highlight_changes_losers, axis=1)
# .background_gradient(axis=0)
# .background_gradient(cmap='RdYlGn')
# .format(precision=2),
# height=1000,
# use_container_width=True
# )
# # Option to download optimized lineups
# if st.button('Prepare Late Swap Export'):
# export_df = st.session_state['optimized_df'].copy()
# # Map player names to their export IDs for all player columns
# for col in export_df.columns:
# if col not in ['salary', 'median', 'Own']:
# export_df[col] = export_df[col].map(st.session_state['export_dict'])
# csv = export_df.to_csv(index=False)
# st.download_button(
# label="Download CSV",
# data=csv,
# file_name="optimized_lineups.csv",
# mime="text/csv"
# )
# else:
# st.write("Current Portfolio")
# st.dataframe(
# st.session_state['portfolio'].style
# .background_gradient(axis=0)
# .background_gradient(cmap='RdYlGn')
# .format(precision=2),
# height=1000,
# use_container_width=True
# )
if selected_tab == 'Manage Portfolio':
if 'origin_portfolio' in st.session_state and 'projections_df' in st.session_state:
with st.container():
reset_port_col, recalc_div_col, blank_reset_col, contest_size_col = st.columns([1, 1, 6, 4])
with reset_port_col:
if st.button('Reset Portfolio', key='reset_port'):
st.session_state['settings_base'] = True
st.session_state['working_frame'] = st.session_state['base_frame'].copy()
with recalc_div_col:
if st.button("Recalculate Diversity"):
st.session_state['display_frame']['Diversity'] = recalc_diversity(st.session_state['display_frame'], st.session_state['player_columns'])
with contest_size_col:
with st.form(key='contest_size_form'):
size_col, strength_col, submit_col = st.columns(3)
with size_col:
Contest_Size = st.number_input("Enter Contest Size", value=25000, min_value=1, step=1)
with strength_col:
strength_var = st.selectbox("Select field strength", ['Average', 'Sharp', 'Weak'])
with submit_col:
submitted = st.form_submit_button("Submit Size/Strength")
if submitted:
del st.session_state['working_frame']
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
if 'working_frame' not in st.session_state:
st.session_state['settings_base'] = True
st.session_state['working_frame'] = pd.read_parquet(io.BytesIO(st.session_state['origin_portfolio']))
st.session_state['player_columns'] = [col for col in st.session_state['working_frame'].columns if col not in excluded_cols]
if type_var == 'Classic':
if sport_var == 'CS2' or sport_var == 'LOL':
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
st.session_state['working_frame']['salary'] = st.session_state['working_frame'].apply(
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
st.session_state['working_frame']['median'] = st.session_state['working_frame'].apply(
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
st.session_state['working_frame']['Own'] = st.session_state['working_frame'].apply(
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
elif sport_var != 'CS2' and sport_var != 'LOL':
st.session_state['working_frame']['salary'] = st.session_state['working_frame'].apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
st.session_state['working_frame']['median'] = st.session_state['working_frame'].apply(lambda row: sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row), axis=1)
st.session_state['working_frame']['Own'] = st.session_state['working_frame'].apply(lambda row: sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row), axis=1)
if 'stack_dict' in st.session_state:
st.session_state['working_frame']['Stack'] = st.session_state['working_frame'].index.map(st.session_state['stack_dict'])
st.session_state['working_frame']['Size'] = st.session_state['working_frame'].index.map(st.session_state['size_dict'])
elif type_var == 'Showdown':
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
st.session_state['working_frame']['salary'] = st.session_state['working_frame'].apply(
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
st.session_state['working_frame']['median'] = st.session_state['working_frame'].apply(
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
st.session_state['working_frame']['Own'] = st.session_state['working_frame'].apply(
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# st.session_state['working_frame']['Own'] = st.session_state['working_frame']['Own'].astype('float32')
st.session_state['working_frame']['median'] = st.session_state['working_frame']['median'].astype('float32')
st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
st.session_state['base_frame'], check_frame = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
st.session_state['working_frame'] = st.session_state['base_frame'].copy()
# st.session_state['highest_owned_teams'] = st.session_state['projections_df'][~st.session_state['projections_df']['position'].isin(['P', 'SP'])].groupby('team')['ownership'].sum().sort_values(ascending=False).head(3).index.tolist()
# st.session_state['highest_owned_pitchers'] = st.session_state['projections_df'][st.session_state['projections_df']['position'].isin(['P', 'SP'])]['player_names'].sort_values(by='ownership', ascending=False).head(3).tolist()
st.table(check_frame)
if 'trimming_dict_maxes' not in st.session_state:
st.session_state['trimming_dict_maxes'] = {
'Own': st.session_state['working_frame']['Own'].max(),
'Geomean': st.session_state['working_frame']['Geomean'].max(),
'Weighted Own': st.session_state['working_frame']['Weighted Own'].max(),
'median': st.session_state['working_frame']['median'].max(),
'Finish_percentile': st.session_state['working_frame']['Finish_percentile'].max(),
'Diversity': st.session_state['working_frame']['Diversity'].max()
}
with st.sidebar:
if 'trimming_dict_maxes' not in st.session_state:
st.session_state['trimming_dict_maxes'] = {
'Own': 500.0,
'Geomean': 500.0,
'Weighted Own': 500.0,
'median': 500.0,
'Finish_percentile': 1.0,
'Diversity': 1.0
}
with st.expander('Macro Filter Options'):
# recent changes for showdown included
with st.form(key='macro_filter_form'):
macro_min_col, macro_max_col = st.columns(2)
with macro_min_col:
min_salary = st.number_input("Min acceptable salary?", value=0, min_value=0, max_value=salary_max, step=100)
min_proj = st.number_input("Min acceptable projection?", value=0.0, min_value=0.0, max_value=500.0, step=1.0)
min_own = st.number_input("Min acceptable ownership?", value=0.0, min_value=0.0, max_value=500.0, step=1.0)
min_dupes = st.number_input("Min acceptable dupes?", value=0, min_value=0, max_value=1000, step=1)
min_finish_percentile = st.number_input("Min acceptable finish percentile?", value=0.00, min_value=0.00, max_value=1.00, step=.001)
min_lineup_edge = st.number_input("Min acceptable Lineup Edge?", value=-1.00, min_value=-1.00, max_value=1.00, step=.001)
with macro_max_col:
max_salary = st.number_input("Max acceptable salary?", value=salary_max, min_value=0, max_value=salary_max, step=100)
max_proj = st.number_input("Max acceptable projection?", value=500.0, min_value=0.0, max_value=500.0, step=1.0)
max_own = st.number_input("Max acceptable ownership?", value=500.0, min_value=0.0, max_value=500.0, step=1.0)
max_dupes = st.number_input("Max acceptable dupes?", value=1000, min_value=1, max_value=1000, step=1)
max_finish_percentile = st.number_input("Max acceptable finish percentile?", value=1.00, min_value=0.00, max_value=1.00, step=.001)
max_lineup_edge = st.number_input("Max acceptable Lineup Edge?", value=1.00, min_value=-1.00, max_value=1.00, step=.001)
if sport_var in stacking_sports:
stack_include_toggle = st.selectbox("Include specific stacks?", options=['All Stacks', 'Specific Stacks'], index=0)
stack_selections = st.multiselect("If Specific Stacks, Which to include?", options=sorted(list(set(st.session_state['stack_dict'].values()))), default=[])
stack_remove_toggle = st.selectbox("Remove specific stacks?", options=['No', 'Yes'], index=0)
stack_remove = st.multiselect("If Specific Stacks, Which to remove?", options=sorted(list(set(st.session_state['stack_dict'].values()))), default=[])
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['working_frame'].copy()
parsed_frame = parsed_frame[parsed_frame['salary'] >= min_salary]
parsed_frame = parsed_frame[parsed_frame['salary'] <= max_salary]
parsed_frame = parsed_frame[parsed_frame['median'] >= min_proj]
parsed_frame = parsed_frame[parsed_frame['median'] <= max_proj]
parsed_frame = parsed_frame[parsed_frame['Own'] >= min_own]
parsed_frame = parsed_frame[parsed_frame['Own'] <= max_own]
parsed_frame = parsed_frame[parsed_frame['Dupes'] >= min_dupes]
parsed_frame = parsed_frame[parsed_frame['Dupes'] <= max_dupes]
parsed_frame = parsed_frame[parsed_frame['Finish_percentile'] >= min_finish_percentile]
parsed_frame = parsed_frame[parsed_frame['Finish_percentile'] <= max_finish_percentile]
parsed_frame = parsed_frame[parsed_frame['Lineup Edge'] >= min_lineup_edge]
parsed_frame = parsed_frame[parsed_frame['Lineup Edge'] <= max_lineup_edge]
if 'Stack' in parsed_frame.columns:
if stack_include_toggle == 'All Stacks':
parsed_frame = parsed_frame
else:
parsed_frame = parsed_frame[parsed_frame['Stack'].isin(stack_selections)]
if stack_remove_toggle == 'Yes':
parsed_frame = parsed_frame[~parsed_frame['Stack'].isin(stack_remove)]
else:
parsed_frame = parsed_frame
st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
if exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
parsed_frame = parsed_frame[parsed_frame['salary'] >= min_salary]
parsed_frame = parsed_frame[parsed_frame['salary'] <= max_salary]
parsed_frame = parsed_frame[parsed_frame['median'] >= min_proj]
parsed_frame = parsed_frame[parsed_frame['median'] <= max_proj]
parsed_frame = parsed_frame[parsed_frame['Own'] >= min_own]
parsed_frame = parsed_frame[parsed_frame['Own'] <= max_own]
parsed_frame = parsed_frame[parsed_frame['Dupes'] >= min_dupes]
parsed_frame = parsed_frame[parsed_frame['Dupes'] <= max_dupes]
parsed_frame = parsed_frame[parsed_frame['Finish_percentile'] >= min_finish_percentile]
parsed_frame = parsed_frame[parsed_frame['Finish_percentile'] <= max_finish_percentile]
parsed_frame = parsed_frame[parsed_frame['Lineup Edge'] >= min_lineup_edge]
parsed_frame = parsed_frame[parsed_frame['Lineup Edge'] <= max_lineup_edge]
if 'Stack' in parsed_frame.columns:
if stack_include_toggle == 'All Stacks':
parsed_frame = parsed_frame
else:
parsed_frame = parsed_frame[parsed_frame['Stack'].isin(stack_selections)]
if stack_remove_toggle == 'Yes':
parsed_frame = parsed_frame[~parsed_frame['Stack'].isin(stack_remove)]
else:
parsed_frame = parsed_frame
st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Micro Filter Options'):
with st.form(key='micro_filter_form'):
player_names = set()
for col in st.session_state['working_frame'].columns:
if col not in excluded_cols:
player_names.update(st.session_state['working_frame'][col].unique())
if type_var == 'Showdown':
cpt_flex_focus = st.selectbox("Focus on Overall, CPT, or FLEX?", options=['Overall', 'CPT', 'FLEX'], index=0)
player_lock = st.multiselect("Lock players?", options=sorted(list(player_names)), default=[])
player_remove = st.multiselect("Remove players?", options=sorted(list(player_names)), default=[])
team_include = st.multiselect("Include teams?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[])
team_remove = st.multiselect("Remove teams?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[])
if sport_var in stacking_sports:
size_include = st.multiselect("Include sizes?", options=sorted(list(set(st.session_state['working_frame']['Size'].unique()))), default=[])
else:
size_include = []
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['working_frame'].copy()
if player_remove:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
remove_mask = parsed_frame.iloc[:, 0].apply(
lambda player: not any(remove_player in str(player) for remove_player in player_remove)
)
elif cpt_flex_focus == 'FLEX':
remove_mask = parsed_frame.iloc[:, 1:].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
elif cpt_flex_focus == 'Overall':
remove_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
else:
# Create mask for lineups that contain any of the removed players
remove_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
parsed_frame = parsed_frame[remove_mask]
if player_lock:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
lock_mask = parsed_frame.iloc[:, 0].apply(
lambda player: any(lock_player in str(player) for lock_player in player_lock)
)
elif cpt_flex_focus == 'FLEX':
lock_mask = parsed_frame.iloc[:, 1:].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
elif cpt_flex_focus == 'Overall':
lock_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
else:
lock_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
parsed_frame = parsed_frame[lock_mask]
if team_include:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
team_frame = parsed_frame.iloc[:, 0].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
elif cpt_flex_focus == 'FLEX':
team_frame = parsed_frame.iloc[:, 1:].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
elif cpt_flex_focus == 'Overall':
team_frame = parsed_frame[st.session_state['player_columns']].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
else:
# Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2
filtered_player_columns = [col for col in st.session_state['player_columns'] if col not in ['SP1', 'SP2']]
team_frame = parsed_frame[filtered_player_columns].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
# Create mask for lineups that contain any of the included teams
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
parsed_frame = parsed_frame[include_mask]
if team_remove:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
team_frame = parsed_frame.iloc[:, 0].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
elif cpt_flex_focus == 'FLEX':
team_frame = parsed_frame.iloc[:, 1:].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
elif cpt_flex_focus == 'Overall':
team_frame = parsed_frame[st.session_state['player_columns']].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
else:
# Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2
filtered_player_columns = [col for col in st.session_state['player_columns'] if col not in ['SP1', 'SP2']]
team_frame = parsed_frame[filtered_player_columns].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
# Create mask for lineups that don't contain any of the removed teams
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
parsed_frame = parsed_frame[remove_mask]
if size_include:
parsed_frame = parsed_frame[parsed_frame['Size'].isin(size_include)]
st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
if player_remove:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
remove_mask = parsed_frame.iloc[:, 0].apply(
lambda player: not any(remove_player in str(player) for remove_player in player_remove)
)
elif cpt_flex_focus == 'FLEX':
remove_mask = parsed_frame.iloc[:, 1:].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
elif cpt_flex_focus == 'Overall':
remove_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
else:
remove_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: not any(player in list(row) for player in player_remove), axis=1
)
parsed_frame = parsed_frame[remove_mask]
if player_lock:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
lock_mask = parsed_frame.iloc[:, 0].apply(
lambda player: any(lock_player in str(player) for lock_player in player_lock)
)
elif cpt_flex_focus == 'FLEX':
lock_mask = parsed_frame.iloc[:, 1:].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
elif cpt_flex_focus == 'Overall':
lock_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
else:
lock_mask = parsed_frame[st.session_state['player_columns']].apply(
lambda row: all(player in list(row) for player in player_lock), axis=1
)
parsed_frame = parsed_frame[lock_mask]
if team_include:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
team_frame = parsed_frame.iloc[:, 0].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
elif cpt_flex_focus == 'FLEX':
team_frame = parsed_frame.iloc[:, 1:].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
elif cpt_flex_focus == 'Overall':
team_frame = parsed_frame[st.session_state['player_columns']].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
else:
# Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2
filtered_player_columns = [col for col in st.session_state['player_columns'] if col not in ['SP1', 'SP2']]
team_frame = parsed_frame[filtered_player_columns].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
# Create mask for lineups that contain any of the included teams
include_mask = team_frame.apply(
lambda row: any(team in list(row) for team in team_include), axis=1
)
parsed_frame = parsed_frame[include_mask]
if team_remove:
if type_var == 'Showdown':
if cpt_flex_focus == 'CPT':
team_frame = parsed_frame.iloc[:, 0].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
elif cpt_flex_focus == 'FLEX':
team_frame = parsed_frame.iloc[:, 1:].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
elif cpt_flex_focus == 'Overall':
team_frame = parsed_frame[st.session_state['player_columns']].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
else:
# Create a copy of the frame with player names replaced by teams, excluding SP1 and SP2
filtered_player_columns = [col for col in st.session_state['player_columns'] if col not in ['SP1', 'SP2']]
team_frame = parsed_frame[filtered_player_columns].apply(
lambda x: x.map(st.session_state['map_dict']['team_map'])
)
# Create mask for lineups that don't contain any of the removed teams
remove_mask = team_frame.apply(
lambda row: not any(team in list(row) for team in team_remove), axis=1
)
parsed_frame = parsed_frame[remove_mask]
if size_include:
parsed_frame = parsed_frame[parsed_frame['Size'].isin(size_include)]
st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Trimming Options'):
with st.form(key='trim_form'):
st.write("Sorting and trimming variables:")
perf_var, own_var = st.columns(2)
with perf_var:
performance_type = st.selectbox("Sorting variable", ['median', 'Own', 'Weighted Own'], key='sort_var')
with own_var:
own_type = st.selectbox("Trimming variable", ['Own', 'Geomean', 'Weighted Own', 'Diversity'], key='trim_var')
trim_slack_var = st.number_input("Trim slack (percentile addition to trimming variable ceiling)", value=0.0, min_value=0.0, max_value=1.0, step=0.1, key='trim_slack')
st.write("Sorting threshold range:")
min_sort, max_sort = st.columns(2)
with min_sort:
performance_threshold_low = st.number_input("Min", value=0.0, min_value=0.0, step=1.0, key='min_sort')
with max_sort:
performance_threshold_high = st.number_input("Max", value=float(st.session_state['trimming_dict_maxes'][performance_type]), min_value=0.0, step=1.0, key='max_sort')
st.write("Trimming threshold range:")
min_trim, max_trim = st.columns(2)
with min_trim:
own_threshold_low = st.number_input("Min", value=0.0, min_value=0.0, step=1.0, key='min_trim')
with max_trim:
own_threshold_high = st.number_input("Max", value=float(st.session_state['trimming_dict_maxes'][own_type]), min_value=0.0, step=1.0, key='max_trim')
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
st.write('initiated')
parsed_frame = st.session_state['working_frame'].copy()
parsed_frame = trim_portfolio(parsed_frame, trim_slack_var, performance_type, own_type, performance_threshold_high, performance_threshold_low, own_threshold_high, own_threshold_low)
st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
parsed_frame = trim_portfolio(parsed_frame, trim_slack_var, performance_type, own_type, performance_threshold_high, performance_threshold_low, own_threshold_high, own_threshold_low)
st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Presets'):
st.info("Still heavily in testing here, I'll announce when they are ready for use.")
with st.form(key='Small Field Preset'):
preset_choice = st.selectbox("Preset", options=['Small Field (Heavy Own)', 'Large Field (Manage Diversity)', 'Hedge Chalk (Manage Leverage)', 'Volatility (Heavy Lineup Edge)'], index=0)
lineup_target = st.number_input("Lineups to produce", value=150, min_value=1, step=1)
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
if preset_choice == 'Small Field (Heavy Own)':
parsed_frame = small_field_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Large Field (Manage Diversity)':
parsed_frame = large_field_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Volatility (Heavy Lineup Edge)':
parsed_frame = volatility_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Hedge Chalk (Manage Leverage)':
parsed_frame = hedging_preset(st.session_state['working_frame'], lineup_target, st.session_state['projections_df'], sport_var)
elif preset_choice == 'Reduce Volatility (Manage Own)':
parsed_frame = reduce_volatility_preset(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var)
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
if preset_choice == 'Small Field (Heavy Own)':
parsed_frame = small_field_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Large Field (Manage Diversity)':
parsed_frame = large_field_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Volatility (Heavy Lineup Edge)':
parsed_frame = volatility_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var)
elif preset_choice == 'Hedge Chalk (Manage Leverage)':
parsed_frame = hedging_preset(st.session_state['export_base'], lineup_target, st.session_state['projections_df'], sport_var)
elif preset_choice == 'Reduce Volatility (Manage Own)':
parsed_frame = reduce_volatility_preset(st.session_state['export_base'], lineup_target, excluded_cols, sport_var)
st.session_state['export_base'] = parsed_frame.reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Stratify'):
with st.form(key='Stratification'):
sorting_choice = st.selectbox("Stat Choice", options=['median', 'Own', 'Weighted Own', 'Geomean', 'Lineup Edge', 'Finish_percentile', 'Diversity'], index=0)
lineup_target = st.number_input("Lineups to produce", value=150, min_value=1, step=1)
strat_sample = st.slider("Sample range", value=[0.0, 100.0], min_value=0.0, max_value=100.0, step=1.0)
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
parsed_frame = stratification_function(st.session_state['working_frame'], lineup_target, excluded_cols, sport_var, sorting_choice, strat_sample[0], strat_sample[1])
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = stratification_function(st.session_state['export_base'], lineup_target, excluded_cols, sport_var, sorting_choice, strat_sample[0], strat_sample[1])
st.session_state['export_base'] = parsed_frame.reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Conditionals Manager (players)'):
# a set of functions for removing lineups that contain a conditional between players and stacks
with st.form(key='conditional_players_form'):
player_names = set()
for col in st.session_state['working_frame'].columns:
if col not in excluded_cols:
player_names.update(st.session_state['working_frame'][col].unique())
keep_remove_var = st.selectbox("Conditional:", options=['Keep', 'Remove'], index=0)
conditional_side_alpha = st.multiselect("Lineups containing:", options=sorted(list(player_names)), default=[])
cpt_flex_alpha = st.selectbox("in slot:", options=['Overall', 'CPT', 'FLEX'], index=0, key='cpt_flex_alpha')
conditional_var = st.selectbox("where they also contain:", options=['Any', 'All', 'None'], index=0)
conditional_side_beta = st.multiselect("of the following player(s):", options=sorted(list(player_names)), default=[])
cpt_flex_beta = st.selectbox("in slot:", options=['Overall', 'CPT', 'FLEX'], index=0, key='cpt_flex_beta')
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['working_frame'].copy()
# Check if we have players selected for both alpha and beta sides
if conditional_side_alpha and conditional_side_beta:
# Create boolean mask for rows containing ALL players from alpha side
alpha_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_alpha:
if type_var == 'Showdown':
if cpt_flex_alpha == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_alpha == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_alpha == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
alpha_mask = alpha_mask & player_present
# Only apply beta logic to rows that match alpha condition
rows_to_process = alpha_mask
# For rows that match alpha condition, check beta condition
if conditional_var == 'Any':
# Check if row contains ANY of the beta players
beta_mask = pd.Series([False] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_beta:
if type_var == 'Showdown':
if cpt_flex_beta == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_beta == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_beta == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
beta_mask = beta_mask | player_present
elif conditional_var == 'All':
# Check if row contains ALL of the beta players
beta_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_beta:
if type_var == 'Showdown':
if cpt_flex_beta == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_beta == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_beta == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
beta_mask = beta_mask & player_present
elif conditional_var == 'None':
# Check if row contains NONE of the beta players
beta_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_beta:
if type_var == 'Showdown':
if cpt_flex_beta == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_beta == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_beta == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
beta_mask = beta_mask & (~player_present)
# Combine conditions: alpha_mask AND beta_mask
final_condition = rows_to_process & beta_mask
# Apply keep or remove logic
if keep_remove_var == 'Keep':
parsed_frame = parsed_frame[~rows_to_process | final_condition]
else: # Remove
parsed_frame = parsed_frame[~final_condition]
elif conditional_side_alpha:
# Only alpha side specified - filter based on presence of alpha players
alpha_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_alpha:
if type_var == 'Showdown':
if cpt_flex_alpha == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_alpha == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_alpha == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
alpha_mask = alpha_mask & player_present
if keep_remove_var == 'Keep':
parsed_frame = parsed_frame[alpha_mask]
else: # Remove
parsed_frame = parsed_frame[~alpha_mask]
st.session_state['working_frame'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
parsed_frame = st.session_state['export_base'].copy()
# Check if we have players selected for both alpha and beta sides
if conditional_side_alpha and conditional_side_beta:
# Create boolean mask for rows containing ALL players from alpha side
alpha_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_alpha:
if type_var == 'Showdown':
if cpt_flex_alpha == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_alpha == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_alpha == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
alpha_mask = alpha_mask & player_present
# Only apply beta logic to rows that match alpha condition
rows_to_process = alpha_mask
# For rows that match alpha condition, check beta condition
if conditional_var == 'Any':
# Check if row contains ANY of the beta players
beta_mask = pd.Series([False] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_beta:
if type_var == 'Showdown':
if cpt_flex_beta == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_beta == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_beta == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
beta_mask = beta_mask | player_present
elif conditional_var == 'All':
# Check if row contains ALL of the beta players
beta_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_beta:
if type_var == 'Showdown':
if cpt_flex_beta == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_beta == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_beta == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
beta_mask = beta_mask & player_present
elif conditional_var == 'None':
# Check if row contains NONE of the beta players
beta_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_beta:
if type_var == 'Showdown':
if cpt_flex_beta == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_beta == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_beta == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
beta_mask = beta_mask & (~player_present)
# Combine conditions: alpha_mask AND beta_mask
final_condition = rows_to_process & beta_mask
# Apply keep or remove logic
if keep_remove_var == 'Keep':
parsed_frame = parsed_frame[~rows_to_process | final_condition]
else: # Remove
parsed_frame = parsed_frame[~final_condition]
elif conditional_side_alpha:
# Only alpha side specified - filter based on presence of alpha players
alpha_mask = pd.Series([True] * len(parsed_frame), index=parsed_frame.index)
for player in conditional_side_alpha:
if type_var == 'Showdown':
if cpt_flex_alpha == 'Overall':
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
elif cpt_flex_alpha == 'CPT':
player_present = parsed_frame.iloc[:, 0].apply(lambda row: player in row)
elif cpt_flex_alpha == 'FLEX':
player_present = parsed_frame.iloc[:, 1:].apply(lambda row: player in row.values, axis=1)
else:
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
player_present = parsed_frame.apply(lambda row: player in row.values, axis=1)
alpha_mask = alpha_mask & player_present
if keep_remove_var == 'Keep':
parsed_frame = parsed_frame[alpha_mask]
else: # Remove
parsed_frame = parsed_frame[~alpha_mask]
st.session_state['export_base'] = parsed_frame.sort_values(by='median', ascending=False).reset_index(drop=True)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.expander('Exposure Management'):
with st.form(key='Exposures'):
exposure_player = st.selectbox("Player", options=sorted(list(set(st.session_state['projections_df']['player_names'].unique()))), key='exposure_player')
exposure_target = st.number_input("Target Exposure", value=.50, min_value=0.0, max_value=1.0, step=0.01)
if 'Stack' in st.session_state['working_frame'].columns:
ignore_stacks = st.multiselect("Ignore Specific Stacks?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[])
else:
ignore_stacks = []
remove_teams_exposure = st.multiselect("Removed/Locked teams?", options=sorted(list(set(st.session_state['projections_df']['team'].unique()))), default=[])
specific_replacements = st.multiselect("Specific Replacements?", options=sorted(list(set(st.session_state['projections_df']['player_names'].unique()))), default=[])
# Considering making it so Showdown is CPT/FLEX not column specific but eh
specific_columns = st.multiselect("Specific Positions?", options=sorted(list(st.session_state['player_columns'])), default=[])
submitted_col, export_col = st.columns(2)
st.info("Portfolio Button applies to your overall Portfolio, Export button applies to your Custom Export")
with submitted_col:
reg_submitted = st.form_submit_button("Portfolio")
with export_col:
exp_submitted = st.form_submit_button("Export")
if reg_submitted:
st.session_state['settings_base'] = False
prior_frame = st.session_state['working_frame'].copy()
parsed_frame = exposure_spread(st.session_state['working_frame'], st.session_state['exposure_player'], exposure_target, ignore_stacks, remove_teams_exposure, specific_replacements, specific_columns, st.session_state['projections_df'], sport_var, type_var, salary_max, stacking_sports)
if type_var == 'Classic':
if sport_var == 'CS2' or sport_var == 'LOL':
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
parsed_frame['salary'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
parsed_frame['median'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
parsed_frame['Own'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
elif sport_var != 'CS2' and sport_var != 'LOL':
parsed_frame['salary'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
parsed_frame['median'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row), axis=1)
parsed_frame['Own'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row), axis=1)
if 'stack_dict' in st.session_state:
team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team']))
if sport_var == 'LOL':
parsed_frame['Stack'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row) else '',
axis=1
)
parsed_frame['Size'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row) else 0,
axis=1
)
else:
parsed_frame['Stack'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[2:]
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row[2:]) else '',
axis=1
)
parsed_frame['Size'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[2:]
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row[2:]) else 0,
axis=1
)
elif type_var == 'Showdown':
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
parsed_frame['salary'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
parsed_frame['median'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
parsed_frame['Own'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
# st.session_state['working_frame']['Own'] = st.session_state['working_frame']['Own'].astype('float32')
st.session_state['working_frame']['median'] = st.session_state['working_frame']['median'].astype('float32')
st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
# st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
st.session_state['working_frame'] = reassess_edge(st.session_state['working_frame'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
elif exp_submitted:
st.session_state['settings_base'] = False
prior_frame = st.session_state['export_base'].copy()
parsed_frame = exposure_spread(st.session_state['export_base'], st.session_state['exposure_player'], exposure_target, ignore_stacks, remove_teams_exposure, specific_replacements, specific_columns, st.session_state['projections_df'], sport_var, type_var, salary_max, stacking_sports)
if type_var == 'Classic':
if sport_var == 'CS2' or sport_var == 'LOL':
parsed_frame['salary'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
parsed_frame['median'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
parsed_frame['Own'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
elif sport_var != 'CS2' and sport_var != 'LOL':
parsed_frame['salary'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
parsed_frame['median'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row), axis=1)
parsed_frame['Own'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row), axis=1)
if 'stack_dict' in st.session_state:
team_dict = dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team']))
if sport_var == 'LOL':
parsed_frame['Stack'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row) else '',
axis=1
)
parsed_frame['Size'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row) else 0,
axis=1
)
else:
parsed_frame['Stack'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[2:]
if team_dict.get(player, '') != ''
).most_common(1)[0][0] if any(team_dict.get(player, '') for player in row[2:]) else '',
axis=1
)
parsed_frame['Size'] = parsed_frame.apply(
lambda row: Counter(
team_dict.get(player, '') for player in row[2:]
if team_dict.get(player, '') != ''
).most_common(1)[0][1] if any(team_dict.get(player, '') for player in row[2:]) else 0,
axis=1
)
elif type_var == 'Showdown':
if sport_var == 'GOLF':
parsed_frame['salary'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
parsed_frame['median'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row), axis=1)
parsed_frame['Own'] = parsed_frame.apply(lambda row: sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row), axis=1)
else:
parsed_frame['salary'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
parsed_frame['median'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
parsed_frame['Own'] = parsed_frame.apply(
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
axis=1
)
st.session_state['export_base'] = parsed_frame.reset_index(drop=True)
# st.session_state['export_base']['Own'] = st.session_state['export_base']['Own'].astype('float32')
st.session_state['export_base']['median'] = st.session_state['export_base']['median'].astype('float32')
st.session_state['export_base']['salary'] = st.session_state['export_base']['salary'].astype('uint16')
# st.session_state['export_base'] = predict_dupes(st.session_state['export_base'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
st.session_state['export_base'] = reassess_edge(st.session_state['export_base'], st.session_state['base_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
st.session_state['export_merge'] = st.session_state['export_base'].copy()
with st.container():
if 'export_base' not in st.session_state:
st.session_state['export_base'] = pd.DataFrame(columns=st.session_state['working_frame'].columns)
display_frame_source = st.selectbox("Display:", options=['Portfolio', 'Export Base'], key='display_frame_source')
if display_frame_source == 'Portfolio':
st.session_state['display_frame'] = st.session_state['working_frame']
st.session_state['export_file'] = st.session_state['display_frame'].copy()
for col in st.session_state['export_file'].columns:
if col not in excluded_cols:
st.session_state['export_file'][col] = st.session_state['export_file'][col].map(st.session_state['export_dict'])
elif display_frame_source == 'Export Base':
st.session_state['display_frame'] = st.session_state['export_base']
st.session_state['export_file'] = st.session_state['display_frame'].copy()
for col in st.session_state['export_file'].columns:
if col not in excluded_cols:
# Create position-specific export dictionary on the fly
position_dict = create_position_export_dict(col, st.session_state['csv_file'], site_var, type_var, sport_var)
st.session_state['export_file'][col] = st.session_state['export_file'][col].map(position_dict)
if 'export_file' in st.session_state:
download_port, merge_port, clear_export, add_rows_col, remove_rows_col, blank_export_col = st.columns([1, 1, 1, 2, 2, 6])
with download_port:
st.download_button(label="Download Portfolio", data=st.session_state['export_file'].to_csv(index=False), file_name="portfolio.csv", mime="text/csv")
with merge_port:
if st.button("Add all to Custom Export"):
st.session_state['export_base'] = pd.concat([st.session_state['export_base'], st.session_state['export_merge']])
st.session_state['export_base'] = st.session_state['export_base'].drop_duplicates()
st.session_state['export_base'] = st.session_state['export_base'].reset_index(drop=True)
with clear_export:
if st.button("Clear Custom Export"):
st.session_state['export_base'] = pd.DataFrame(columns=st.session_state['working_frame'].columns)
if display_frame_source == 'Portfolio':
st.session_state['display_frame'] = st.session_state['working_frame']
elif display_frame_source == 'Export Base':
st.session_state['display_frame'] = st.session_state['export_base']
with add_rows_col:
select_custom_index = st.multiselect("Select rows to add (based on first column):", options=st.session_state['display_frame'].index, default=[])
if st.button("Add selected to Custom Export"):
st.session_state['export_base'] = pd.concat([st.session_state['export_base'], st.session_state['display_frame'].loc[select_custom_index]])
st.session_state['export_base'] = st.session_state['export_base'].drop_duplicates()
st.session_state['export_base'] = st.session_state['export_base'].reset_index(drop=True)
with remove_rows_col:
remove_custom_index = st.multiselect("Remove rows (based on first column):", options=st.session_state['display_frame'].index, default=[])
if st.button("Remove selected from Display"):
st.session_state['display_frame'] = st.session_state['display_frame'].drop(remove_custom_index)
st.session_state['display_frame'] = st.session_state['display_frame'].drop_duplicates()
st.session_state['display_frame'] = st.session_state['display_frame'].reset_index(drop=True)
total_rows = len(st.session_state['display_frame'])
rows_per_page = 500
total_pages = (total_rows + rows_per_page - 1) // rows_per_page # Ceiling division
# Initialize page number in session state if not exists
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
# Display current page range info and pagination control in a single line
st.write(
f"Showing rows {(st.session_state.current_page - 1) * rows_per_page + 1} "
f"to {min(st.session_state.current_page * rows_per_page, total_rows)} of {total_rows}"
)
# Add page number input
st.session_state.current_page = st.number_input(
f"Page (1-{total_pages})",
min_value=1,
max_value=total_pages,
value=st.session_state.current_page
)
# Calculate start and end indices for current page
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = min(start_idx + rows_per_page, total_rows)
# Get the subset of data for the current page
current_page_data = st.session_state['display_frame'].iloc[start_idx:end_idx]
# Display the paginated dataframe first
st.dataframe(
current_page_data.style
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.background_gradient(cmap='RdYlGn_r', subset=['Finish_percentile', 'Own', 'Dupes'])
.format(freq_format, precision=2),
column_config={
"Finish_percentile": st.column_config.NumberColumn(
"Finish%",
help="Projected finishing percentile",
width="small",
min_value=0.0,
max_value=1.0
),
"Lineup Edge": st.column_config.NumberColumn(
"Edge",
help="Projected lineup edge",
width="small",
min_value=-1.0,
max_value=1.0
),
"Diversity": st.column_config.NumberColumn(
"Diversity",
help="Projected lineup diversity",
width="small",
min_value=0.0,
max_value=1.0
),
},
height=499,
use_container_width=True
)
player_stats_col, stack_stats_col, combos_col = st.tabs(['Player Stats', 'Stack Stats', 'Combos'])
with player_stats_col:
if st.button("Analyze Players", key='analyze_players'):
player_stats = []
if st.session_state['settings_base'] and 'origin_player_exposures' in st.session_state and display_frame_source == 'Portfolio':
st.session_state['player_summary'] = st.session_state['origin_player_exposures']
else:
if type_var == 'Showdown':
if sport_var == 'GOLF':
for player in player_names:
player_mask = st.session_state['display_frame'][st.session_state['player_columns']].apply(
lambda row: player in list(row), axis=1
)
if player_mask.any():
player_stats.append({
'Player': player,
'Position': st.session_state['map_dict']['pos_map'][player],
'Lineup Count': player_mask.sum(),
'Exposure': player_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][player_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][player_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][player_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][player_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][player_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][player_mask]['Diversity'].mean(),
})
else:
for player in player_names:
# Create mask for lineups where this player is Captain (first column)
cpt_mask = st.session_state['display_frame'][st.session_state['player_columns'][0]] == player
if cpt_mask.any():
player_stats.append({
'Player': f"{player} (CPT)",
'Position': st.session_state['map_dict']['pos_map'][player],
'Lineup Count': cpt_mask.sum(),
'Exposure': cpt_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][cpt_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][cpt_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][cpt_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][cpt_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][cpt_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][cpt_mask]['Diversity'].mean(),
})
# Create mask for lineups where this player is FLEX (other columns)
flex_mask = st.session_state['display_frame'][st.session_state['player_columns'][1:]].apply(
lambda row: player in list(row), axis=1
)
if flex_mask.any():
player_stats.append({
'Player': f"{player} (FLEX)",
'Position': st.session_state['map_dict']['pos_map'][player],
'Lineup Count': flex_mask.sum(),
'Exposure': flex_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][flex_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][flex_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][flex_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][flex_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][flex_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][flex_mask]['Diversity'].mean(),
})
else:
if sport_var == 'CS2' or sport_var == 'LOL':
# Handle Captain positions
for player in player_names:
# Create mask for lineups where this player is Captain (first column)
cpt_mask = st.session_state['display_frame'][st.session_state['player_columns'][0]] == player
if cpt_mask.any():
player_stats.append({
'Player': f"{player} (CPT)",
'Position': st.session_state['map_dict']['pos_map'][player],
'Lineup Count': cpt_mask.sum(),
'Exposure': cpt_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][cpt_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][cpt_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][cpt_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][cpt_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][cpt_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][cpt_mask]['Diversity'].mean(),
})
# Create mask for lineups where this player is FLEX (other columns)
flex_mask = st.session_state['display_frame'][st.session_state['player_columns'][1:]].apply(
lambda row: player in list(row), axis=1
)
if flex_mask.any():
player_stats.append({
'Player': f"{player} (FLEX)",
'Position': st.session_state['map_dict']['pos_map'][player],
'Lineup Count': flex_mask.sum(),
'Exposure': flex_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][flex_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][flex_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][flex_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][flex_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][flex_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][flex_mask]['Diversity'].mean(),
})
elif sport_var != 'CS2' and sport_var != 'LOL':
# Original Classic format processing
for player in player_names:
player_mask = st.session_state['display_frame'][st.session_state['player_columns']].apply(
lambda row: player in list(row), axis=1
)
if player_mask.any():
player_stats.append({
'Player': player,
'Position': st.session_state['map_dict']['pos_map'][player],
'Lineup Count': player_mask.sum(),
'Exposure': player_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][player_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][player_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][player_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][player_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][player_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][player_mask]['Diversity'].mean(),
})
player_summary = pd.DataFrame(player_stats)
player_summary = player_summary.sort_values('Lineup Count', ascending=False)
st.session_state['player_summary'] = player_summary.copy()
if 'origin_player_exposures' not in st.session_state:
st.session_state['origin_player_exposures'] = player_summary.copy()
st.subheader("Player Summary")
st.dataframe(
st.session_state['player_summary'].style
.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
.format({
'Avg Median': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Dupes': '{:.2f}',
'Avg Finish %': '{:.2%}',
'Avg Lineup Edge': '{:.2%}',
'Exposure': '{:.2%}',
'Avg Diversity': '{:.2%}'
}),
height=400,
use_container_width=True
)
with stack_stats_col:
if 'Stack' in st.session_state['display_frame'].columns:
if st.button("Analyze Stacks", key='analyze_stacks'):
stack_stats = []
stack_columns = [col for col in st.session_state['display_frame'].columns if col.startswith('Stack')]
if st.session_state['settings_base'] and 'origin_stack_exposures' in st.session_state and display_frame_source == 'Portfolio':
st.session_state['stack_summary'] = st.session_state['origin_stack_exposures']
else:
for stack in st.session_state['stack_dict'].values():
stack_mask = st.session_state['display_frame']['Stack'] == stack
if stack_mask.any():
stack_stats.append({
'Stack': stack,
'Lineup Count': stack_mask.sum(),
'Exposure': stack_mask.sum() / len(st.session_state['display_frame']),
'Avg Median': st.session_state['display_frame'][stack_mask]['median'].mean(),
'Avg Own': st.session_state['display_frame'][stack_mask]['Own'].mean(),
'Avg Dupes': st.session_state['display_frame'][stack_mask]['Dupes'].mean(),
'Avg Finish %': st.session_state['display_frame'][stack_mask]['Finish_percentile'].mean(),
'Avg Lineup Edge': st.session_state['display_frame'][stack_mask]['Lineup Edge'].mean(),
'Avg Diversity': st.session_state['display_frame'][stack_mask]['Diversity'].mean(),
})
stack_summary = pd.DataFrame(stack_stats)
stack_summary = stack_summary.sort_values('Lineup Count', ascending=False).drop_duplicates()
st.session_state['stack_summary'] = stack_summary.copy()
if 'origin_stack_exposures' not in st.session_state:
st.session_state['origin_stack_exposures'] = stack_summary.copy()
st.subheader("Stack Summary")
st.dataframe(
st.session_state['stack_summary'].style
.background_gradient(axis=0).background_gradient(cmap='RdYlGn').background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
.format({
'Avg Median': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Dupes': '{:.2f}',
'Avg Finish %': '{:.2%}',
'Avg Lineup Edge': '{:.2%}',
'Exposure': '{:.2%}',
'Avg Diversity': '{:.2%}'
}),
height=400,
use_container_width=True
)
else:
stack_summary = pd.DataFrame(columns=['Stack', 'Lineup Count', 'Avg Median', 'Avg Own', 'Avg Dupes', 'Avg Finish %', 'Avg Lineup Edge'])
with combos_col:
st.subheader("Player Combinations")
# Add controls for combo analysis
with st.form("combo_analysis_form"):
combo_size_col, columns_excluded_col, combo_analyze_col = st.columns(3)
with combo_size_col:
combo_size = st.selectbox("Combo Size", [2, 3], key='combo_size')
with columns_excluded_col:
try:
excluded_cols_extended = st.multiselect("Exclude Columns?", st.session_state['display_frame'].drop(columns=excluded_cols).columns, key='excluded_cols_extended')
except:
excluded_cols_extended = st.multiselect("Exclude Columns?", st.session_state['display_frame'].columns, key='excluded_cols_extended')
with combo_analyze_col:
submitted = st.form_submit_button("Analyze Combos")
if submitted:
st.session_state['combo_analysis'] = analyze_player_combos(
st.session_state['display_frame'], excluded_cols + excluded_cols_extended, combo_size
)
# Display results
if 'combo_analysis' in st.session_state:
st.dataframe(
st.session_state['combo_analysis'].style
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.background_gradient(cmap='RdYlGn_r', subset=['Avg Finish %', 'Avg Own', 'Avg Dupes'])
.format({
'Avg Median': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Dupes': '{:.2f}',
'Avg Finish %': '{:.2%}',
'Avg Lineup Edge': '{:.2%}',
'Exposure': '{:.2%}',
'Avg Diversity': '{:.2%}'
}),
height=400,
use_container_width=True
)
else:
st.info("Click 'Analyze Combos' to see the most common player combinations.")
|