Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
fdf735a
1
Parent(s):
7a8cb18
Refactor map_dict handling in app.py: replace local map_dict variable with session state reference for improved consistency and clarity in data processing across various operations.
Browse files
app.py
CHANGED
|
@@ -786,7 +786,7 @@ with tab2:
|
|
| 786 |
if site_var == 'Draftkings':
|
| 787 |
if type_var == 'Classic':
|
| 788 |
if sport_var == 'CS2':
|
| 789 |
-
map_dict = {
|
| 790 |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
| 791 |
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
| 792 |
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
|
@@ -798,7 +798,7 @@ with tab2:
|
|
| 798 |
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
| 799 |
}
|
| 800 |
elif sport_var != 'CS2':
|
| 801 |
-
map_dict = {
|
| 802 |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
| 803 |
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
| 804 |
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
|
@@ -810,7 +810,7 @@ with tab2:
|
|
| 810 |
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
| 811 |
}
|
| 812 |
elif type_var == 'Showdown':
|
| 813 |
-
map_dict = {
|
| 814 |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
| 815 |
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
| 816 |
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
|
@@ -822,7 +822,7 @@ with tab2:
|
|
| 822 |
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
| 823 |
}
|
| 824 |
elif site_var == 'Fanduel':
|
| 825 |
-
map_dict = {
|
| 826 |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
| 827 |
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
| 828 |
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
|
@@ -837,53 +837,53 @@ with tab2:
|
|
| 837 |
if sport_var == 'CS2':
|
| 838 |
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
|
| 839 |
st.session_state['working_frame']['salary'] = st.session_state['working_frame'].apply(
|
| 840 |
-
lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) +
|
| 841 |
-
sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]),
|
| 842 |
axis=1
|
| 843 |
)
|
| 844 |
|
| 845 |
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
|
| 846 |
st.session_state['working_frame']['median'] = st.session_state['working_frame'].apply(
|
| 847 |
-
lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) +
|
| 848 |
-
sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]),
|
| 849 |
axis=1
|
| 850 |
)
|
| 851 |
|
| 852 |
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
|
| 853 |
st.session_state['working_frame']['Own'] = st.session_state['working_frame'].apply(
|
| 854 |
-
lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) +
|
| 855 |
-
sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]),
|
| 856 |
axis=1
|
| 857 |
)
|
| 858 |
|
| 859 |
elif sport_var != 'CS2':
|
| 860 |
-
st.session_state['working_frame']['salary'] = st.session_state['working_frame'].apply(lambda row: sum(map_dict['salary_map'].get(player, 0) for player in row), axis=1)
|
| 861 |
-
st.session_state['working_frame']['median'] = st.session_state['working_frame'].apply(lambda row: sum(map_dict['proj_map'].get(player, 0) for player in row), axis=1)
|
| 862 |
-
st.session_state['working_frame']['Own'] = st.session_state['working_frame'].apply(lambda row: sum(map_dict['own_map'].get(player, 0) for player in row), axis=1)
|
| 863 |
if stack_dict is not None:
|
| 864 |
st.session_state['working_frame']['Stack'] = st.session_state['working_frame'].index.map(stack_dict)
|
| 865 |
elif type_var == 'Showdown':
|
| 866 |
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
|
| 867 |
st.session_state['working_frame']['salary'] = st.session_state['working_frame'].apply(
|
| 868 |
-
lambda row: map_dict['cpt_salary_map'].get(row.iloc[0], 0) +
|
| 869 |
-
sum(map_dict['salary_map'].get(player, 0) for player in row.iloc[1:]),
|
| 870 |
axis=1
|
| 871 |
)
|
| 872 |
|
| 873 |
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
|
| 874 |
st.session_state['working_frame']['median'] = st.session_state['working_frame'].apply(
|
| 875 |
-
lambda row: map_dict['cpt_proj_map'].get(row.iloc[0], 0) +
|
| 876 |
-
sum(map_dict['proj_map'].get(player, 0) for player in row.iloc[1:]),
|
| 877 |
axis=1
|
| 878 |
)
|
| 879 |
|
| 880 |
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
|
| 881 |
st.session_state['working_frame']['Own'] = st.session_state['working_frame'].apply(
|
| 882 |
-
lambda row: map_dict['cpt_own_map'].get(row.iloc[0], 0) +
|
| 883 |
-
sum(map_dict['own_map'].get(player, 0) for player in row.iloc[1:]),
|
| 884 |
axis=1
|
| 885 |
)
|
| 886 |
-
st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], map_dict, site_var, type_var, Contest_Size, strength_var, sport_var)
|
| 887 |
if 'trimming_dict_maxes' not in st.session_state:
|
| 888 |
st.session_state['trimming_dict_maxes'] = {
|
| 889 |
'Own': st.session_state['working_frame']['Own'].max(),
|
|
@@ -917,7 +917,7 @@ with tab2:
|
|
| 917 |
|
| 918 |
submitted = st.form_submit_button("Submit")
|
| 919 |
if submitted:
|
| 920 |
-
st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], map_dict, site_var, type_var, Contest_Size, strength_var, sport_var)
|
| 921 |
if 'trimming_dict_maxes' not in st.session_state:
|
| 922 |
st.session_state['trimming_dict_maxes'] = {
|
| 923 |
'Own': st.session_state['working_frame']['Own'].max(),
|
|
@@ -952,7 +952,7 @@ with tab2:
|
|
| 952 |
|
| 953 |
submitted = st.form_submit_button("Submit")
|
| 954 |
if submitted:
|
| 955 |
-
st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], map_dict, site_var, type_var, Contest_Size, strength_var, sport_var)
|
| 956 |
if 'trimming_dict_maxes' not in st.session_state:
|
| 957 |
st.session_state['trimming_dict_maxes'] = {
|
| 958 |
'Own': st.session_state['working_frame']['Own'].max(),
|
|
|
|
| 786 |
if site_var == 'Draftkings':
|
| 787 |
if type_var == 'Classic':
|
| 788 |
if sport_var == 'CS2':
|
| 789 |
+
st.session_state['map_dict'] = {
|
| 790 |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
| 791 |
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
| 792 |
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
|
|
|
| 798 |
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
| 799 |
}
|
| 800 |
elif sport_var != 'CS2':
|
| 801 |
+
st.session_state['map_dict'] = {
|
| 802 |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
| 803 |
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
| 804 |
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
|
|
|
| 810 |
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
| 811 |
}
|
| 812 |
elif type_var == 'Showdown':
|
| 813 |
+
st.session_state['map_dict'] = {
|
| 814 |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
| 815 |
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
| 816 |
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
|
|
|
| 822 |
'cpt_own_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['captain ownership']))
|
| 823 |
}
|
| 824 |
elif site_var == 'Fanduel':
|
| 825 |
+
st.session_state['map_dict'] = {
|
| 826 |
'pos_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['position'])),
|
| 827 |
'team_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['team'])),
|
| 828 |
'salary_map':dict(zip(st.session_state['projections_df']['player_names'], st.session_state['projections_df']['salary'])),
|
|
|
|
| 837 |
if sport_var == 'CS2':
|
| 838 |
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
|
| 839 |
st.session_state['working_frame']['salary'] = st.session_state['working_frame'].apply(
|
| 840 |
+
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
|
| 841 |
+
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
|
| 842 |
axis=1
|
| 843 |
)
|
| 844 |
|
| 845 |
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
|
| 846 |
st.session_state['working_frame']['median'] = st.session_state['working_frame'].apply(
|
| 847 |
+
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
|
| 848 |
+
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
|
| 849 |
axis=1
|
| 850 |
)
|
| 851 |
|
| 852 |
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
|
| 853 |
st.session_state['working_frame']['Own'] = st.session_state['working_frame'].apply(
|
| 854 |
+
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
|
| 855 |
+
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
|
| 856 |
axis=1
|
| 857 |
)
|
| 858 |
|
| 859 |
elif sport_var != 'CS2':
|
| 860 |
+
st.session_state['working_frame']['salary'] = st.session_state['working_frame'].apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
|
| 861 |
+
st.session_state['working_frame']['median'] = st.session_state['working_frame'].apply(lambda row: sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row), axis=1)
|
| 862 |
+
st.session_state['working_frame']['Own'] = st.session_state['working_frame'].apply(lambda row: sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row), axis=1)
|
| 863 |
if stack_dict is not None:
|
| 864 |
st.session_state['working_frame']['Stack'] = st.session_state['working_frame'].index.map(stack_dict)
|
| 865 |
elif type_var == 'Showdown':
|
| 866 |
# Calculate salary (CPT uses cpt_salary_map, others use salary_map)
|
| 867 |
st.session_state['working_frame']['salary'] = st.session_state['working_frame'].apply(
|
| 868 |
+
lambda row: st.session_state['map_dict']['cpt_salary_map'].get(row.iloc[0], 0) +
|
| 869 |
+
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row.iloc[1:]),
|
| 870 |
axis=1
|
| 871 |
)
|
| 872 |
|
| 873 |
# Calculate median (CPT uses cpt_proj_map, others use proj_map)
|
| 874 |
st.session_state['working_frame']['median'] = st.session_state['working_frame'].apply(
|
| 875 |
+
lambda row: st.session_state['map_dict']['cpt_proj_map'].get(row.iloc[0], 0) +
|
| 876 |
+
sum(st.session_state['map_dict']['proj_map'].get(player, 0) for player in row.iloc[1:]),
|
| 877 |
axis=1
|
| 878 |
)
|
| 879 |
|
| 880 |
# Calculate ownership (CPT uses cpt_own_map, others use own_map)
|
| 881 |
st.session_state['working_frame']['Own'] = st.session_state['working_frame'].apply(
|
| 882 |
+
lambda row: st.session_state['map_dict']['cpt_own_map'].get(row.iloc[0], 0) +
|
| 883 |
+
sum(st.session_state['map_dict']['own_map'].get(player, 0) for player in row.iloc[1:]),
|
| 884 |
axis=1
|
| 885 |
)
|
| 886 |
+
st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
|
| 887 |
if 'trimming_dict_maxes' not in st.session_state:
|
| 888 |
st.session_state['trimming_dict_maxes'] = {
|
| 889 |
'Own': st.session_state['working_frame']['Own'].max(),
|
|
|
|
| 917 |
|
| 918 |
submitted = st.form_submit_button("Submit")
|
| 919 |
if submitted:
|
| 920 |
+
st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
|
| 921 |
if 'trimming_dict_maxes' not in st.session_state:
|
| 922 |
st.session_state['trimming_dict_maxes'] = {
|
| 923 |
'Own': st.session_state['working_frame']['Own'].max(),
|
|
|
|
| 952 |
|
| 953 |
submitted = st.form_submit_button("Submit")
|
| 954 |
if submitted:
|
| 955 |
+
st.session_state['working_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var)
|
| 956 |
if 'trimming_dict_maxes' not in st.session_state:
|
| 957 |
st.session_state['trimming_dict_maxes'] = {
|
| 958 |
'Own': st.session_state['working_frame']['Own'].max(),
|