Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
52391b5
1
Parent(s):
e1d2eb8
Refactor position export dictionary logic to remove dynamic column renaming, simplifying the handling of player names and IDs for Draftkings and other sites.
Browse files
app.py
CHANGED
|
@@ -34,9 +34,6 @@ all_column_stack_sports = ['LOL', 'NCAAF', 'WNBA', 'NBA', 'CS2']
|
|
| 34 |
player_wrong_names_mlb = ['Enrique Hernandez', 'Joseph Cantillo', 'Mike Soroka', 'Jakob Bauers', 'Temi Fágbénlé']
|
| 35 |
player_right_names_mlb = ['Kike Hernandez', 'Joey Cantillo', 'Michael Soroka', 'Jake Bauers', 'Temi Fagbenle']
|
| 36 |
|
| 37 |
-
name_column_list = ['Name', 'Nickname', 'NickName', 'name', 'nickname', 'nickName']
|
| 38 |
-
id_column_list = ['ID', 'id', 'Id', 'iD', 'player_ID', 'Player_ID', 'player_id', 'Player_id']
|
| 39 |
-
|
| 40 |
st.markdown("""
|
| 41 |
<style>
|
| 42 |
/* Tab styling */
|
|
@@ -119,25 +116,9 @@ def create_position_export_dict(column_name, csv_file, site_var, type_var, sport
|
|
| 119 |
# Create the export dictionary for this position
|
| 120 |
if site_var == 'Draftkings':
|
| 121 |
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Name'])
|
| 122 |
-
|
| 123 |
-
if name_column in filtered_df.columns:
|
| 124 |
-
filtered_df = filtered_df.rename(columns={name_column: 'Name'})
|
| 125 |
-
break
|
| 126 |
-
for id_column in id_column_list:
|
| 127 |
-
if id_column in filtered_df.columns:
|
| 128 |
-
filtered_df = filtered_df.rename(columns={id_column: 'ID'})
|
| 129 |
-
break
|
| 130 |
-
return dict(zip(filtered_df['Name + ID'], filtered_df['ID']))
|
| 131 |
else:
|
| 132 |
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Nickname'])
|
| 133 |
-
for name_column in name_column_list:
|
| 134 |
-
if name_column in filtered_df.columns:
|
| 135 |
-
filtered_df = filtered_df.rename(columns={name_column: 'Nickname'})
|
| 136 |
-
break
|
| 137 |
-
for id_column in id_column_list:
|
| 138 |
-
if id_column in filtered_df.columns:
|
| 139 |
-
filtered_df = filtered_df.rename(columns={id_column: 'ID'})
|
| 140 |
-
break
|
| 141 |
return dict(zip(filtered_df['Nickname'], filtered_df['ID']))
|
| 142 |
|
| 143 |
except Exception as e:
|
|
@@ -233,8 +214,10 @@ if selected_tab == 'Data Load':
|
|
| 233 |
if 'csv_file' in st.session_state:
|
| 234 |
del st.session_state['csv_file']
|
| 235 |
with csv_template_col:
|
| 236 |
-
|
| 237 |
-
|
|
|
|
|
|
|
| 238 |
|
| 239 |
st.download_button(
|
| 240 |
label="CSV Template",
|
|
|
|
| 34 |
player_wrong_names_mlb = ['Enrique Hernandez', 'Joseph Cantillo', 'Mike Soroka', 'Jakob Bauers', 'Temi Fágbénlé']
|
| 35 |
player_right_names_mlb = ['Kike Hernandez', 'Joey Cantillo', 'Michael Soroka', 'Jake Bauers', 'Temi Fagbenle']
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
st.markdown("""
|
| 38 |
<style>
|
| 39 |
/* Tab styling */
|
|
|
|
| 116 |
# Create the export dictionary for this position
|
| 117 |
if site_var == 'Draftkings':
|
| 118 |
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Name'])
|
| 119 |
+
return dict(zip(filtered_df['Name'], filtered_df['Name + ID']))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
else:
|
| 121 |
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Nickname'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
return dict(zip(filtered_df['Nickname'], filtered_df['ID']))
|
| 123 |
|
| 124 |
except Exception as e:
|
|
|
|
| 214 |
if 'csv_file' in st.session_state:
|
| 215 |
del st.session_state['csv_file']
|
| 216 |
with csv_template_col:
|
| 217 |
+
if site_var == 'Draftkings':
|
| 218 |
+
csv_template_df = pd.DataFrame(columns=['Name', 'ID', 'Roster Position', 'Salary'])
|
| 219 |
+
else:
|
| 220 |
+
csv_template_df = pd.DataFrame(columns=['Nickname', 'Id', 'Roster Position', 'Salary'])
|
| 221 |
|
| 222 |
st.download_button(
|
| 223 |
label="CSV Template",
|