James McCool
commited on
Commit
·
119b2bf
1
Parent(s):
eb3c53f
Replace distribute_preset with hedging_preset to manage player exposure in lineup generation. Update app.py to reflect the new preset option and remove the obsolete distribute_preset function. This change enhances the flexibility of lineup strategies by allowing users to hedge against high-exposure players while maintaining performance metrics.
Browse files- app.py +4 -4
- global_func/distribute_preset.py +0 -80
- global_func/hedging_preset.py +37 -0
- global_func/large_field_preset.py +3 -0
- global_func/small_field_preset.py +3 -0
app.py
CHANGED
|
@@ -22,7 +22,7 @@ from global_func.trim_portfolio import trim_portfolio
|
|
| 22 |
from global_func.get_portfolio_names import get_portfolio_names
|
| 23 |
from global_func.small_field_preset import small_field_preset
|
| 24 |
from global_func.large_field_preset import large_field_preset
|
| 25 |
-
from global_func.
|
| 26 |
|
| 27 |
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
|
| 28 |
stacking_sports = ['MLB', 'NHL', 'NFL']
|
|
@@ -1111,7 +1111,7 @@ with tab2:
|
|
| 1111 |
with st.expander('Presets'):
|
| 1112 |
st.info("Still heavily in testing here, I'll announce when they are ready for use.")
|
| 1113 |
with st.form(key='Small Field Preset'):
|
| 1114 |
-
preset_choice = st.selectbox("Preset", options=['Small Field (Heavy Own)', 'Large Field (Finish Percentile / Edge)', '
|
| 1115 |
lineup_target = st.number_input("Lineups to produce", value=150, min_value=1, step=1)
|
| 1116 |
submitted = st.form_submit_button("Submit")
|
| 1117 |
if submitted:
|
|
@@ -1119,8 +1119,8 @@ with tab2:
|
|
| 1119 |
parsed_frame = small_field_preset(st.session_state['working_frame'], lineup_target, excluded_cols)
|
| 1120 |
elif preset_choice == 'Large Field (Finish Percentile / Edge)':
|
| 1121 |
parsed_frame = large_field_preset(st.session_state['working_frame'], lineup_target, excluded_cols)
|
| 1122 |
-
elif preset_choice == '
|
| 1123 |
-
parsed_frame =
|
| 1124 |
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
|
| 1125 |
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
|
| 1126 |
|
|
|
|
| 22 |
from global_func.get_portfolio_names import get_portfolio_names
|
| 23 |
from global_func.small_field_preset import small_field_preset
|
| 24 |
from global_func.large_field_preset import large_field_preset
|
| 25 |
+
from global_func.hedging_preset import hedging_preset
|
| 26 |
|
| 27 |
freq_format = {'Finish_percentile': '{:.2%}', 'Lineup Edge': '{:.2%}', 'Win%': '{:.2%}'}
|
| 28 |
stacking_sports = ['MLB', 'NHL', 'NFL']
|
|
|
|
| 1111 |
with st.expander('Presets'):
|
| 1112 |
st.info("Still heavily in testing here, I'll announce when they are ready for use.")
|
| 1113 |
with st.form(key='Small Field Preset'):
|
| 1114 |
+
preset_choice = st.selectbox("Preset", options=['Small Field (Heavy Own)', 'Large Field (Finish Percentile / Edge)', 'Hedge Chalk (Manage Leverage)'], index=0)
|
| 1115 |
lineup_target = st.number_input("Lineups to produce", value=150, min_value=1, step=1)
|
| 1116 |
submitted = st.form_submit_button("Submit")
|
| 1117 |
if submitted:
|
|
|
|
| 1119 |
parsed_frame = small_field_preset(st.session_state['working_frame'], lineup_target, excluded_cols)
|
| 1120 |
elif preset_choice == 'Large Field (Finish Percentile / Edge)':
|
| 1121 |
parsed_frame = large_field_preset(st.session_state['working_frame'], lineup_target, excluded_cols)
|
| 1122 |
+
elif preset_choice == 'Hedge Chalk (Manage Leverage)':
|
| 1123 |
+
parsed_frame = hedging_preset(st.session_state['working_frame'], lineup_target, st.session_state['projections_df'])
|
| 1124 |
st.session_state['working_frame'] = parsed_frame.reset_index(drop=True)
|
| 1125 |
st.session_state['export_merge'] = st.session_state['working_frame'].copy()
|
| 1126 |
|
global_func/distribute_preset.py
DELETED
|
@@ -1,80 +0,0 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
import math
|
| 3 |
-
|
| 4 |
-
def distribute_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list):
|
| 5 |
-
|
| 6 |
-
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score']
|
| 7 |
-
player_columns = [col for col in portfolio.columns if col not in excluded_cols]
|
| 8 |
-
for slack_var in range(1, 20):
|
| 9 |
-
init_portfolio = pd.DataFrame(columns=portfolio.columns)
|
| 10 |
-
|
| 11 |
-
for team in portfolio['Stack'].unique():
|
| 12 |
-
rows_to_drop = []
|
| 13 |
-
working_portfolio = portfolio.copy()
|
| 14 |
-
working_portfolio = working_portfolio[working_portfolio['Stack'] == team].sort_values(by='median', ascending = False)
|
| 15 |
-
working_portfolio = working_portfolio.reset_index(drop=True)
|
| 16 |
-
curr_own_type_max = working_portfolio.loc[0, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[0, 'Similarity Score'])
|
| 17 |
-
|
| 18 |
-
for i in range(1, len(working_portfolio)):
|
| 19 |
-
if working_portfolio.loc[i, 'Similarity Score'] > curr_own_type_max:
|
| 20 |
-
rows_to_drop.append(i)
|
| 21 |
-
else:
|
| 22 |
-
curr_own_type_max = working_portfolio.loc[i, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[i, 'Similarity Score'])
|
| 23 |
-
|
| 24 |
-
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
| 25 |
-
init_portfolio = pd.concat([init_portfolio, working_portfolio])
|
| 26 |
-
|
| 27 |
-
if len(init_portfolio) >= lineup_target:
|
| 28 |
-
init_portfolio.sort_values(by='median', ascending=True).head(lineup_target)
|
| 29 |
-
|
| 30 |
-
player_list = set()
|
| 31 |
-
player_stats = []
|
| 32 |
-
for cols in init_portfolio.columns:
|
| 33 |
-
if cols not in excluded_cols:
|
| 34 |
-
player_list.update(init_portfolio[cols].unique())
|
| 35 |
-
|
| 36 |
-
for player in player_list:
|
| 37 |
-
# Select only the columns that are NOT in excluded_cols
|
| 38 |
-
player_cols = [col for col in init_portfolio.columns if col not in excluded_cols]
|
| 39 |
-
player_mask = init_portfolio[player_cols].apply(
|
| 40 |
-
lambda row: player in list(row), axis=1
|
| 41 |
-
)
|
| 42 |
-
|
| 43 |
-
if player_mask.any():
|
| 44 |
-
player_stats.append({
|
| 45 |
-
'Player': player,
|
| 46 |
-
'Lineup Count': player_mask.sum(),
|
| 47 |
-
'Exposure': player_mask.sum() / len(init_portfolio)
|
| 48 |
-
})
|
| 49 |
-
|
| 50 |
-
player_summary = pd.DataFrame(player_stats)
|
| 51 |
-
print(player_summary.sort_values('Lineup Count', ascending=False).head(10))
|
| 52 |
-
player_remove_list = player_summary.sort_values('Lineup Count', ascending=False).head(5)['Player'].tolist()
|
| 53 |
-
|
| 54 |
-
for slack_var in range(1, 20):
|
| 55 |
-
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
|
| 56 |
-
|
| 57 |
-
for player_out in player_remove_list:
|
| 58 |
-
rows_to_drop = []
|
| 59 |
-
working_portfolio = portfolio.copy()
|
| 60 |
-
remove_mask = working_portfolio[player_columns].apply(
|
| 61 |
-
lambda row: player_out not in list(row), axis=1
|
| 62 |
-
)
|
| 63 |
-
working_portfolio = working_portfolio[remove_mask]
|
| 64 |
-
print(working_portfolio.head(10))
|
| 65 |
-
working_portfolio = working_portfolio.sort_values(by='median', ascending=False).reset_index(drop=True)
|
| 66 |
-
curr_own_type_max = working_portfolio.loc[0, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[0, 'Similarity Score'])
|
| 67 |
-
|
| 68 |
-
for i in range(1, len(working_portfolio)):
|
| 69 |
-
if working_portfolio.loc[i, 'Similarity Score'] > curr_own_type_max:
|
| 70 |
-
rows_to_drop.append(i)
|
| 71 |
-
else:
|
| 72 |
-
curr_own_type_max = working_portfolio.loc[i, 'Similarity Score'] + (slack_var / 20 * working_portfolio.loc[i, 'Similarity Score'])
|
| 73 |
-
|
| 74 |
-
working_portfolio = working_portfolio.drop(rows_to_drop).reset_index(drop=True)
|
| 75 |
-
concat_portfolio = pd.concat([concat_portfolio, working_portfolio.head(math.ceil(lineup_target / 5))])
|
| 76 |
-
|
| 77 |
-
if len(concat_portfolio) >= lineup_target:
|
| 78 |
-
return concat_portfolio.sort_values(by='median', ascending=False).head(lineup_target)
|
| 79 |
-
|
| 80 |
-
return concat_portfolio.sort_values(by='median', ascending=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
global_func/hedging_preset.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import math
|
| 3 |
+
from small_field_preset import small_field_preset
|
| 4 |
+
from large_field_preset import large_field_preset
|
| 5 |
+
|
| 6 |
+
def hedging_preset(portfolio: pd.DataFrame, lineup_target: int, projections_file: pd.DataFrame):
|
| 7 |
+
|
| 8 |
+
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score']
|
| 9 |
+
|
| 10 |
+
check_own_df = projections_file.copy()
|
| 11 |
+
check_own_df = check_own_df.sort_values(by='Own', ascending=False)
|
| 12 |
+
top_owned = check_own_df['player_names'].head(3).tolist()
|
| 13 |
+
|
| 14 |
+
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
|
| 15 |
+
|
| 16 |
+
for players in top_owned:
|
| 17 |
+
working_df = portfolio.copy()
|
| 18 |
+
|
| 19 |
+
# Create mask for lineups that contain any of the removed players
|
| 20 |
+
player_columns = [col for col in working_df.columns if col not in excluded_cols]
|
| 21 |
+
|
| 22 |
+
remove_mask = working_df[player_columns].apply(
|
| 23 |
+
lambda row: not any(player in list(row) for player in players), axis=1
|
| 24 |
+
)
|
| 25 |
+
lock_mask = working_df[player_columns].apply(
|
| 26 |
+
lambda row: all(player in list(row) for player in players), axis=1
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
removed_df = working_df[remove_mask]
|
| 30 |
+
locked_df = working_df[lock_mask]
|
| 31 |
+
|
| 32 |
+
removed_lineups = small_field_preset(removed_df, math.ceil(lineup_target / 2), excluded_cols)
|
| 33 |
+
locked_lineups = large_field_preset(locked_df, math.ceil(lineup_target / 2), excluded_cols)
|
| 34 |
+
|
| 35 |
+
concat_portfolio = pd.concat([concat_portfolio, removed_lineups, locked_lineups])
|
| 36 |
+
|
| 37 |
+
return concat_portfolio.sort_values(by='median', ascending=False).head(lineup_target)
|
global_func/large_field_preset.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
|
| 3 |
def large_field_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list):
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
for slack_var in range(1, 20):
|
| 6 |
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
|
| 3 |
def large_field_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list):
|
| 4 |
+
|
| 5 |
+
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score']
|
| 6 |
+
player_columns = [col for col in portfolio.columns if col not in excluded_cols]
|
| 7 |
|
| 8 |
for slack_var in range(1, 20):
|
| 9 |
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
|
global_func/small_field_preset.py
CHANGED
|
@@ -2,6 +2,9 @@ import pandas as pd
|
|
| 2 |
|
| 3 |
def small_field_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list):
|
| 4 |
|
|
|
|
|
|
|
|
|
|
| 5 |
for slack_var in range(1, 20):
|
| 6 |
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
|
| 7 |
|
|
|
|
| 2 |
|
| 3 |
def small_field_preset(portfolio: pd.DataFrame, lineup_target: int, exclude_cols: list):
|
| 4 |
|
| 5 |
+
excluded_cols = ['salary', 'median', 'Own', 'Finish_percentile', 'Dupes', 'Stack', 'Size', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Similarity Score']
|
| 6 |
+
player_columns = [col for col in portfolio.columns if col not in excluded_cols]
|
| 7 |
+
|
| 8 |
for slack_var in range(1, 20):
|
| 9 |
concat_portfolio = pd.DataFrame(columns=portfolio.columns)
|
| 10 |
|