Spaces:
Sleeping
Sleeping
File size: 13,202 Bytes
a959979 46aecf6 8fdf9fe 06d391b a53e56b 46aecf6 4a61f17 06d391b 46aecf6 7acac3c 4a61f17 06d391b d5d0fff 46aecf6 06d391b 0c8c2a2 4a61f17 46aecf6 0c8c2a2 46aecf6 8fbc289 4a61f17 06d391b 4a61f17 06d391b e90581b 06d391b 4a61f17 06d391b 4a61f17 2e01bb8 7acac3c 4a61f17 2e01bb8 0c8c2a2 36b55dc 0c8c2a2 4a61f17 06d391b 0c8c2a2 4a61f17 8fbc289 b25ea18 4a61f17 f574870 36b55dc 2e01bb8 06d391b 36b55dc f7ef014 06d391b 2e01bb8 36b55dc 1a79d0c 4a61f17 46aecf6 4a61f17 46aecf6 0c8c2a2 4a61f17 7acac3c 06d391b 4a61f17 46aecf6 a959979 e2c8e0f 4a61f17 a959979 8fbc289 4a61f17 0fc7394 36b55dc 6f2cd7f 4a61f17 46aecf6 0fc7394 0c8c2a2 36b55dc 0c8c2a2 36b55dc 0c8c2a2 0fc7394 0c8c2a2 0fc7394 46aecf6 0fc7394 46aecf6 4a61f17 0c8c2a2 46aecf6 4a61f17 06d391b 46aecf6 4a61f17 0c8c2a2 4a61f17 0c8c2a2 06d391b 4a61f17 06d391b 46aecf6 c6f6f57 4a61f17 46aecf6 4a61f17 46aecf6 4a61f17 46aecf6 4a61f17 36b55dc 46aecf6 4a61f17 46aecf6 36b55dc 06d391b 4a61f17 06d391b 46aecf6 4a61f17 0c8c2a2 5d4b436 4a61f17 0c8c2a2 5d4b436 4a61f17 0c8c2a2 4a61f17 0c8c2a2 4a61f17 0c8c2a2 4a61f17 0c8c2a2 f7ef014 4a61f17 f7ef014 4a61f17 f7ef014 4a61f17 f7ef014 4a61f17 a959979 0c8c2a2 4a61f17 0c8c2a2 4a61f17 0c8c2a2 4a61f17 0c8c2a2 199db6d 46aecf6 4a61f17 0fc7394 4b40d0a 4a61f17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import streamlit as st
import os
import pandas as pd
import numpy as np
import faiss
import re
import ast
import random
import tempfile
import time
from sentence_transformers import SentenceTransformer
from langchain_groq import ChatGroq
from langchain_core.messages import SystemMessage, HumanMessage
# --- Настройки путей и констант ---
HERE = os.path.dirname(os.path.abspath(__file__))
CSV_PATH = os.path.join(HERE, "tvshows_processed2.csv")
EMB_PATH = os.path.join(HERE, "embeddings.npy")
FAISS_PATH = os.path.join(HERE, "faiss_index.index")
# --- Константы для очистки ---
BASIC_GENRES = [
"комедия", "драма", "боевик", "фэнтези", "ужасы", "триллер", "романтика",
"научная фантастика", "приключения", "криминал", "мюзикл",
"семейный", "детектив", "биография", "документальный"
]
BAD_ACTORS = ["я не знаю", "нет информации", "не указан", "unknown", "—", ""]
GENRE_KEYWORDS_MAP = {
"доктор": "драма", "медицина": "драма", "врач": "драма", "школа": "драма",
"ужас": "ужасы", "фантастика": "научная фантастика", "война": "боевик",
"волшебство": "фэнтези", "дракон": "фэнтези"
}
# --- Определение жанра по ключевым словам ---
def infer_genre_from_query(query):
query_lower = query.lower()
words = re.findall(r'\b\w+\b', query_lower)
for word in words:
if word in GENRE_KEYWORDS_MAP:
return GENRE_KEYWORDS_MAP[word]
return None
# --- Очистка поля актёров ---
def clean_actors_string(val):
v = str(val).strip().lower()
if any(bad in v for bad in BAD_ACTORS) or not re.search(r'[a-zа-яё]', v):
return "Неизвестно"
return val
# --- Фильтрация жанров ---
def filter_to_basic_genres(genres_str):
if not isinstance(genres_str, str):
return ""
genres_lower = genres_str.lower()
matched = [g for g in BASIC_GENRES if g in genres_lower]
return ", ".join(matched) if matched else "Другие"
# --- Вводное описание ---
def extract_intro_paragraph(text, max_sentences=4):
sentences = re.split(r'(?<=[.!?]) +', str(text).strip())
return " ".join(sentences[:max_sentences])
# --- Очистка данных ---
def clean_tvshows_data(path):
if not os.path.exists(path):
raise FileNotFoundError(f"Файл данных не найден: {path}")
df = pd.read_csv(path)
df["actors"] = df.get("actors", "").astype(str).apply(clean_actors_string)
df["genres"] = df.get("genres", "").astype(str)
df["year"] = pd.to_numeric(df.get("year", 0), errors="coerce").fillna(0).astype(int)
df["num_seasons"] = pd.to_numeric(df.get("num_seasons", 0), errors="coerce").fillna(0).astype(int)
df["tvshow_title"] = df.get("tvshow_title", "").fillna("Неизвестно")
df["description"] = df.get("description", "").fillna("Нет описания").astype(str).str.strip()
df = df[df["description"].str.len() > 50]
df.drop_duplicates(subset=["tvshow_title", "description"], inplace=True)
for col in ["image_url", "url", "rating", "language", "country"]:
if col not in df.columns:
df[col] = None
df["basic_genres"] = df["genres"].apply(filter_to_basic_genres)
df["type"] = df["num_seasons"].apply(lambda x: "Сериал" if int(x) > 1 else "Фильм")
return df.reset_index(drop=True)
# --- Кэширование ---
@st.cache_data
def cached_load_data(path):
return clean_tvshows_data(path)
@st.cache_resource
def cached_init_embedder():
cache_dir = os.path.join(HERE, "sbert_cache")
os.makedirs(cache_dir, exist_ok=True)
return SentenceTransformer("sberbank-ai/sbert_large_nlu_ru", cache_folder=cache_dir)
@st.cache_resource
def cached_load_embeddings_and_index():
if not os.path.exists(EMB_PATH) or not os.path.exists(FAISS_PATH):
st.warning("Файлы эмбеддингов или индекса не найдены. Создаём новые...")
df = cached_load_data(CSV_PATH)
embedder = cached_init_embedder()
texts = df.apply(lambda row: f"Название: {row['tvshow_title']}. Описание: {row['description']}. Жанр: {row['genres']}. Актёры: {row['actors']}.", axis=1).tolist()
embeddings = embedder.encode(texts, show_progress_bar=True)
faiss.normalize_L2(embeddings)
np.save(EMB_PATH, embeddings)
index = faiss.IndexFlatIP(embeddings.shape[1])
index.add(embeddings)
faiss.write_index(index, FAISS_PATH)
st.success("Новые эмбеддинги и индекс успешно созданы.")
st.stop()
embeddings = np.load(EMB_PATH)
index = faiss.read_index(FAISS_PATH)
return embeddings, index
# --- Инициализация Groq LLM ---
@st.cache_resource(ttl=3600)
def init_groq_llm():
try:
groq_api_key = os.getenv("GROQ_API_KEY")
if not groq_api_key:
return None
os.environ["GROQ_API_KEY"] = groq_api_key
return ChatGroq(model="deepseek-r1-distill-llama-70b", temperature=0, max_tokens=2000)
except Exception as e:
st.error(f"Ошибка инициализации Groq: {e}")
return None
# --- Семантический поиск ---
def semantic_search(query, embedder, index, df, genre=None, year=None, country=None, vtype=None, k=5):
if not isinstance(query, str) or not query.strip():
return pd.DataFrame()
inferred_genre = infer_genre_from_query(query)
if inferred_genre and (genre is None or genre == "Все"):
genre = inferred_genre
query_embedding = embedder.encode([query])
faiss.normalize_L2(query_embedding)
dists, idxs = index.search(query_embedding, 500)
res = df.iloc[idxs[0]].copy()
res["score"] = dists[0]
if genre and genre != "Все":
res = res[res["basic_genres"].str.lower().str.contains(genre.lower(), na=False)]
if year and year != "Все":
res = res[res["year"] == int(year)]
if country and country != "Все":
res = res[res["country"].astype(str).str.lower().str.contains(country.lower(), na=False)]
if vtype and vtype != "Все":
res = res[res["type"].str.lower() == vtype.lower()]
if res.empty:
return res
query_lower = query.lower()
res['exact_match_title'] = res['tvshow_title'].str.lower() == query_lower
query_words = re.findall(r'\b\w+\b', query_lower)
keyword_pattern = '|'.join([re.escape(word) for word in query_words if len(word) > 2])
res['has_keyword'] = res.apply(lambda row: bool(re.search(keyword_pattern, (str(row['tvshow_title']).lower() + str(row['description']).lower()))), axis=1)
res['final_score'] = res['score'] + res['exact_match_title'] * 1.5 + res['has_keyword'] * 0.4
return res.sort_values(by="final_score", ascending=False).head(k)
# --- Форматирование результатов ---
def format_docs_for_prompt(results_df):
if results_df.empty:
return "Нет подходящих результатов."
return "\n\n".join([
f"Название: {row['tvshow_title']} ({row['year']})\n"
f"Жанр: {row['basic_genres']}\n"
f"Рейтинг: {row['rating'] or '—'} | Тип: {row['type']} | Страна: {row['country'] or '—'} | Сезонов: {row['num_seasons'] or '—'}\n"
f"Актёры: {row['actors']}\nСюжет: {extract_intro_paragraph(row['description'])}"
for _, row in results_df.iterrows()
])
# --- RAG ответ ---
def generate_rag_response(user_query, search_results, llm):
if llm is None:
return "LLM не инициализирован."
ctx = format_docs_for_prompt(search_results)
prompt = f"""
Ты — эксперт по кино и сериалам. Анализируй только данные ниже.
Результаты поиска:
{ctx}
Вопрос пользователя: {user_query}
Ответ:
"""
try:
response = llm.invoke([
SystemMessage(content="Ты — эксперт по кино и сериалам. Не выдумывай лишнего."),
HumanMessage(content=prompt)
]).content.strip()
return response
except Exception as e:
return f"Ошибка при генерации ответа LLM: {e}"
# --- Основная функция ---
def main():
st.set_page_config(page_title="Поиск фильмов и сериалов + Groq AI", layout="wide")
st.title("📽️ Поиск фильмов и сериалов с AI")
if "df" not in st.session_state: st.session_state.df = cached_load_data(CSV_PATH)
if "embedder" not in st.session_state: st.session_state.embedder = cached_init_embedder()
if "embeddings_index" not in st.session_state:
st.session_state.embeddings, st.session_state.index = cached_load_embeddings_and_index()
if "llm" not in st.session_state: st.session_state.llm = init_groq_llm()
df = st.session_state.df
embedder = st.session_state.embedder
index = st.session_state.index
llm = st.session_state.llm
# --- Фильтры ---
st.sidebar.header("Фильтры")
basic_genres_list = sorted([g for g in set(", ".join(df["basic_genres"].dropna().unique()).split(",")) if g])
genre_filter = st.sidebar.selectbox("Жанр", ["Все"] + basic_genres_list, index=0)
years = ["Все"] + sorted([str(y) for y in df["year"].unique() if y != 0], reverse=True)
year_filter = st.sidebar.selectbox("Год", years, index=0)
countries = ["Все"] + sorted([c for c in df["country"].dropna().unique()])
country_filter = st.sidebar.selectbox("Страна", countries, index=0)
vtypes = ["Все"] + sorted(df["type"].dropna().unique())
type_filter = st.sidebar.selectbox("Тип", vtypes, index=0)
k = st.sidebar.slider("Количество результатов:", 1, 20, 5)
# --- Поиск ---
st.markdown("---")
user_input = st.text_input("Введите ключевые слова или сюжет:")
col_buttons = st.columns(4)
search_clicked = col_buttons[0].button("Искать")
random_clicked = col_buttons[1].button("Случайный")
genre_clicked = col_buttons[2].button("ТОП по жанру")
new_clicked = col_buttons[3].button("Новинки")
if search_clicked and user_input.strip():
st.session_state.results = semantic_search(user_input, embedder, index, df, genre_filter, year_filter, country_filter, type_filter, k)
st.session_state.last_query = user_input
elif random_clicked:
rq = random.choice(df["tvshow_title"].tolist())
st.session_state.results = semantic_search(rq, embedder, index, df, genre_filter, year_filter, country_filter, type_filter, k)
st.session_state.last_query = rq
elif genre_clicked and genre_filter != "Все":
gq = f"Лучшие {genre_filter}"
st.session_state.results = semantic_search(gq, embedder, index, df, genre_filter, year_filter, country_filter, type_filter, k)
st.session_state.last_query = gq
elif new_clicked:
nq = f"Новинки {df['year'].max()}"
st.session_state.results = semantic_search(nq, embedder, index, df, genre_filter, year_filter, country_filter, type_filter, k)
st.session_state.last_query = nq
# --- Вывод ---
if "results" in st.session_state and not st.session_state.results.empty:
st.markdown("## Результаты поиска")
for _, row in st.session_state.results.iterrows():
col1, col2 = st.columns([1, 3])
with col1:
if row.get("image_url", "").startswith("http"):
st.image(row["image_url"], width=150)
else:
st.info("Нет изображения.")
with col2:
st.markdown(f"### {row['tvshow_title']} ({row['year']})")
st.caption(f"{row['basic_genres']} | {row['country'] or '—'} | {row['rating'] or '—'} | {row['type']} | {row['num_seasons']} сез.")
st.write(extract_intro_paragraph(row["description"]))
if row.get("actors"):
st.caption(f"Актёры: {row['actors']}")
if row.get("url"):
st.markdown(f"[Подробнее]({row['url']})")
st.divider()
if llm and st.button("AI: рекомендации"):
rag = generate_rag_response(st.session_state.last_query, st.session_state.results, llm)
st.markdown("### Рекомендации AI:")
st.write(rag)
st.sidebar.markdown("---")
st.sidebar.write(f"Всего записей: {len(df)}")
st.sidebar.markdown(f"LLM: {'Готов' if llm else 'Отключён'}")
if __name__ == "__main__":
main()
|