Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +164 -246
src/streamlit_app.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
import os
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import numpy as np
|
| 5 |
import faiss
|
|
@@ -10,38 +12,28 @@ from langchain_core.messages import SystemMessage, HumanMessage
|
|
| 10 |
import ast
|
| 11 |
import random
|
| 12 |
import tempfile
|
| 13 |
-
import time
|
| 14 |
|
| 15 |
-
#
|
| 16 |
HERE = os.path.dirname(os.path.abspath(__file__))
|
| 17 |
CSV_PATH = os.path.join(HERE, "tvshows_processed2.csv")
|
| 18 |
EMB_PATH = os.path.join(HERE, "embeddings.npy")
|
| 19 |
FAISS_PATH = os.path.join(HERE, "faiss_index.index")
|
| 20 |
|
| 21 |
-
# --- Базовые жанры для нормализации ---
|
| 22 |
BASIC_GENRES = [
|
| 23 |
"комедия", "драма", "боевик", "фэнтези", "ужасы", "триллер", "романтика",
|
| 24 |
"научная фантастика", "приключения", "криминал", "мюзикл",
|
| 25 |
-
"семейный", "детектив", "биография"
|
| 26 |
]
|
| 27 |
BAD_ACTORS = [
|
| 28 |
"я не знаю что делать", "я не знаю", "нет информации", "не указан",
|
| 29 |
"нет актёров", "нет актеров", "unknown", "—", ""
|
| 30 |
]
|
| 31 |
BAD_PHRASE_PARTS = [
|
| 32 |
-
"нет описания", "без описания", "неизвестно",
|
|
|
|
| 33 |
]
|
| 34 |
-
GENRE_KEYWORDS_MAP = {
|
| 35 |
-
"доктор": "драма", "медицина": "драма", "врач": "драма",
|
| 36 |
-
"школа": "драма", "комедия": "комедия", "ужас": "ужасы",
|
| 37 |
-
"фантастика": "научная фантастика", "боевик": "боевик",
|
| 38 |
-
"криминал": "криминал", "приключения": "приключения",
|
| 39 |
-
"романтика": "романтика", "прогулки": "документальный",
|
| 40 |
-
"природа": "документальный", "война": "боевик",
|
| 41 |
-
"волшебство": "фэнтези", "дракон": "фэнтези"
|
| 42 |
-
}
|
| 43 |
|
| 44 |
-
#
|
| 45 |
def list_str_to_text(x):
|
| 46 |
try:
|
| 47 |
lst = ast.literal_eval(x) if isinstance(x, str) else x
|
|
@@ -76,40 +68,31 @@ def clean_tvshows_data(path):
|
|
| 76 |
df["num_seasons"] = pd.to_numeric(df.get("num_seasons", 0), errors="coerce").fillna(0).astype(int)
|
| 77 |
df["tvshow_title"] = df.get("tvshow_title", "").fillna("Неизвестно")
|
| 78 |
df["description"] = df.get("description", "").fillna("Нет описания").astype(str).str.strip()
|
| 79 |
-
df = df[df["description"].apply(lambda x: len(str(x).split()) >= 15
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
garbage_patterns = [
|
| 82 |
r"(всё в порядке[.!?~ ,]*){3,}",
|
| 83 |
r"(я не знаю[^.!?]*){2,}",
|
| 84 |
r"(ладно[.,\s]*){3,}",
|
| 85 |
r"(о[ауе]?[^\w]*){5,}",
|
| 86 |
r"(нет[.,\s]*){5,}",
|
| 87 |
-
r"(\s*15\s*лет\s*){2,}",
|
| 88 |
-
r"(\s*ё\s*){2,}",
|
| 89 |
-
r"(\s*ј\s*){2,}",
|
| 90 |
-
r"(\s*ѕј\s*){2,}",
|
| 91 |
-
r"(.)\1{3,}",
|
| 92 |
-
r"(\s*[.,;!?'`~]{2,}\s*)",
|
| 93 |
-
r"(\s*[0-9]{2,}\s*)",
|
| 94 |
]
|
| 95 |
def matches_garbage(text):
|
| 96 |
t = str(text).lower()
|
| 97 |
return any(re.search(p, t) for p in garbage_patterns)
|
| 98 |
df = df[~df["description"].apply(matches_garbage)]
|
| 99 |
-
|
| 100 |
-
try:
|
| 101 |
-
to_drop_exact = df["description"].value_counts()[lambda x: x >= 3].index
|
| 102 |
-
df = df[~df["description"].isin(to_drop_exact)]
|
| 103 |
-
except Exception:
|
| 104 |
-
pass
|
| 105 |
-
|
| 106 |
df = df[~df["description"].str.lower().apply(lambda text: any(phrase in text for phrase in BAD_PHRASE_PARTS))]
|
| 107 |
-
|
| 108 |
cols_to_ignore = {
|
| 109 |
'tvshow_title','year','genres','actors','rating','description',
|
| 110 |
'image_url','url','language','country','directors','page_url','num_seasons'
|
| 111 |
}
|
| 112 |
-
genre_onehots = [
|
|
|
|
|
|
|
| 113 |
df = df.drop(columns=genre_onehots, errors="ignore")
|
| 114 |
df["basic_genres"] = df["genres"].apply(filter_to_basic_genres)
|
| 115 |
df["type"] = df["num_seasons"].apply(lambda x: "Сериал" if pd.notna(x) and int(x) > 1 else "Фильм")
|
|
@@ -118,7 +101,7 @@ def clean_tvshows_data(path):
|
|
| 118 |
df[col] = None
|
| 119 |
return df.reset_index(drop=True)
|
| 120 |
|
| 121 |
-
#
|
| 122 |
@st.cache_data
|
| 123 |
def cached_load_data(path):
|
| 124 |
return clean_tvshows_data(path)
|
|
@@ -132,222 +115,158 @@ def cached_init_embedder():
|
|
| 132 |
@st.cache_resource
|
| 133 |
def cached_load_embeddings_and_index():
|
| 134 |
if not os.path.exists(EMB_PATH) or not os.path.exists(FAISS_PATH):
|
| 135 |
-
|
| 136 |
-
df = cached_load_data(CSV_PATH)
|
| 137 |
-
embedder = cached_init_embedder()
|
| 138 |
-
|
| 139 |
-
# Улучшенное формирование текста для эмбеддинга
|
| 140 |
-
texts = df.apply(
|
| 141 |
-
lambda row: f"Название: {row['tvshow_title']}. Описание: {row['description']}. Жанр: {row['genres']}. Актеры: {row['actors']}.",
|
| 142 |
-
axis=1
|
| 143 |
-
).tolist()
|
| 144 |
-
|
| 145 |
-
embeddings = embedder.encode(texts, show_progress_bar=True)
|
| 146 |
-
faiss.normalize_L2(embeddings)
|
| 147 |
-
np.save(EMB_PATH, embeddings)
|
| 148 |
-
|
| 149 |
-
index = faiss.IndexFlatIP(embeddings.shape[1])
|
| 150 |
-
index.add(embeddings)
|
| 151 |
-
faiss.write_index(index, FAISS_PATH)
|
| 152 |
-
|
| 153 |
-
st.success("Новые эмбеддинги и индекс успешно созданы. Пожалуйста, обновите страницу, чтобы продолжить.")
|
| 154 |
-
|
| 155 |
embeddings = np.load(EMB_PATH)
|
| 156 |
index = faiss.read_index(FAISS_PATH)
|
| 157 |
return embeddings, index
|
| 158 |
|
| 159 |
-
@st.cache_resource
|
| 160 |
-
def
|
| 161 |
-
|
| 162 |
-
if not
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
if keyword in query_lower:
|
| 171 |
-
return genre
|
| 172 |
-
return None
|
| 173 |
|
| 174 |
-
#
|
| 175 |
def semantic_search(query, embedder, index, df, genre=None, year=None, country=None, vtype=None, k=5):
|
| 176 |
if not isinstance(query, str) or not query.strip():
|
| 177 |
return pd.DataFrame()
|
| 178 |
-
|
| 179 |
-
inferred_genre = infer_genre_from_query(query)
|
| 180 |
-
if inferred_genre and (genre is None or genre == "Все"):
|
| 181 |
-
genre = inferred_genre
|
| 182 |
-
|
| 183 |
query_embedding = embedder.encode([query])
|
| 184 |
faiss.normalize_L2(query_embedding)
|
| 185 |
-
|
| 186 |
-
n_search = 500 # Увеличили количество для более широкого поиска
|
| 187 |
dists, idxs = index.search(query_embedding, n_search)
|
| 188 |
-
|
| 189 |
valid_idxs = [i for i in idxs[0] if i >= 0 and i < len(df)]
|
| 190 |
if not valid_idxs:
|
| 191 |
return pd.DataFrame()
|
| 192 |
-
|
| 193 |
res = df.iloc[valid_idxs].copy()
|
| 194 |
res["score"] = dists[0][:len(valid_idxs)]
|
| 195 |
-
|
| 196 |
-
# Применяем фильтрацию
|
| 197 |
if genre and genre != "Все":
|
| 198 |
-
|
| 199 |
-
res = res[res["basic_genres"].str.lower().str.contains(genre_lower, na=False)]
|
| 200 |
-
|
| 201 |
if year and year != "Все":
|
| 202 |
try:
|
| 203 |
res = res[res["year"] == int(year)]
|
| 204 |
except:
|
| 205 |
pass
|
| 206 |
-
|
| 207 |
if country and country != "Все":
|
| 208 |
-
|
| 209 |
-
res = res[res["country"].astype(str).str.lower().str.contains(country_lower, na=False)]
|
| 210 |
-
|
| 211 |
if vtype and vtype != "Все":
|
| 212 |
-
res = res[res["type"]
|
| 213 |
-
|
| 214 |
if res.empty:
|
| 215 |
return res
|
|
|
|
| 216 |
|
| 217 |
-
# --- Гибридное ранжирование ---
|
| 218 |
-
query_lower = query.lower()
|
| 219 |
-
|
| 220 |
-
res['exact_match_title'] = res['tvshow_title'].str.lower() == query_lower
|
| 221 |
-
|
| 222 |
-
query_words = re.findall(r'\b\w+\b', query_lower)
|
| 223 |
-
keyword_pattern = '|'.join([re.escape(word) for word in query_words if len(word) > 2])
|
| 224 |
-
|
| 225 |
-
if keyword_pattern:
|
| 226 |
-
res['has_keyword'] = res.apply(
|
| 227 |
-
lambda row: bool(re.search(keyword_pattern, str(row['tvshow_title']).lower())) or
|
| 228 |
-
bool(re.search(keyword_pattern, str(row['description']).lower())),
|
| 229 |
-
axis=1
|
| 230 |
-
)
|
| 231 |
-
else:
|
| 232 |
-
res['has_keyword'] = False
|
| 233 |
-
|
| 234 |
-
res['final_score'] = res['score']
|
| 235 |
-
res['final_score'] = np.where(res['exact_match_title'], res['final_score'] + 1.5, res['final_score'])
|
| 236 |
-
res['final_score'] = np.where(res['has_keyword'], res['final_score'] + 0.4, res['final_score'])
|
| 237 |
-
|
| 238 |
-
sorted_results = res.sort_values(by="final_score", ascending=False)
|
| 239 |
-
|
| 240 |
-
return sorted_results.head(k)
|
| 241 |
-
|
| 242 |
-
# --- Форматирование результатов для LLM ---
|
| 243 |
def format_docs_for_prompt(results_df):
|
| 244 |
parts = []
|
| 245 |
-
if results_df.empty:
|
| 246 |
-
return "Нет подходящих результатов поиска в базе данных."
|
| 247 |
for _, row in results_df.iterrows():
|
| 248 |
parts.append(
|
| 249 |
-
f"
|
| 250 |
f"Жанр: {row['basic_genres']}\n"
|
| 251 |
f"Рейтинг: {row['rating'] or '—'} | Тип: {row['type']} | "
|
| 252 |
-
f"Страна: {row['country'] or '—'} | Сезонов: {row['num_seasons']
|
| 253 |
-
f"Актёры: {row['actors']}\n
|
| 254 |
)
|
| 255 |
return "\n\n".join(parts)
|
| 256 |
|
| 257 |
def generate_rag_response(user_query, search_results, llm):
|
| 258 |
-
if llm is None:
|
| 259 |
-
return "LLM не
|
| 260 |
-
|
| 261 |
ctx = format_docs_for_prompt(search_results)
|
| 262 |
-
|
| 263 |
-
prompt_template = """
|
| 264 |
-
Ты — эксперт по кино и сериалам. Твоя задача — помочь пользователю, основываясь на предоставленных ниже результатах поиска.
|
| 265 |
-
|
| 266 |
-
Твой основной источник информации — предоставленные результаты поиска.
|
| 267 |
-
1. Сначала проанализируй, насколько предоставленные результаты поиска релевантны запросу пользователя.
|
| 268 |
-
2. Если результаты релевантны, объясни почему и суммируй их.
|
| 269 |
-
3. Если результаты нерелевантны, **прямо об этом скажи** и объясни, что в базе данных не найдено ничего подходящего.
|
| 270 |
-
4. В любом случае, после анализа, предложи **1-2 дополнительных фильма или сериала, которые идеально подходят** под запрос пользователя, используя только свои общие знания, даже если их нет в результатах поиска.
|
| 271 |
-
|
| 272 |
-
Результаты поиска:
|
| 273 |
-
{context}
|
| 274 |
-
|
| 275 |
-
Вопрос пользователя: {question}
|
| 276 |
-
|
| 277 |
-
Ответ:
|
| 278 |
-
"""
|
| 279 |
-
|
| 280 |
-
full_prompt = prompt_template.format(context=ctx, question=user_query)
|
| 281 |
-
|
| 282 |
try:
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
HumanMessage(content=full_prompt)
|
| 286 |
-
]).content.strip()
|
| 287 |
-
return response
|
| 288 |
except Exception as e:
|
| 289 |
return f"Ошибка при генерации ответа LLM: {e}"
|
| 290 |
|
| 291 |
-
#
|
| 292 |
def main():
|
| 293 |
-
st.set_page_config(page_title="
|
| 294 |
-
st.title("
|
| 295 |
|
|
|
|
| 296 |
if "df" not in st.session_state:
|
| 297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
if "embedder" not in st.session_state:
|
| 299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
if "embeddings_index" not in st.session_state:
|
| 301 |
-
|
| 302 |
st.session_state.embeddings, st.session_state.index = cached_load_embeddings_and_index()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
if "llm" not in st.session_state:
|
| 304 |
-
|
|
|
|
| 305 |
|
| 306 |
-
if 'last_query' not in st.session_state: st.session_state.last_query = ""
|
| 307 |
-
if 'results' not in st.session_state: st.session_state.results = pd.DataFrame()
|
| 308 |
-
if 'ai_clicked' not in st.session_state: st.session_state.ai_clicked = False
|
| 309 |
-
|
| 310 |
df = st.session_state.df
|
| 311 |
embedder = st.session_state.embedder
|
| 312 |
index = st.session_state.index
|
| 313 |
llm = st.session_state.llm
|
| 314 |
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
st.session_state.results = semantic_search(
|
| 352 |
user_input, embedder, index, df,
|
| 353 |
genre_filter, year_filter, country_filter, type_filter, k
|
|
@@ -356,82 +275,81 @@ def main():
|
|
| 356 |
elif random_search:
|
| 357 |
random_query = random.choice(df["tvshow_title"].tolist())
|
| 358 |
st.session_state.last_query = random_query
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
|
|
|
|
|
|
| 364 |
elif genre_search and genre_filter != "Все":
|
| 365 |
-
st.session_state.last_query =
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
|
|
|
|
|
|
| 371 |
elif new_search:
|
| 372 |
-
new_query =
|
| 373 |
st.session_state.last_query = new_query
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
|
| 383 |
with results_container:
|
| 384 |
-
st.markdown("##
|
| 385 |
results_exist = isinstance(st.session_state.get("results"), pd.DataFrame) and not st.session_state.results.empty
|
| 386 |
-
|
| 387 |
if not results_exist:
|
| 388 |
-
if st.session_state.last_query:
|
| 389 |
-
st.warning(
|
| 390 |
else:
|
| 391 |
-
st.info("
|
| 392 |
else:
|
| 393 |
res_df = st.session_state.results
|
| 394 |
-
st.success(f"
|
| 395 |
for _, row in res_df.iterrows():
|
| 396 |
-
|
| 397 |
-
with
|
| 398 |
-
|
| 399 |
-
if image_url and isinstance(image_url, str) and (image_url.startswith('http') or image_url.startswith('https')):
|
| 400 |
try:
|
| 401 |
-
st.image(image_url, width=150)
|
| 402 |
except Exception:
|
| 403 |
-
st.info("
|
| 404 |
else:
|
| 405 |
-
st.info("
|
| 406 |
-
with
|
| 407 |
st.markdown(f"### {row['tvshow_title']} ({row['year']})")
|
| 408 |
-
st.caption(
|
| 409 |
-
f"🎭 {row['basic_genres']} | 📍 {row['country'] or '—'}"
|
| 410 |
-
f" | ⭐ {row['rating'] or '—'}"
|
| 411 |
-
f" | 🎬 {row['type']} | 📺 {row['num_seasons']} сез."
|
| 412 |
-
)
|
| 413 |
st.write(extract_intro_paragraph(row["description"]))
|
| 414 |
if row.get("actors"):
|
| 415 |
-
st.caption(f"
|
| 416 |
if row.get("url"):
|
| 417 |
-
st.markdown(f"[
|
| 418 |
st.divider()
|
| 419 |
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
st.session_state.ai_clicked = True
|
| 423 |
|
| 424 |
with ai_response_container:
|
| 425 |
-
if st.session_state.get("ai_clicked") and
|
| 426 |
-
st.markdown("###
|
| 427 |
with st.spinner("Генерация ответа AI..."):
|
| 428 |
rag = generate_rag_response(st.session_state.last_query, st.session_state.results, llm)
|
| 429 |
st.write(rag)
|
| 430 |
|
| 431 |
-
st.sidebar.
|
| 432 |
-
st.sidebar.markdown("
|
| 433 |
-
st.sidebar.write(f"Всего записей в базе: {len(df)}")
|
| 434 |
-
st.sidebar.markdown(f"**Статус Groq LLM:** {'🟢 Готов' if llm else '🔴 Отключён (нужен API-ключ)'}")
|
| 435 |
|
| 436 |
if __name__ == "__main__":
|
| 437 |
main()
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
import os
|
| 4 |
+
import streamlit as st
|
| 5 |
import pandas as pd
|
| 6 |
import numpy as np
|
| 7 |
import faiss
|
|
|
|
| 12 |
import ast
|
| 13 |
import random
|
| 14 |
import tempfile
|
|
|
|
| 15 |
|
| 16 |
+
# ====== Настройки путей и констант ======
|
| 17 |
HERE = os.path.dirname(os.path.abspath(__file__))
|
| 18 |
CSV_PATH = os.path.join(HERE, "tvshows_processed2.csv")
|
| 19 |
EMB_PATH = os.path.join(HERE, "embeddings.npy")
|
| 20 |
FAISS_PATH = os.path.join(HERE, "faiss_index.index")
|
| 21 |
|
|
|
|
| 22 |
BASIC_GENRES = [
|
| 23 |
"комедия", "драма", "боевик", "фэнтези", "ужасы", "триллер", "романтика",
|
| 24 |
"научная фантастика", "приключения", "криминал", "мюзикл",
|
| 25 |
+
"семейный", "детектив", "биография"
|
| 26 |
]
|
| 27 |
BAD_ACTORS = [
|
| 28 |
"я не знаю что делать", "я не знаю", "нет информации", "не указан",
|
| 29 |
"нет актёров", "нет актеров", "unknown", "—", ""
|
| 30 |
]
|
| 31 |
BAD_PHRASE_PARTS = [
|
| 32 |
+
"нет описания", "без описания", "неизвестно",
|
| 33 |
+
"описание отсутствует", "пусто"
|
| 34 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
# ====== Вспомогательные функции ======
|
| 37 |
def list_str_to_text(x):
|
| 38 |
try:
|
| 39 |
lst = ast.literal_eval(x) if isinstance(x, str) else x
|
|
|
|
| 68 |
df["num_seasons"] = pd.to_numeric(df.get("num_seasons", 0), errors="coerce").fillna(0).astype(int)
|
| 69 |
df["tvshow_title"] = df.get("tvshow_title", "").fillna("Неизвестно")
|
| 70 |
df["description"] = df.get("description", "").fillna("Нет описания").astype(str).str.strip()
|
| 71 |
+
df = df[df["description"].apply(lambda x: len(str(x).split())) >= 15]
|
| 72 |
+
try:
|
| 73 |
+
to_drop_exact = df["description"].value_counts()[lambda x: x >= 3].index
|
| 74 |
+
df = df[~df["description"].isin(to_drop_exact)]
|
| 75 |
+
except Exception:
|
| 76 |
+
pass
|
| 77 |
garbage_patterns = [
|
| 78 |
r"(всё в порядке[.!?~ ,]*){3,}",
|
| 79 |
r"(я не знаю[^.!?]*){2,}",
|
| 80 |
r"(ладно[.,\s]*){3,}",
|
| 81 |
r"(о[ауе]?[^\w]*){5,}",
|
| 82 |
r"(нет[.,\s]*){5,}",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
]
|
| 84 |
def matches_garbage(text):
|
| 85 |
t = str(text).lower()
|
| 86 |
return any(re.search(p, t) for p in garbage_patterns)
|
| 87 |
df = df[~df["description"].apply(matches_garbage)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
df = df[~df["description"].str.lower().apply(lambda text: any(phrase in text for phrase in BAD_PHRASE_PARTS))]
|
|
|
|
| 89 |
cols_to_ignore = {
|
| 90 |
'tvshow_title','year','genres','actors','rating','description',
|
| 91 |
'image_url','url','language','country','directors','page_url','num_seasons'
|
| 92 |
}
|
| 93 |
+
genre_onehots = [
|
| 94 |
+
c for c in df.columns if c not in cols_to_ignore and df[c].nunique() <= 2
|
| 95 |
+
]
|
| 96 |
df = df.drop(columns=genre_onehots, errors="ignore")
|
| 97 |
df["basic_genres"] = df["genres"].apply(filter_to_basic_genres)
|
| 98 |
df["type"] = df["num_seasons"].apply(lambda x: "Сериал" if pd.notna(x) and int(x) > 1 else "Фильм")
|
|
|
|
| 101 |
df[col] = None
|
| 102 |
return df.reset_index(drop=True)
|
| 103 |
|
| 104 |
+
# ====== Кэширование и инициализация (один раз) ======
|
| 105 |
@st.cache_data
|
| 106 |
def cached_load_data(path):
|
| 107 |
return clean_tvshows_data(path)
|
|
|
|
| 115 |
@st.cache_resource
|
| 116 |
def cached_load_embeddings_and_index():
|
| 117 |
if not os.path.exists(EMB_PATH) or not os.path.exists(FAISS_PATH):
|
| 118 |
+
raise FileNotFoundError("Файлы embeddings.npy или faiss_index.index не найдены.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
embeddings = np.load(EMB_PATH)
|
| 120 |
index = faiss.read_index(FAISS_PATH)
|
| 121 |
return embeddings, index
|
| 122 |
|
| 123 |
+
@st.cache_resource
|
| 124 |
+
def cached_init_groq_llm():
|
| 125 |
+
api_key = os.getenv("GROQ_API_KEY")
|
| 126 |
+
if not api_key:
|
| 127 |
+
return None # Возвращаем None, если ключ не установлен
|
| 128 |
+
try:
|
| 129 |
+
os.environ["GROQ_API_KEY"] = api_key # Убедимся, что LangChain его видит
|
| 130 |
+
return ChatGroq(model="deepseek-r1-distill-llama-70b", temperature=0, max_tokens=2000)
|
| 131 |
+
except Exception as e:
|
| 132 |
+
st.error(f"Ошибка инициализации Groq: {e}")
|
| 133 |
+
return None
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
# ====== Поисковые/вспомогательные функции ======
|
| 136 |
def semantic_search(query, embedder, index, df, genre=None, year=None, country=None, vtype=None, k=5):
|
| 137 |
if not isinstance(query, str) or not query.strip():
|
| 138 |
return pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
query_embedding = embedder.encode([query])
|
| 140 |
faiss.normalize_L2(query_embedding)
|
| 141 |
+
n_search = max(k*3, 1)
|
|
|
|
| 142 |
dists, idxs = index.search(query_embedding, n_search)
|
|
|
|
| 143 |
valid_idxs = [i for i in idxs[0] if i >= 0 and i < len(df)]
|
| 144 |
if not valid_idxs:
|
| 145 |
return pd.DataFrame()
|
|
|
|
| 146 |
res = df.iloc[valid_idxs].copy()
|
| 147 |
res["score"] = dists[0][:len(valid_idxs)]
|
|
|
|
|
|
|
| 148 |
if genre and genre != "Все":
|
| 149 |
+
res = res[res["basic_genres"].str.contains(genre, na=False)]
|
|
|
|
|
|
|
| 150 |
if year and year != "Все":
|
| 151 |
try:
|
| 152 |
res = res[res["year"] == int(year)]
|
| 153 |
except:
|
| 154 |
pass
|
|
|
|
| 155 |
if country and country != "Все":
|
| 156 |
+
res = res[res["country"].astype(str).str.contains(country, na=False)]
|
|
|
|
|
|
|
| 157 |
if vtype and vtype != "Все":
|
| 158 |
+
res = res[res["type"] == vtype]
|
|
|
|
| 159 |
if res.empty:
|
| 160 |
return res
|
| 161 |
+
return res.nlargest(k, "score")
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
def format_docs_for_prompt(results_df):
|
| 164 |
parts = []
|
|
|
|
|
|
|
| 165 |
for _, row in results_df.iterrows():
|
| 166 |
parts.append(
|
| 167 |
+
f"{row['tvshow_title']} ({row['year']})\n"
|
| 168 |
f"Жанр: {row['basic_genres']}\n"
|
| 169 |
f"Рейтинг: {row['rating'] or '—'} | Тип: {row['type']} | "
|
| 170 |
+
f"Страна: {row['country'] or '—'} | Сезонов: {row['num_seasons']}\n"
|
| 171 |
+
f"Актёры: {row['actors']}\n{extract_intro_paragraph(row['description'])}"
|
| 172 |
)
|
| 173 |
return "\n\n".join(parts)
|
| 174 |
|
| 175 |
def generate_rag_response(user_query, search_results, llm):
|
| 176 |
+
if llm is None or search_results.empty:
|
| 177 |
+
return "LLM не инициализирован или нет результатов для анализа."
|
|
|
|
| 178 |
ctx = format_docs_for_prompt(search_results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
try:
|
| 180 |
+
return llm.invoke([SystemMessage(content="Ты — эксперт по кино и сериалам."),
|
| 181 |
+
HumanMessage(content=f"Запрос: {user_query}\n\n{ctx}")]).content.strip()
|
|
|
|
|
|
|
|
|
|
| 182 |
except Exception as e:
|
| 183 |
return f"Ошибка при генерации ответа LLM: {e}"
|
| 184 |
|
| 185 |
+
# ====== UI: main ======
|
| 186 |
def main():
|
| 187 |
+
st.set_page_config(page_title="Поиск фильмов и сериалов + AI", layout="wide")
|
| 188 |
+
st.title("Семантический поиск фильмов и сериалов с AI")
|
| 189 |
|
| 190 |
+
# ====== Инициализация данных и ресурсов один раз (через session_state) ======
|
| 191 |
if "df" not in st.session_state:
|
| 192 |
+
try:
|
| 193 |
+
st.session_state.df = cached_load_data(CSV_PATH)
|
| 194 |
+
except FileNotFoundError as e:
|
| 195 |
+
st.error(str(e))
|
| 196 |
+
st.stop()
|
| 197 |
+
except Exception as e:
|
| 198 |
+
st.error(f"Не удалось загрузить данные: {e}")
|
| 199 |
+
st.stop()
|
| 200 |
+
|
| 201 |
if "embedder" not in st.session_state:
|
| 202 |
+
try:
|
| 203 |
+
st.session_state.embedder = cached_init_embedder()
|
| 204 |
+
except Exception as e:
|
| 205 |
+
st.error(f"Ошибка инициализации embedder: {e}")
|
| 206 |
+
st.stop()
|
| 207 |
+
|
| 208 |
if "embeddings_index" not in st.session_state:
|
| 209 |
+
try:
|
| 210 |
st.session_state.embeddings, st.session_state.index = cached_load_embeddings_and_index()
|
| 211 |
+
except FileNotFoundError as e:
|
| 212 |
+
st.error(str(e))
|
| 213 |
+
st.stop()
|
| 214 |
+
except Exception as e:
|
| 215 |
+
st.error(f"Ошибка загрузки индекса/эмбеддингов: {e}")
|
| 216 |
+
st.stop()
|
| 217 |
+
|
| 218 |
if "llm" not in st.session_state:
|
| 219 |
+
# Инициализация LLM происходит только здесь, и результат сохраняется в session_state
|
| 220 |
+
st.session_state.llm = cached_init_groq_llm()
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
df = st.session_state.df
|
| 223 |
embedder = st.session_state.embedder
|
| 224 |
index = st.session_state.index
|
| 225 |
llm = st.session_state.llm
|
| 226 |
|
| 227 |
+
# ====== Форма поиска (стабильная) ======
|
| 228 |
+
results_container = st.container()
|
| 229 |
+
ai_response_container = st.container()
|
| 230 |
+
|
| 231 |
+
with st.form(key='search_form'):
|
| 232 |
+
colf1, colf2, colf3, colf4 = st.columns(4)
|
| 233 |
+
with colf1:
|
| 234 |
+
basic_genres_list = []
|
| 235 |
+
for g in df["basic_genres"].dropna().unique():
|
| 236 |
+
for part in str(g).split(","):
|
| 237 |
+
p = part.strip()
|
| 238 |
+
if p:
|
| 239 |
+
basic_genres_list.append(p)
|
| 240 |
+
genres = ["Все"] + sorted(set(basic_genres_list))
|
| 241 |
+
genre_filter = st.selectbox("Жанр", genres, index=0, key="genre_filter_key")
|
| 242 |
+
with colf2:
|
| 243 |
+
years = ["Все"] + [str(y) for y in sorted(df["year"].unique()) if y != 0]
|
| 244 |
+
year_filter = st.selectbox("Год", years, index=0, key="year_filter_key")
|
| 245 |
+
with colf3:
|
| 246 |
+
countries = ["Все"] + sorted([c for c in df["country"].dropna().unique()])
|
| 247 |
+
country_filter = st.selectbox("Страна", countries, index=0, key="country_filter_key")
|
| 248 |
+
with colf4:
|
| 249 |
+
vtypes = ["Все"] + sorted(df["type"].dropna().unique())
|
| 250 |
+
type_filter = st.selectbox("Тип", vtypes, index=0, key="type_filter_key")
|
| 251 |
+
|
| 252 |
+
k = st.slider("Количество результатов:", 1, 20, 5, key="k_slider")
|
| 253 |
+
user_input = st.text_input("Введите ключевые слова или сюжет:", key="user_input_key")
|
| 254 |
+
|
| 255 |
+
nav1, nav2, nav3, nav4 = st.columns(4)
|
| 256 |
+
with nav1:
|
| 257 |
+
random_search = st.form_submit_button("Случайный фильм/сериал")
|
| 258 |
+
with nav2:
|
| 259 |
+
genre_search = st.form_submit_button("ТОП по жанру")
|
| 260 |
+
with nav3:
|
| 261 |
+
new_search = st.form_submit_button("Новинки")
|
| 262 |
+
with nav4:
|
| 263 |
+
text_search = st.form_submit_button("Искать")
|
| 264 |
+
|
| 265 |
+
performed_search = False
|
| 266 |
+
if text_search and user_input:
|
| 267 |
+
st.session_state.last_query = user_input
|
| 268 |
+
performed_search = True
|
| 269 |
+
with st.spinner("Поиск..."):
|
| 270 |
st.session_state.results = semantic_search(
|
| 271 |
user_input, embedder, index, df,
|
| 272 |
genre_filter, year_filter, country_filter, type_filter, k
|
|
|
|
| 275 |
elif random_search:
|
| 276 |
random_query = random.choice(df["tvshow_title"].tolist())
|
| 277 |
st.session_state.last_query = random_query
|
| 278 |
+
performed_search = True
|
| 279 |
+
with st.spinner("Поиск..."):
|
| 280 |
+
st.session_state.results = semantic_search(
|
| 281 |
+
random_query, embedder, index, df,
|
| 282 |
+
genre_filter, year_filter, country_filter, type_filter, k
|
| 283 |
+
)
|
| 284 |
+
st.session_state.ai_clicked = False
|
| 285 |
elif genre_search and genre_filter != "Все":
|
| 286 |
+
st.session_state.last_query = genre_filter
|
| 287 |
+
performed_search = True
|
| 288 |
+
with st.spinner("Поиск..."):
|
| 289 |
+
st.session_state.results = semantic_search(
|
| 290 |
+
genre_filter, embedder, index, df,
|
| 291 |
+
genre_filter, year_filter, country_filter, type_filter, k
|
| 292 |
+
)
|
| 293 |
+
st.session_state.ai_clicked = False
|
| 294 |
elif new_search:
|
| 295 |
+
new_query = str(int(df["year"].max())) if not df["year"].isna().all() else ""
|
| 296 |
st.session_state.last_query = new_query
|
| 297 |
+
performed_search = True
|
| 298 |
+
with st.spinner("Поиск..."):
|
| 299 |
+
st.session_state.results = semantic_search(
|
| 300 |
+
new_query, embedder, index, df,
|
| 301 |
+
genre_filter, year_filter, country_filter, type_filter, k
|
| 302 |
+
)
|
| 303 |
+
st.session_state.ai_clicked = False
|
| 304 |
+
else: # Если ничего не нажато, но session_state пуст
|
| 305 |
+
if 'results' not in st.session_state:
|
| 306 |
+
st.session_state.results = pd.DataFrame()
|
| 307 |
+
if 'ai_clicked' not in st.session_state:
|
| 308 |
+
st.session_state.ai_clicked = False
|
| 309 |
|
| 310 |
with results_container:
|
| 311 |
+
st.markdown("## Результаты поиска")
|
| 312 |
results_exist = isinstance(st.session_state.get("results"), pd.DataFrame) and not st.session_state.results.empty
|
|
|
|
| 313 |
if not results_exist:
|
| 314 |
+
if performed_search and ('last_query' in st.session_state and st.session_state.last_query.strip() != ""):
|
| 315 |
+
st.warning("Ничего не найдено.")
|
| 316 |
else:
|
| 317 |
+
st.info("Введите запрос и нажмите «Искать», или выберите «Случайный фильм/сериал».")
|
| 318 |
else:
|
| 319 |
res_df = st.session_state.results
|
| 320 |
+
st.success(f"Найдено: {len(res_df)}")
|
| 321 |
for _, row in res_df.iterrows():
|
| 322 |
+
card_cols = st.columns([1, 3])
|
| 323 |
+
with card_cols[0]:
|
| 324 |
+
if row.get("image_url"):
|
|
|
|
| 325 |
try:
|
| 326 |
+
st.image(row["image_url"], width=150)
|
| 327 |
except Exception:
|
| 328 |
+
st.info("Нет изображения")
|
| 329 |
else:
|
| 330 |
+
st.info("Нет изображения")
|
| 331 |
+
with card_cols[1]:
|
| 332 |
st.markdown(f"### {row['tvshow_title']} ({row['year']})")
|
| 333 |
+
st.caption(f"{row['basic_genres']} | {row['country'] or '—'} | {row['rating'] or '—'} | {row['type']} | {row['num_seasons']} сез.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
st.write(extract_intro_paragraph(row["description"]))
|
| 335 |
if row.get("actors"):
|
| 336 |
+
st.caption(f"Актёры: {row['actors']}")
|
| 337 |
if row.get("url"):
|
| 338 |
+
st.markdown(f"[Подробнее]({row['url']})")
|
| 339 |
st.divider()
|
| 340 |
|
| 341 |
+
if st.session_state.llm and st.button("AI: почему эти подходят и что ещё посмотреть", key="ai_button"):
|
| 342 |
+
st.session_state.ai_clicked = True
|
|
|
|
| 343 |
|
| 344 |
with ai_response_container:
|
| 345 |
+
if st.session_state.get("ai_clicked") and results_exist:
|
| 346 |
+
st.markdown("### Рекомендации AI:")
|
| 347 |
with st.spinner("Генерация ответа AI..."):
|
| 348 |
rag = generate_rag_response(st.session_state.last_query, st.session_state.results, llm)
|
| 349 |
st.write(rag)
|
| 350 |
|
| 351 |
+
st.sidebar.write(f"Всего записей: {len(df)}")
|
| 352 |
+
st.sidebar.markdown(f"**Статус LLM:** {'Готов' if llm else 'Отключён (нет API-ключа)'}")
|
|
|
|
|
|
|
| 353 |
|
| 354 |
if __name__ == "__main__":
|
| 355 |
main()
|