Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +16 -24
src/streamlit_app.py
CHANGED
|
@@ -77,7 +77,6 @@ def clean_tvshows_data(path):
|
|
| 77 |
df["tvshow_title"] = df.get("tvshow_title", "").fillna("Неизвестно")
|
| 78 |
df["description"] = df.get("description", "").fillna("Нет описания").astype(str).str.strip()
|
| 79 |
|
| 80 |
-
# === Расширенная фильтрация мусорных описаний ===
|
| 81 |
garbage_patterns = [
|
| 82 |
r"(всё в порядке[.!?~ ,]*){3,}",
|
| 83 |
r"(я не знаю[^.!?]*){2,}",
|
|
@@ -88,33 +87,26 @@ def clean_tvshows_data(path):
|
|
| 88 |
r"(\s*ё\s*){2,}",
|
| 89 |
r"(\s*ј\s*){2,}",
|
| 90 |
r"(\s*ѕј\s*){2,}",
|
| 91 |
-
r"(.)\1{3,}",
|
| 92 |
r"(\s*[.,;!?'`~]{2,}\s*)",
|
| 93 |
r"(\s*[0-9]{2,}\s*)",
|
| 94 |
-
r"([a-zA-Zа-яА-ЯёЁ]{1}\s*){10,}",
|
| 95 |
-
r"(\s*(хм){2,}\s*)",
|
| 96 |
-
r"(\s*(красавчик){1,}\s*)",
|
| 97 |
-
r"([ё,ј,ѕ,Ѕ,л,€,д,ь]+)",
|
| 98 |
]
|
| 99 |
-
|
| 100 |
def matches_garbage(text):
|
| 101 |
t = str(text).lower()
|
| 102 |
-
if len(t.split()) < 15:
|
| 103 |
return True
|
| 104 |
return any(re.search(p, t) for p in garbage_patterns)
|
| 105 |
-
|
| 106 |
-
# Применяем фильтр к описаниям
|
| 107 |
df = df[~df["description"].apply(matches_garbage)]
|
| 108 |
-
|
| 109 |
-
# Удаляем часто повторяющиеся описания (>=3)
|
| 110 |
try:
|
| 111 |
to_drop_exact = df["description"].value_counts()[lambda x: x >= 3].index
|
| 112 |
df = df[~df["description"].isin(to_drop_exact)]
|
| 113 |
except Exception:
|
| 114 |
pass
|
| 115 |
-
|
| 116 |
df = df[~df["description"].str.lower().apply(lambda text: any(phrase in text for phrase in BAD_PHRASE_PARTS))]
|
| 117 |
-
|
| 118 |
cols_to_ignore = {
|
| 119 |
'tvshow_title','year','genres','actors','rating','description',
|
| 120 |
'image_url','url','language','country','directors','page_url','num_seasons'
|
|
@@ -165,27 +157,27 @@ def cached_load_embeddings_and_index():
|
|
| 165 |
index = faiss.read_index(FAISS_PATH)
|
| 166 |
return embeddings, index
|
| 167 |
|
|
|
|
| 168 |
@st.cache_resource(ttl=3600)
|
| 169 |
def init_groq_llm():
|
| 170 |
"""
|
| 171 |
-
Инициализирует LLM от Groq, считывая API-ключ из
|
| 172 |
"""
|
| 173 |
try:
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
| 178 |
os.environ["GROQ_API_KEY"] = groq_api_key
|
| 179 |
-
|
| 180 |
-
# Инициализируем LLM
|
| 181 |
return ChatGroq(model="deepseek-r1-distill-llama-70b", temperature=0, max_tokens=2000)
|
| 182 |
-
except KeyError:
|
| 183 |
-
st.error("Ошибка: API-ключ Groq не найден в secrets.toml. Пожалуйста, добавьте его.")
|
| 184 |
-
return None
|
| 185 |
except Exception as e:
|
| 186 |
st.error(f"Ошибка инициализации Groq: {e}")
|
| 187 |
return None
|
| 188 |
|
|
|
|
|
|
|
|
|
|
| 189 |
# --- Автоматическое определение жанра из запроса ---
|
| 190 |
def infer_genre_from_query(query):
|
| 191 |
query_lower = query.lower()
|
|
|
|
| 77 |
df["tvshow_title"] = df.get("tvshow_title", "").fillna("Неизвестно")
|
| 78 |
df["description"] = df.get("description", "").fillna("Нет описания").astype(str).str.strip()
|
| 79 |
|
|
|
|
| 80 |
garbage_patterns = [
|
| 81 |
r"(всё в порядке[.!?~ ,]*){3,}",
|
| 82 |
r"(я не знаю[^.!?]*){2,}",
|
|
|
|
| 87 |
r"(\s*ё\s*){2,}",
|
| 88 |
r"(\s*ј\s*){2,}",
|
| 89 |
r"(\s*ѕј\s*){2,}",
|
| 90 |
+
r"(.)\1{3,}",
|
| 91 |
r"(\s*[.,;!?'`~]{2,}\s*)",
|
| 92 |
r"(\s*[0-9]{2,}\s*)",
|
| 93 |
+
r"([a-zA-Zа-яА-ЯёЁ]{1}\s*){10,}",
|
| 94 |
+
r"(\s*(хм){2,}\s*)",
|
| 95 |
+
r"(\s*(красавчик){1,}\s*)",
|
| 96 |
+
r"([ё,ј,ѕ,Ѕ,л,€,д,ь]+)",
|
| 97 |
]
|
|
|
|
| 98 |
def matches_garbage(text):
|
| 99 |
t = str(text).lower()
|
| 100 |
+
if len(t.split()) < 15:
|
| 101 |
return True
|
| 102 |
return any(re.search(p, t) for p in garbage_patterns)
|
|
|
|
|
|
|
| 103 |
df = df[~df["description"].apply(matches_garbage)]
|
|
|
|
|
|
|
| 104 |
try:
|
| 105 |
to_drop_exact = df["description"].value_counts()[lambda x: x >= 3].index
|
| 106 |
df = df[~df["description"].isin(to_drop_exact)]
|
| 107 |
except Exception:
|
| 108 |
pass
|
|
|
|
| 109 |
df = df[~df["description"].str.lower().apply(lambda text: any(phrase in text for phrase in BAD_PHRASE_PARTS))]
|
|
|
|
| 110 |
cols_to_ignore = {
|
| 111 |
'tvshow_title','year','genres','actors','rating','description',
|
| 112 |
'image_url','url','language','country','directors','page_url','num_seasons'
|
|
|
|
| 157 |
index = faiss.read_index(FAISS_PATH)
|
| 158 |
return embeddings, index
|
| 159 |
|
| 160 |
+
# --- ИСПРАВЛЕННАЯ ФУНКЦИЯ для Groq ---
|
| 161 |
@st.cache_resource(ttl=3600)
|
| 162 |
def init_groq_llm():
|
| 163 |
"""
|
| 164 |
+
Инициализирует LLM от Groq, считывая API-ключ из переменных окружения.
|
| 165 |
"""
|
| 166 |
try:
|
| 167 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
| 168 |
+
if not groq_api_key:
|
| 169 |
+
st.error("Ошибка: переменная окружения GROQ_API_KEY не найдена. Убедитесь, что ключ задан в Variables and Secrets Streamlit.")
|
| 170 |
+
return None
|
| 171 |
+
|
| 172 |
os.environ["GROQ_API_KEY"] = groq_api_key
|
|
|
|
|
|
|
| 173 |
return ChatGroq(model="deepseek-r1-distill-llama-70b", temperature=0, max_tokens=2000)
|
|
|
|
|
|
|
|
|
|
| 174 |
except Exception as e:
|
| 175 |
st.error(f"Ошибка инициализации Groq: {e}")
|
| 176 |
return None
|
| 177 |
|
| 178 |
+
# ... остальной код без изменений ...
|
| 179 |
+
|
| 180 |
+
|
| 181 |
# --- Автоматическое определение жанра из запроса ---
|
| 182 |
def infer_genre_from_query(query):
|
| 183 |
query_lower = query.lower()
|