Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +205 -102
src/streamlit_app.py
CHANGED
|
@@ -11,13 +11,12 @@ import ast
|
|
| 11 |
import random
|
| 12 |
import tempfile
|
| 13 |
|
| 14 |
-
#
|
| 15 |
HERE = os.path.dirname(os.path.abspath(__file__))
|
| 16 |
CSV_PATH = os.path.join(HERE, "tvshows_processed2.csv")
|
| 17 |
EMB_PATH = os.path.join(HERE, "embeddings.npy")
|
| 18 |
FAISS_PATH = os.path.join(HERE, "faiss_index.index")
|
| 19 |
|
| 20 |
-
# Статические данные
|
| 21 |
BASIC_GENRES = [
|
| 22 |
"комедия", "драма", "боевик", "фэнтези", "ужасы", "триллер", "романтика",
|
| 23 |
"научная фантастика", "приключения", "криминал", "мюзикл",
|
|
@@ -32,6 +31,7 @@ BAD_PHRASE_PARTS = [
|
|
| 32 |
"описание отсутствует", "пусто"
|
| 33 |
]
|
| 34 |
|
|
|
|
| 35 |
def list_str_to_text(x):
|
| 36 |
try:
|
| 37 |
lst = ast.literal_eval(x) if isinstance(x, str) else x
|
|
@@ -58,19 +58,24 @@ def extract_intro_paragraph(text, max_sentences=4):
|
|
| 58 |
|
| 59 |
def clean_tvshows_data(path):
|
| 60 |
if not os.path.exists(path):
|
| 61 |
-
|
| 62 |
-
st.stop()
|
| 63 |
df = pd.read_csv(path)
|
| 64 |
-
df["actors"] = df
|
| 65 |
-
df["genres"] = df
|
| 66 |
-
df["year"] = pd.to_numeric(df
|
| 67 |
-
df["num_seasons"] = pd.to_numeric(df
|
| 68 |
-
df["tvshow_title"] = df
|
| 69 |
-
df["description"] = df
|
| 70 |
|
|
|
|
| 71 |
df = df[df["description"].apply(lambda x: len(str(x).split())) >= 15]
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
garbage_patterns = [
|
| 76 |
r"(всё в порядке[.!?~ ,]*){3,}",
|
|
@@ -80,19 +85,23 @@ def clean_tvshows_data(path):
|
|
| 80 |
r"(нет[.,\s]*){5,}",
|
| 81 |
]
|
| 82 |
def matches_garbage(text):
|
| 83 |
-
|
|
|
|
| 84 |
df = df[~df["description"].apply(matches_garbage)]
|
| 85 |
|
| 86 |
# фильтрация по плохим фразам
|
| 87 |
df = df[~df["description"].str.lower().apply(lambda text: any(phrase in text for phrase in BAD_PHRASE_PARTS))]
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
genre_onehots = [
|
| 90 |
-
c for c in df.columns if c not in [
|
| 91 |
-
'tvshow_title','year','genres','actors','rating','description',
|
| 92 |
-
'image_url','url','language','country','directors','page_url','num_seasons'
|
| 93 |
-
] and df[c].nunique() <= 2
|
| 94 |
]
|
| 95 |
df = df.drop(columns=genre_onehots, errors="ignore")
|
|
|
|
| 96 |
df["basic_genres"] = df["genres"].apply(filter_to_basic_genres)
|
| 97 |
df["type"] = df["num_seasons"].apply(lambda x: "Сериал" if pd.notna(x) and int(x) > 1 else "Фильм")
|
| 98 |
for col in ["image_url", "url", "rating", "language", "country"]:
|
|
@@ -100,56 +109,66 @@ def clean_tvshows_data(path):
|
|
| 100 |
df[col] = None
|
| 101 |
return df.reset_index(drop=True)
|
| 102 |
|
|
|
|
| 103 |
@st.cache_data
|
| 104 |
-
def
|
| 105 |
-
return clean_tvshows_data(
|
| 106 |
|
| 107 |
@st.cache_resource
|
| 108 |
-
def
|
| 109 |
cache_dir = os.path.join(tempfile.gettempdir(), "sbert_cache")
|
| 110 |
os.makedirs(cache_dir, exist_ok=True)
|
| 111 |
return SentenceTransformer("sberbank-ai/sbert_large_nlu_ru", cache_folder=cache_dir)
|
| 112 |
|
| 113 |
@st.cache_resource
|
| 114 |
-
def
|
| 115 |
if not os.path.exists(EMB_PATH) or not os.path.exists(FAISS_PATH):
|
| 116 |
-
|
| 117 |
-
st.stop()
|
| 118 |
embeddings = np.load(EMB_PATH)
|
| 119 |
index = faiss.read_index(FAISS_PATH)
|
| 120 |
return embeddings, index
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
def semantic_search(query, embedder, index, df, genre=None, year=None, country=None, vtype=None, k=5):
|
| 123 |
-
if not query.strip():
|
| 124 |
return pd.DataFrame()
|
| 125 |
query_embedding = embedder.encode([query])
|
| 126 |
faiss.normalize_L2(query_embedding)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
res = res[res["basic_genres"].str.contains(genre, na=False)]
|
| 132 |
-
if year != "Все":
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
| 135 |
res = res[res["country"].astype(str).str.contains(country, na=False)]
|
| 136 |
-
if vtype != "Все":
|
| 137 |
res = res[res["type"] == vtype]
|
|
|
|
|
|
|
| 138 |
return res.nlargest(k, "score")
|
| 139 |
|
| 140 |
-
@st.cache_resource(ttl=3600)
|
| 141 |
-
def init_groq_llm():
|
| 142 |
-
key = os.environ.get("GROQ_API_KEY") or (st.secrets.get("GROQ_API_KEY") if hasattr(st, "secrets") else None) or st.text_input("🔐 Введите API-ключ Groq:", type="password")
|
| 143 |
-
if not key:
|
| 144 |
-
st.warning("Введите Groq API ключ.")
|
| 145 |
-
st.stop()
|
| 146 |
-
os.environ["GROQ_API_KEY"] = key
|
| 147 |
-
try:
|
| 148 |
-
return ChatGroq(model="deepseek-r1-distill-llama-70b", temperature=0, max_tokens=2000)
|
| 149 |
-
except Exception as e:
|
| 150 |
-
st.error(f"Ошибка инициализации Groq: {e}")
|
| 151 |
-
st.stop()
|
| 152 |
-
|
| 153 |
def format_docs_for_prompt(results_df):
|
| 154 |
parts = []
|
| 155 |
for _, row in results_df.iterrows():
|
|
@@ -163,41 +182,99 @@ def format_docs_for_prompt(results_df):
|
|
| 163 |
return "\n\n".join(parts)
|
| 164 |
|
| 165 |
def generate_rag_response(user_query, search_results, llm):
|
|
|
|
|
|
|
| 166 |
ctx = format_docs_for_prompt(search_results)
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
| 169 |
|
|
|
|
| 170 |
def main():
|
| 171 |
st.set_page_config(page_title="Поиск фильмов и сериалов + AI", layout="wide")
|
| 172 |
st.title("Семантический поиск фильмов и сериалов с AI")
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
with st.form(key='search_form'):
|
| 185 |
colf1, colf2, colf3, colf4 = st.columns(4)
|
| 186 |
with colf1:
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
with colf2:
|
| 190 |
years = ["Все"] + [str(y) for y in sorted(df["year"].unique())]
|
| 191 |
-
year_filter = st.selectbox("Год", years)
|
| 192 |
with colf3:
|
| 193 |
countries = ["Все"] + sorted([c for c in df["country"].dropna().unique()])
|
| 194 |
-
country_filter = st.selectbox("Страна", countries)
|
| 195 |
with colf4:
|
| 196 |
vtypes = ["Все"] + sorted(df["type"].dropna().unique())
|
| 197 |
-
type_filter = st.selectbox("Тип", vtypes)
|
| 198 |
-
|
| 199 |
-
k = st.slider("Количество результатов:", 1, 20, 5)
|
| 200 |
-
user_input = st.text_input("Введите ключевые слова или сюжет:")
|
| 201 |
|
| 202 |
nav1, nav2, nav3, nav4 = st.columns(4)
|
| 203 |
with nav1:
|
|
@@ -208,9 +285,12 @@ def main():
|
|
| 208 |
new_search = st.form_submit_button("Новинки")
|
| 209 |
with nav4:
|
| 210 |
text_search = st.form_submit_button("Искать")
|
| 211 |
-
|
|
|
|
|
|
|
| 212 |
if text_search and user_input:
|
| 213 |
st.session_state.last_query = user_input
|
|
|
|
| 214 |
with st.spinner("Поиск..."):
|
| 215 |
st.session_state.results = semantic_search(
|
| 216 |
user_input, embedder, index, df,
|
|
@@ -218,8 +298,9 @@ def main():
|
|
| 218 |
)
|
| 219 |
st.session_state.ai_clicked = False
|
| 220 |
elif random_search:
|
| 221 |
-
random_query = random.choice(df["tvshow_title"])
|
| 222 |
st.session_state.last_query = random_query
|
|
|
|
| 223 |
with st.spinner("Поиск..."):
|
| 224 |
st.session_state.results = semantic_search(
|
| 225 |
random_query, embedder, index, df,
|
|
@@ -228,6 +309,7 @@ def main():
|
|
| 228 |
st.session_state.ai_clicked = False
|
| 229 |
elif genre_search and genre_filter != "Все":
|
| 230 |
st.session_state.last_query = genre_filter
|
|
|
|
| 231 |
with st.spinner("Поиск..."):
|
| 232 |
st.session_state.results = semantic_search(
|
| 233 |
genre_filter, embedder, index, df,
|
|
@@ -235,50 +317,71 @@ def main():
|
|
| 235 |
)
|
| 236 |
st.session_state.ai_clicked = False
|
| 237 |
elif new_search:
|
| 238 |
-
new_query = str(max(df["year"]))
|
| 239 |
st.session_state.last_query = new_query
|
|
|
|
| 240 |
with st.spinner("Поиск..."):
|
| 241 |
st.session_state.results = semantic_search(
|
| 242 |
new_query, embedder, index, df,
|
| 243 |
genre_filter, year_filter, country_filter, type_filter, k
|
| 244 |
)
|
| 245 |
st.session_state.ai_clicked = False
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
st.session_state
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
|
|
|
| 282 |
st.sidebar.write(f"Всего записей: {len(df)}")
|
| 283 |
|
| 284 |
if __name__ == "__main__":
|
|
|
|
| 11 |
import random
|
| 12 |
import tempfile
|
| 13 |
|
| 14 |
+
# ====== Настройки путей и констант ======
|
| 15 |
HERE = os.path.dirname(os.path.abspath(__file__))
|
| 16 |
CSV_PATH = os.path.join(HERE, "tvshows_processed2.csv")
|
| 17 |
EMB_PATH = os.path.join(HERE, "embeddings.npy")
|
| 18 |
FAISS_PATH = os.path.join(HERE, "faiss_index.index")
|
| 19 |
|
|
|
|
| 20 |
BASIC_GENRES = [
|
| 21 |
"комедия", "драма", "боевик", "фэнтези", "ужасы", "триллер", "романтика",
|
| 22 |
"научная фантастика", "приключения", "криминал", "мюзикл",
|
|
|
|
| 31 |
"описание отсутствует", "пусто"
|
| 32 |
]
|
| 33 |
|
| 34 |
+
# ====== Вспомогательные функции ======
|
| 35 |
def list_str_to_text(x):
|
| 36 |
try:
|
| 37 |
lst = ast.literal_eval(x) if isinstance(x, str) else x
|
|
|
|
| 58 |
|
| 59 |
def clean_tvshows_data(path):
|
| 60 |
if not os.path.exists(path):
|
| 61 |
+
raise FileNotFoundError(f"Файл данных не найден: {path}.")
|
|
|
|
| 62 |
df = pd.read_csv(path)
|
| 63 |
+
df["actors"] = df.get("actors", "").apply(list_str_to_text).apply(clean_actors_string)
|
| 64 |
+
df["genres"] = df.get("genres", "").apply(list_str_to_text)
|
| 65 |
+
df["year"] = pd.to_numeric(df.get("year", 0), errors="coerce").fillna(0).astype(int)
|
| 66 |
+
df["num_seasons"] = pd.to_numeric(df.get("num_seasons", 0), errors="coerce").fillna(0).astype(int)
|
| 67 |
+
df["tvshow_title"] = df.get("tvshow_title", "").fillna("Неизвестно")
|
| 68 |
+
df["description"] = df.get("description", "").fillna("Нет описания").astype(str).str.strip()
|
| 69 |
|
| 70 |
+
# Минимальная длина описания — фильтр "мусора"
|
| 71 |
df = df[df["description"].apply(lambda x: len(str(x).split())) >= 15]
|
| 72 |
+
|
| 73 |
+
# Удалим часто повторяющиеся одинаковые описания (вероятный мусор)
|
| 74 |
+
try:
|
| 75 |
+
to_drop_exact = df["description"].value_counts()[lambda x: x >= 3].index
|
| 76 |
+
df = df[~df["description"].isin(to_drop_exact)]
|
| 77 |
+
except Exception:
|
| 78 |
+
pass
|
| 79 |
|
| 80 |
garbage_patterns = [
|
| 81 |
r"(всё в порядке[.!?~ ,]*){3,}",
|
|
|
|
| 85 |
r"(нет[.,\s]*){5,}",
|
| 86 |
]
|
| 87 |
def matches_garbage(text):
|
| 88 |
+
t = str(text).lower()
|
| 89 |
+
return any(re.search(p, t) for p in garbage_patterns)
|
| 90 |
df = df[~df["description"].apply(matches_garbage)]
|
| 91 |
|
| 92 |
# фильтрация по плохим фразам
|
| 93 |
df = df[~df["description"].str.lower().apply(lambda text: any(phrase in text for phrase in BAD_PHRASE_PARTS))]
|
| 94 |
|
| 95 |
+
# удалить бинарные столбцы жанров (one-hot), если есть
|
| 96 |
+
cols_to_ignore = {
|
| 97 |
+
'tvshow_title','year','genres','actors','rating','description',
|
| 98 |
+
'image_url','url','language','country','directors','page_url','num_seasons'
|
| 99 |
+
}
|
| 100 |
genre_onehots = [
|
| 101 |
+
c for c in df.columns if c not in cols_to_ignore and df[c].nunique() <= 2
|
|
|
|
|
|
|
|
|
|
| 102 |
]
|
| 103 |
df = df.drop(columns=genre_onehots, errors="ignore")
|
| 104 |
+
|
| 105 |
df["basic_genres"] = df["genres"].apply(filter_to_basic_genres)
|
| 106 |
df["type"] = df["num_seasons"].apply(lambda x: "Сериал" if pd.notna(x) and int(x) > 1 else "Фильм")
|
| 107 |
for col in ["image_url", "url", "rating", "language", "country"]:
|
|
|
|
| 109 |
df[col] = None
|
| 110 |
return df.reset_index(drop=True)
|
| 111 |
|
| 112 |
+
# ====== Кэширование и инициализация (один раз) ======
|
| 113 |
@st.cache_data
|
| 114 |
+
def cached_load_data(path):
|
| 115 |
+
return clean_tvshows_data(path)
|
| 116 |
|
| 117 |
@st.cache_resource
|
| 118 |
+
def cached_init_embedder():
|
| 119 |
cache_dir = os.path.join(tempfile.gettempdir(), "sbert_cache")
|
| 120 |
os.makedirs(cache_dir, exist_ok=True)
|
| 121 |
return SentenceTransformer("sberbank-ai/sbert_large_nlu_ru", cache_folder=cache_dir)
|
| 122 |
|
| 123 |
@st.cache_resource
|
| 124 |
+
def cached_load_embeddings_and_index():
|
| 125 |
if not os.path.exists(EMB_PATH) or not os.path.exists(FAISS_PATH):
|
| 126 |
+
raise FileNotFoundError("Файлы embeddings.npy или faiss_index.index не найдены.")
|
|
|
|
| 127 |
embeddings = np.load(EMB_PATH)
|
| 128 |
index = faiss.read_index(FAISS_PATH)
|
| 129 |
return embeddings, index
|
| 130 |
|
| 131 |
+
def cached_init_groq_llm(api_key: str):
|
| 132 |
+
# Не кэшируем внутри функции Streamlit виджет — вызываем только если ключ есть.
|
| 133 |
+
if not api_key:
|
| 134 |
+
return None
|
| 135 |
+
os.environ["GROQ_API_KEY"] = api_key
|
| 136 |
+
try:
|
| 137 |
+
return ChatGroq(model="deepseek-r1-distill-llama-70b", temperature=0, max_tokens=2000)
|
| 138 |
+
except Exception as e:
|
| 139 |
+
st.error(f"Ошибка инициализации Groq: {e}")
|
| 140 |
+
return None
|
| 141 |
+
|
| 142 |
+
# ====== Поисковые/вспомогательные функции ======
|
| 143 |
def semantic_search(query, embedder, index, df, genre=None, year=None, country=None, vtype=None, k=5):
|
| 144 |
+
if not isinstance(query, str) or not query.strip():
|
| 145 |
return pd.DataFrame()
|
| 146 |
query_embedding = embedder.encode([query])
|
| 147 |
faiss.normalize_L2(query_embedding)
|
| 148 |
+
# безопасный search: index.search expects int >=1
|
| 149 |
+
n_search = max(k*3, 1)
|
| 150 |
+
dists, idxs = index.search(query_embedding, n_search)
|
| 151 |
+
# idxs может содержать -1 для неполных результатов — защитим себя
|
| 152 |
+
valid_idxs = [i for i in idxs[0] if i >= 0 and i < len(df)]
|
| 153 |
+
if not valid_idxs:
|
| 154 |
+
return pd.DataFrame()
|
| 155 |
+
res = df.iloc[valid_idxs].copy()
|
| 156 |
+
res["score"] = dists[0][:len(valid_idxs)]
|
| 157 |
+
if genre and genre != "Все":
|
| 158 |
res = res[res["basic_genres"].str.contains(genre, na=False)]
|
| 159 |
+
if year and year != "Все":
|
| 160 |
+
try:
|
| 161 |
+
res = res[res["year"] == int(year)]
|
| 162 |
+
except:
|
| 163 |
+
pass
|
| 164 |
+
if country and country != "Все":
|
| 165 |
res = res[res["country"].astype(str).str.contains(country, na=False)]
|
| 166 |
+
if vtype and vtype != "Все":
|
| 167 |
res = res[res["type"] == vtype]
|
| 168 |
+
if res.empty:
|
| 169 |
+
return res
|
| 170 |
return res.nlargest(k, "score")
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
def format_docs_for_prompt(results_df):
|
| 173 |
parts = []
|
| 174 |
for _, row in results_df.iterrows():
|
|
|
|
| 182 |
return "\n\n".join(parts)
|
| 183 |
|
| 184 |
def generate_rag_response(user_query, search_results, llm):
|
| 185 |
+
if llm is None or search_results.empty:
|
| 186 |
+
return "LLM не инициализирован или нет результатов для анализа."
|
| 187 |
ctx = format_docs_for_prompt(search_results)
|
| 188 |
+
try:
|
| 189 |
+
return llm.invoke([SystemMessage(content="Ты — эксперт по кино и сериалам."),
|
| 190 |
+
HumanMessage(content=f"Запрос: {user_query}\n\n{ctx}")]).content.strip()
|
| 191 |
+
except Exception as e:
|
| 192 |
+
return f"Ошибка при генерации ответа LLM: {e}"
|
| 193 |
|
| 194 |
+
# ====== UI: main ======
|
| 195 |
def main():
|
| 196 |
st.set_page_config(page_title="Поиск фильмов и сериалов + AI", layout="wide")
|
| 197 |
st.title("Семантический поиск фильмов и сериалов с AI")
|
| 198 |
|
| 199 |
+
# ====== Сайдбар: API ключ и глобальные настройки (фиксируем здесь) ======
|
| 200 |
+
st.sidebar.header("Настройки")
|
| 201 |
+
api_key = st.sidebar.text_input("Groq API ключ (если нужен):", type="password")
|
| 202 |
+
# Кэш��руем ключ в session_state — чтобы не перерисовывать виджет внутри init-функции
|
| 203 |
+
if "groq_api_key" not in st.session_state:
|
| 204 |
+
st.session_state.groq_api_key = api_key
|
| 205 |
+
else:
|
| 206 |
+
# если поменял в сайдбаре — актуализируем
|
| 207 |
+
if api_key and api_key != st.session_state.groq_api_key:
|
| 208 |
+
st.session_state.groq_api_key = api_key
|
| 209 |
+
|
| 210 |
+
# ====== Инициализация данных и ресурсов один раз (через session_state) ======
|
| 211 |
+
if "df" not in st.session_state:
|
| 212 |
+
try:
|
| 213 |
+
st.session_state.df = cached_load_data(CSV_PATH)
|
| 214 |
+
except FileNotFoundError as e:
|
| 215 |
+
st.sidebar.error(str(e))
|
| 216 |
+
st.stop()
|
| 217 |
+
|
| 218 |
+
if "embedder" not in st.session_state:
|
| 219 |
+
try:
|
| 220 |
+
st.session_state.embedder = cached_init_embedder()
|
| 221 |
+
except Exception as e:
|
| 222 |
+
st.sidebar.error(f"Ошибка инициализации embedder: {e}")
|
| 223 |
+
st.stop()
|
| 224 |
+
|
| 225 |
+
if "embeddings_index" not in st.session_state:
|
| 226 |
+
try:
|
| 227 |
+
st.session_state.embeddings, st.session_state.index = cached_load_embeddings_and_index()
|
| 228 |
+
except FileNotFoundError as e:
|
| 229 |
+
st.sidebar.error(str(e))
|
| 230 |
+
st.stop()
|
| 231 |
+
except Exception as e:
|
| 232 |
+
st.sidebar.error(f"Ошибка загрузки индекса/эмбеддингов: {e}")
|
| 233 |
+
st.stop()
|
| 234 |
+
|
| 235 |
+
# LLM инициализируем только если есть ключ (и положим в st.session_state)
|
| 236 |
+
if st.session_state.get("groq_api_key"):
|
| 237 |
+
if "llm" not in st.session_state or st.session_state.get("last_groq_key") != st.session_state.groq_api_key:
|
| 238 |
+
st.session_state.llm = cached_init_groq_llm(st.session_state.groq_api_key)
|
| 239 |
+
st.session_state.last_groq_key = st.session_state.groq_api_key
|
| 240 |
+
else:
|
| 241 |
+
st.session_state.llm = None
|
| 242 |
+
|
| 243 |
+
df = st.session_state.df
|
| 244 |
+
embedder = st.session_state.embedder
|
| 245 |
+
index = st.session_state.index
|
| 246 |
+
llm = st.session_state.llm
|
| 247 |
+
|
| 248 |
+
# ====== Форма поиска (стабильная) ======
|
| 249 |
+
# Резервируем контейнер для результатов чтобы избежать прыжков layout
|
| 250 |
+
results_container = st.container()
|
| 251 |
+
ai_response_container = st.container()
|
| 252 |
|
| 253 |
with st.form(key='search_form'):
|
| 254 |
colf1, colf2, colf3, colf4 = st.columns(4)
|
| 255 |
with colf1:
|
| 256 |
+
# Генерируем список жанров стабильно (сортируем и делаем set один раз)
|
| 257 |
+
basic_genres_list = []
|
| 258 |
+
for g in df["basic_genres"].dropna().unique():
|
| 259 |
+
# split по ", " и extend
|
| 260 |
+
for part in str(g).split(","):
|
| 261 |
+
p = part.strip()
|
| 262 |
+
if p:
|
| 263 |
+
basic_genres_list.append(p)
|
| 264 |
+
genres = ["Все"] + sorted(set(basic_genres_list))
|
| 265 |
+
genre_filter = st.selectbox("Жанр", genres, index=0, key="genre_filter_key")
|
| 266 |
with colf2:
|
| 267 |
years = ["Все"] + [str(y) for y in sorted(df["year"].unique())]
|
| 268 |
+
year_filter = st.selectbox("Год", years, index=0, key="year_filter_key")
|
| 269 |
with colf3:
|
| 270 |
countries = ["Все"] + sorted([c for c in df["country"].dropna().unique()])
|
| 271 |
+
country_filter = st.selectbox("Страна", countries, index=0, key="country_filter_key")
|
| 272 |
with colf4:
|
| 273 |
vtypes = ["Все"] + sorted(df["type"].dropna().unique())
|
| 274 |
+
type_filter = st.selectbox("Тип", vtypes, index=0, key="type_filter_key")
|
| 275 |
+
|
| 276 |
+
k = st.slider("Количество результатов:", 1, 20, 5, key="k_slider")
|
| 277 |
+
user_input = st.text_input("Введите ключевые слова или сюжет:", key="user_input_key")
|
| 278 |
|
| 279 |
nav1, nav2, nav3, nav4 = st.columns(4)
|
| 280 |
with nav1:
|
|
|
|
| 285 |
new_search = st.form_submit_button("Новинки")
|
| 286 |
with nav4:
|
| 287 |
text_search = st.form_submit_button("Искать")
|
| 288 |
+
|
| 289 |
+
# ====== Обработка поисковых событий (логика оставлена прежней) ======
|
| 290 |
+
performed_search = False
|
| 291 |
if text_search and user_input:
|
| 292 |
st.session_state.last_query = user_input
|
| 293 |
+
performed_search = True
|
| 294 |
with st.spinner("Поиск..."):
|
| 295 |
st.session_state.results = semantic_search(
|
| 296 |
user_input, embedder, index, df,
|
|
|
|
| 298 |
)
|
| 299 |
st.session_state.ai_clicked = False
|
| 300 |
elif random_search:
|
| 301 |
+
random_query = random.choice(df["tvshow_title"].tolist())
|
| 302 |
st.session_state.last_query = random_query
|
| 303 |
+
performed_search = True
|
| 304 |
with st.spinner("Поиск..."):
|
| 305 |
st.session_state.results = semantic_search(
|
| 306 |
random_query, embedder, index, df,
|
|
|
|
| 309 |
st.session_state.ai_clicked = False
|
| 310 |
elif genre_search and genre_filter != "Все":
|
| 311 |
st.session_state.last_query = genre_filter
|
| 312 |
+
performed_search = True
|
| 313 |
with st.spinner("Поиск..."):
|
| 314 |
st.session_state.results = semantic_search(
|
| 315 |
genre_filter, embedder, index, df,
|
|
|
|
| 317 |
)
|
| 318 |
st.session_state.ai_clicked = False
|
| 319 |
elif new_search:
|
| 320 |
+
new_query = str(int(df["year"].max())) if not df["year"].isna().all() else ""
|
| 321 |
st.session_state.last_query = new_query
|
| 322 |
+
performed_search = True
|
| 323 |
with st.spinner("Поиск..."):
|
| 324 |
st.session_state.results = semantic_search(
|
| 325 |
new_query, embedder, index, df,
|
| 326 |
genre_filter, year_filter, country_filter, type_filter, k
|
| 327 |
)
|
| 328 |
st.session_state.ai_clicked = False
|
| 329 |
+
else:
|
| 330 |
+
# если форма была отправлена без поискового действия — не трогаем
|
| 331 |
+
if 'results' not in st.session_state:
|
| 332 |
+
st.session_state.results = pd.DataFrame()
|
| 333 |
+
st.session_state.ai_clicked = False
|
| 334 |
+
|
| 335 |
+
# ====== Отрисовка результатов в постоянном контейнере (чтобы не дергалось) ======
|
| 336 |
+
with results_container:
|
| 337 |
+
# всегда резервируем пространство — пустой заголовок/плейсхолдер, чтобы layout не менялся
|
| 338 |
+
st.markdown("## Результаты поиска")
|
| 339 |
+
if not st.session_state.get("results") or st.session_state.results.empty:
|
| 340 |
+
# Показываем либо предупреждение если был поиск и ничего не найдено,
|
| 341 |
+
# либо подсказку с примером — без "скачка" layout.
|
| 342 |
+
if performed_search and ('last_query' in st.session_state and st.session_state.last_query.strip() != ""):
|
| 343 |
+
st.warning("Ничего не найдено.")
|
| 344 |
+
else:
|
| 345 |
+
st.info("Введите запрос и нажмите «Искать», или выберите «Случайный фильм/сериал».")
|
| 346 |
+
else:
|
| 347 |
+
res_df = st.session_state.results
|
| 348 |
+
st.success(f"Найдено: {len(res_df)}")
|
| 349 |
+
# выводим карточки — фиксируем ширину изображения, и��пользуем колонки одинаковой структуры
|
| 350 |
+
for _, row in res_df.iterrows():
|
| 351 |
+
card_cols = st.columns([1, 3])
|
| 352 |
+
with card_cols[0]:
|
| 353 |
+
# зарезервируем пространство под изображение фиксированной ширины
|
| 354 |
+
if row.get("image_url"):
|
| 355 |
+
try:
|
| 356 |
+
st.image(row["image_url"], width=150)
|
| 357 |
+
except Exception:
|
| 358 |
+
st.info("Нет изображения")
|
| 359 |
+
else:
|
| 360 |
+
st.info("Нет изображения")
|
| 361 |
+
with card_cols[1]:
|
| 362 |
+
st.markdown(f"### {row['tvshow_title']} ({row['year']})")
|
| 363 |
+
st.caption(f"{row['basic_genres']} | {row['country'] or '—'} | {row['rating'] or '—'} | {row['type']} | {row['num_seasons']} сез.")
|
| 364 |
+
st.write(extract_intro_paragraph(row["description"]))
|
| 365 |
+
if row.get("actors"):
|
| 366 |
+
st.caption(f"Актёры: {row['actors']}")
|
| 367 |
+
if row.get("url"):
|
| 368 |
+
st.markdown(f"[Подробнее]({row['url']})")
|
| 369 |
+
st.divider()
|
| 370 |
+
|
| 371 |
+
# кнопка AI — рендерим в том же контейнере, чтобы layout был постоянным
|
| 372 |
+
if st.button("AI: почему эти подходят и что ещё посмотреть", key="ai_button"):
|
| 373 |
+
st.session_state.ai_clicked = True
|
| 374 |
+
|
| 375 |
+
# ====== AI-ответ в отдельном контейнере (резервированном) ======
|
| 376 |
+
with ai_response_container:
|
| 377 |
+
if st.session_state.get("ai_clicked") and st.session_state.get("results") is not None and not st.session_state.results.empty:
|
| 378 |
+
st.markdown("### Рекомендации AI:")
|
| 379 |
+
with st.spinner("Генерация ответа AI..."):
|
| 380 |
+
rag = generate_rag_response(st.session_state.last_query, st.session_state.results, llm)
|
| 381 |
+
# Выводим результат в обрамлённом блоке, не добавляя других виджетов
|
| 382 |
+
st.write(rag)
|
| 383 |
|
| 384 |
+
# ====== Сайдбар: статистика ======
|
| 385 |
st.sidebar.write(f"Всего записей: {len(df)}")
|
| 386 |
|
| 387 |
if __name__ == "__main__":
|