Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,627 Bytes
28b35fd d11f062 28b35fd 5b9541c 28b35fd 8adac94 28b35fd 61e3d24 28b35fd 61e3d24 5754029 5b9541c 5754029 61e3d24 28b35fd 5b9541c 414e721 5b9541c 406b226 61e3d24 455c83a 61e3d24 59576ba 28b35fd 927e645 406b226 927e645 28b35fd 8adac94 28b35fd 5754029 21f219b 28b35fd 414e721 28b35fd d11f062 f3b428e d11f062 f3b428e 28b35fd 8adac94 5b9541c 28b35fd 21f219b 28b35fd d11f062 28b35fd 414e721 28b35fd 5754029 28b35fd 5754029 28b35fd 406b226 5754029 414e721 28b35fd 5754029 28b35fd 5754029 c3250ac 5754029 28b35fd 5754029 28b35fd 5754029 c3250ac 5754029 28b35fd 5754029 de5e2ab 28b35fd 5754029 c3250ac 28b35fd c159940 28b35fd c159940 28b35fd c159940 28b35fd c159940 5b9541c 28b35fd 5b9541c c159940 28b35fd 414e721 28b35fd 414e721 28b35fd 5b9541c 5754029 927e645 82b353e 5b9541c 28b35fd dd32cc6 ded4e8a 28b35fd 5b9541c 5754029 28b35fd 5b9541c 28b35fd 5b9541c 28b35fd 5b9541c 28b35fd dd32cc6 5b9541c 28b35fd c159940 28b35fd dd32cc6 28b35fd dd32cc6 c159940 28b35fd 977d71c dd32cc6 977d71c dd32cc6 977d71c 5a60fb2 befd148 5a60fb2 d11f062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
# app.py β HTR Space with Feedback Loop, Memory Post-Correction, and GRPO Export
import os, time, json, hashlib, difflib, uuid, csv
from datetime import datetime
from collections import Counter, defaultdict
from threading import Thread
import gradio as gr
import spaces
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText, Qwen2_5_VLForConditionalGeneration
from reportlab.platypus import SimpleDocTemplate, Paragraph
from reportlab.lib.styles import getSampleStyleSheet
from docx import Document
from gtts import gTTS
from jiwer import cer
# ---------------- Storage & Paths ----------------
os.makedirs("data", exist_ok=True)
FEEDBACK_PATH = "data/feedback.jsonl" # raw feedback log (per sample)
MEMORY_RULES_PATH = "data/memory_rules.json" # compiled post-correction rules
GRPO_EXPORT_PATH = "data/grpo_prefs.jsonl" # preference pairs for GRPO
CSV_EXPORT_PATH = "data/feedback.csv" # optional tabular export
# ---------------- Models ----------------
MODEL_PATHS = {
"Model 1 (Complex handwritings)": ("prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it", Qwen2_5_VLForConditionalGeneration),
"Model 2 (simple and scanned handwriting)": ("nanonets/Nanonets-OCR-s", Qwen2_5_VLForConditionalGeneration),
}
# Model 3 removed to conserve memory.
MAX_NEW_TOKENS_DEFAULT = 512
device = "cuda" if torch.cuda.is_available() else "cpu"
_loaded_processors, _loaded_models = {}, {}
print("π Preloading models into GPU/CPU memory...")
for name, (repo_id, cls) in MODEL_PATHS.items():
try:
processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
model = cls.from_pretrained(
repo_id,
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True
).to(device).eval()
_loaded_processors[name], _loaded_models[name] = processor, model
print(f"β
{name} ready.")
except Exception as e:
print(f"β οΈ Failed to load {name}: {e}")
# ---------------- GPU Warmup ----------------
@spaces.GPU
def warmup(progress=gr.Progress(track_tqdm=True)):
try:
default_model_choice = next(iter(MODEL_PATHS.keys()))
processor = _loaded_processors[default_model_choice]
model = _loaded_models[default_model_choice]
tokenizer = getattr(processor, "tokenizer", None)
messages = [{"role": "user", "content": [{"type": "text", "text": "Warmup."}]}]
chat_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) if tokenizer and hasattr(tokenizer, "apply_chat_template") else "Warmup."
inputs = processor(text=[chat_prompt], images=None, return_tensors="pt").to(device)
with torch.inference_mode():
_ = model.generate(**inputs, max_new_tokens=1)
return f"GPU warm and {default_model_choice} ready."
except Exception as e:
return f"Warmup skipped: {e}"
# ---------------- Helpers ----------------
def _build_inputs(processor, tokenizer, image: Image.Image, prompt: str):
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
if tokenizer and hasattr(tokenizer, "apply_chat_template"):
chat_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Explicitly set truncation=False to prevent the token mismatch error
return processor(text=[chat_prompt], images=[image], return_tensors="pt", truncation=False)
return processor(text=[prompt], images=[image], return_tensors="pt", truncation=False)
def _decode_text(model, processor, tokenizer, output_ids, prompt: str):
try:
decoded_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0]
prompt_start = decoded_text.find(prompt)
if prompt_start != -1:
decoded_text = decoded_text[prompt_start + len(prompt):].strip()
else:
decoded_text = decoded_text.strip()
return decoded_text
except Exception:
try:
decoded_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
prompt_start = decoded_text.find(prompt)
if prompt_start != -1:
decoded_text = decoded_text[prompt_start + len(prompt):].strip()
return decoded_text
except Exception:
return str(output_ids).strip()
def _default_prompt(query: str | None) -> str:
if query and query.strip():
return query.strip()
return (
"You are a professional Handwritten OCR system.\n"
"TASK: Read the handwritten image and transcribe the text EXACTLY as written.\n"
"- Preserve original structure and line breaks.\n"
"- Keep spacing, bullet points, numbering, and indentation.\n"
"- Render tables as Markdown tables if present.\n"
"- Do NOT autocorrect spelling or grammar.\n"
"- Do NOT merge lines.\n"
"Return RAW transcription only."
)
def _safe_text(text: str) -> str:
return (text or "").strip()
def _hash_image(image: Image.Image) -> str:
# stable hash for dedup / linking feedback to the same page
img_bytes = image.tobytes()
return hashlib.sha256(img_bytes).hexdigest()
# ---------------- Memory: Post-correction Rules ----------------
def _load_memory_rules():
if os.path.exists(MEMORY_RULES_PATH):
try:
with open(MEMORY_RULES_PATH, "r", encoding="utf-8") as f:
return json.load(f)
except Exception:
pass
return {"global": {}, "by_model": {}}
def _save_memory_rules(rules):
with open(MEMORY_RULES_PATH, "w", encoding="utf-8") as f:
json.dump(rules, f, ensure_ascii=False, indent=2)
def _apply_memory(text: str, model_choice: str, enabled: bool):
if not enabled or not text:
return text
rules = _load_memory_rules()
# 1) Model-specific replacements
by_model = rules.get("by_model", {}).get(model_choice, {})
for wrong, right in by_model.items():
if wrong and right:
text = text.replace(wrong, right)
# 2) Global replacements
for wrong, right in rules.get("global", {}).items():
for wrong, right in rules.get("global", {}).items():
if wrong and right:
text = text.replace(wrong, right)
return text
def _compile_rules_from_feedback(min_count: int = 2, max_phrase_len: int = 40):
"""
Build replacement rules by mining feedback pairs (prediction -> correction).
We extract phrases that consistently changed, with frequency >= min_count.
"""
changes_counter_global = Counter()
changes_counter_by_model = defaultdict(Counter)
if not os.path.exists(FEEDBACK_PATH):
return
with open(FEEDBACK_PATH, "r", encoding="utf-8") as f:
for line in f:
try:
row = json.loads(line)
except Exception:
continue
if row.get("reward", 0) < 1: # only learn from thumbs-up or explicit 'accepted_correction'
continue
pred = _safe_text(row.get("prediction", ""))
corr = _safe_text(row.get("correction", "")) or _safe_text(row.get("ground_truth", ""))
if not pred or not corr:
continue
model_choice = row.get("model_choice", "")
# Extract ops
s = difflib.SequenceMatcher(None, pred, corr)
for tag, i1, i2, j1, j2 in s.get_opcodes():
if tag in ("replace", "delete", "insert"):
wrong = pred[i1:i2]
right = corr[j1:j2]
# keep short-ish tokens/phrases
if 0 < len(wrong) <= max_phrase_len or 0 < len(right) <= max_phrase_len:
if wrong.strip():
changes_counter_global[(wrong, right)] += 1
if model_choice:
changes_counter_by_model[model_choice][(wrong, right)] += 1
rules = {"global": {}, "by_model": {}}
# Global
for (wrong, right), cnt in changes_counter_global.items():
if cnt >= min_count and wrong and right and wrong != right:
rules["global"][wrong] = right
# Per model
for model_choice, ctr in changes_counter_by_model.items():
rules["by_model"].setdefault(model_choice, {})
for (wrong, right), cnt in ctr.items():
if cnt >= min_count and wrong and right and wrong != right:
rules["by_model"][model_choice][wrong] = right
_save_memory_rules(rules)
# ---------------- OCR Function ----------------
@spaces.GPU
def ocr_image(image: Image.Image, model_choice: str, query: str = None,
max_new_tokens: int = MAX_NEW_TOKENS_DEFAULT,
temperature: float = 0.1, top_p: float = 1.0, top_k: int = 0, repetition_penalty: float = 1.0,
use_memory: bool = True,
progress=gr.Progress(track_tqdm=True)):
if image is None: return "Please upload or capture an image."
if model_choice not in _loaded_models: return f"Invalid model: {model_choice}"
processor, model, tokenizer = _loaded_processors[model_choice], _loaded_models[model_choice], getattr(_loaded_processors[model_choice], "tokenizer", None)
prompt = _default_prompt(query)
batch = _build_inputs(processor, tokenizer, image, prompt).to(device)
with torch.inference_mode():
output_ids = model.generate(**batch, max_new_tokens=max_new_tokens, do_sample=False,
temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
raw = _decode_text(model, processor, tokenizer, output_ids, prompt).replace("<|im_end|>", "").strip()
# Apply memory post-correction
post = _apply_memory(raw, model_choice, use_memory)
return post
# ---------------- Export Helpers ----------------
def save_as_pdf(text):
text = _safe_text(text)
if not text: return None
doc = SimpleDocTemplate("output.pdf")
flowables = [Paragraph(t, getSampleStyleSheet()["Normal"]) for t in text.splitlines() if t != ""]
if not flowables: flowables = [Paragraph(" ", getSampleStyleSheet()["Normal"])]
doc.build(flowables)
return "output.pdf"
def save_as_word(text):
text = _safe_text(text)
if not text: return None
doc = Document()
for line in text.splitlines():
doc.add_paragraph(line)
doc.save("output.docx")
return "output.docx"
def save_as_audio(text):
text = _safe_text(text)
if not text: return None
try:
tts = gTTS(text)
tts.save("output.mp3")
return "output.mp3"
except Exception as e:
print(f"gTTS failed: {e}")
return None
# ---------------- Metrics Function ----------------
def calculate_cer_score(ground_truth: str, prediction: str) -> str:
"""
Calculates the Character Error Rate (CER).
A CER of 0.0 means the prediction is perfect.
"""
if not ground_truth or not prediction:
return "Cannot calculate CER: Missing ground truth or prediction."
ground_truth_cleaned = " ".join(ground_truth.strip().split())
prediction_cleaned = " ".join(prediction.strip().split())
error_rate = cer(ground_truth_cleaned, prediction_cleaned)
return f"Character Error Rate (CER): {error_rate:.4f}"
# ---------------- Feedback & Dataset ----------------
def _append_jsonl(path, obj):
with open(path, "a", encoding="utf-8") as f:
f.write(json.dumps(obj, ensure_ascii=False) + "\n")
def _export_csv():
# optional: CSV summary for spreadsheet views
if not os.path.exists(FEEDBACK_PATH):
return None
rows = []
with open(FEEDBACK_PATH, "r", encoding="utf-8") as f:
for line in f:
try:
rows.append(json.loads(line))
except Exception:
pass
if not rows:
return None
keys = ["id","timestamp","model_choice","image_sha256","prompt","prediction","correction","ground_truth","reward","cer"]
with open(CSV_EXPORT_PATH, "w", newline="", encoding="utf-8") as f:
w = csv.DictWriter(f, fieldnames=keys)
w.writeheader()
for r in rows:
flat = {k: r.get(k, "") for k in keys}
w.writerow(flat)
return CSV_EXPORT_PATH
def save_feedback(image: Image.Image, model_choice: str, prompt: str,
prediction: str, correction: str, ground_truth: str, reward: int):
"""
reward: 1 = good/accepted, 0 = neutral, -1 = bad
"""
if image is None:
return "Please provide the image again to link feedback."
if not prediction and not correction and not ground_truth:
return "Nothing to save."
image_hash = _hash_image(image)
# best target = correction, else ground_truth, else prediction
target = _safe_text(correction) or _safe_text(ground_truth)
pred = _safe_text(prediction)
cer_score = None
if target and pred:
try:
cer_score = cer(" ".join(target.split()), " ".join(pred.split()))
except Exception:
cer_score = None
row = {
"id": str(uuid.uuid4()),
"timestamp": datetime.utcnow().isoformat(),
"model_choice": model_choice or "",
"image_sha256": image_hash,
"prompt": _safe_text(prompt),
"prediction": pred,
"correction": _safe_text(correction),
"ground_truth": _safe_text(ground_truth),
"reward": int(reward),
"cer": float(cer_score) if cer_score is not None else None,
}
_append_jsonl(FEEDBACK_PATH, row)
return f"β
Feedback saved (reward={reward})."
def compile_memory_rules():
_compile_rules_from_feedback(min_count=2, max_phrase_len=60)
return "β
Memory rules recompiled from positive feedback."
def export_grpo_preferences():
"""
Build preference pairs for GRPO training:
- chosen: correction/ground_truth when present
- rejected: original prediction
"""
if not os.path.exists(FEEDBACK_PATH):
return "No feedback to export."
count = 0
with open(GRPO_EXPORT_PATH, "w", encoding="utf-8") as out_f:
with open(FEEDBACK_PATH, "r", encoding="utf-8") as f:
for line in f:
try:
row = json.loads(line)
except Exception:
continue
pred = _safe_text(row.get("prediction", ""))
corr = _safe_text(row.get("correction", "")) or _safe_text(row.get("ground_truth", ""))
prompt = _safe_text(row.get("prompt", "")) or "Transcribe the image exactly."
if corr and pred and corr != pred and row.get("reward", 0) >= 0:
# One preference datapoint
out = {
"prompt": prompt,
"image_sha256": row.get("image_sha256", ""),
"chosen": corr,
"rejected": pred,
"model_choice": row.get("model_choice", "")
}
out_f.write(json.dumps(out, ensure_ascii=False) + "\n")
count += 1
return f"β
Exported {count} GRPO preference pairs to {GRPO_EXPORT_PATH}."
def get_grpo_file():
if os.path.exists(GRPO_EXPORT_PATH):
return GRPO_EXPORT_PATH
return None
def get_csv_file():
_export_csv()
if os.path.exists(CSV_EXPORT_PATH):
return CSV_EXPORT_PATH
return None
# ---------------- Evaluation Orchestration ----------------
@spaces.GPU
def perform_evaluation(image: Image.Image, model_name: str, ground_truth: str,
max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float,
use_memory: bool = True):
if image is None or not ground_truth:
return "Please upload an image and provide the ground truth.", "N/A"
prediction = ocr_image(image, model_name, max_new_tokens=max_new_tokens,
temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty,
use_memory=use_memory)
cer_score = calculate_cer_score(ground_truth, prediction)
return prediction, cer_score
# ---------------- GRPO Trainer Script Writer ----------------
TRAINER_SCRIPT = r"""# grpo_train.py β Offline GRPO training with TRL (run separately)
# pip install trl accelerate peft transformers datasets
# This script expects data/grpo_prefs.jsonl produced by the app.
import os, json
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import GRPOConfig, GRPOTrainer
MODEL_ID = os.environ.get("BASE_MODEL", "Qwen/Qwen2.5-VL-7B-Instruct") # change if needed
OUTPUT_DIR = os.environ.get("OUTPUT_DIR", "grpo_output")
DATA_PATH = os.environ.get("DATA_PATH", "data/grpo_prefs.jsonl")
# Our jsonl: each line has prompt, chosen, rejected (and image_sha256/model_choice optionally)
# We'll format as required by TRL: prompt + responses with one preferred
def _jsonl_dataset(jsonl_path):
data = []
with open(jsonl_path, "r", encoding="utf-8") as f:
for line in f:
try:
row = json.loads(line)
except Exception:
continue
prompt = row.get("prompt", "")
chosen = row.get("chosen", "")
rejected = row.get("rejected", "")
if prompt and chosen and rejected:
data.append({"prompt": prompt, "chosen": chosen, "rejected": rejected})
return data
def main():
data = _jsonl_dataset(DATA_PATH)
if not data:
print("No GRPO data found.")
return
# Create a HuggingFace datasets Dataset from memory
from datasets import Dataset
ds = Dataset.from_list(data)
tok = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, trust_remote_code=True, device_map="auto"
)
# Minimal config β tune to your GPU
cfg = GRPOConfig(
output_dir=OUTPUT_DIR,
learning_rate=5e-6,
per_device_train_batch_size=1,
gradient_accumulation_steps=8,
num_train_epochs=1,
logging_steps=10,
save_steps=200,
max_prompt_length=512,
max_completion_length=768,
bf16=True
)
trainer = GRPOTrainer(
model=model,
ref_model=None, # let TRL create a frozen copy internally
args=cfg,
tokenizer=tok,
train_dataset=ds
)
trainer.train()
trainer.save_model(OUTPUT_DIR)
print("β
GRPO training complete. LoRA/weights saved to", OUTPUT_DIR)
if __name__ == "__main__":
main()
"""
def _write_trainer_script():
os.makedirs("train", exist_ok=True)
path = os.path.join("train", "grpo_train.py")
with open(path, "w", encoding="utf-8") as f:
f.write(TRAINER_SCRIPT)
return path
# ---------------- Gradio Interface ----------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("## βπΎ Wilson Handwritten OCR β with Feedback Loop")
model_choice = gr.Radio(choices=list(MODEL_PATHS.keys()),
value=list(MODEL_PATHS.keys())[0],
label="Select OCR Model")
with gr.Tab("πΌ Image Inference"):
query_input = gr.Textbox(label="Custom Prompt (optional)", placeholder="Leave empty for RAW structured output")
image_input = gr.Image(type="pil", label="Upload / Capture Handwritten Image", sources=["upload", "webcam"])
use_memory = gr.Checkbox(value=True, label="Enable Memory Post-correction (auto-fix known mistakes)")
with gr.Accordion("βοΈ Advanced Options", open=False):
max_new_tokens = gr.Slider(1, 2048, value=MAX_NEW_TOKENS_DEFAULT, step=1, label="Max new tokens")
temperature = gr.Slider(0.1, 2.0, value=0.1, step=0.05, label="Temperature")
top_p = gr.Slider(0.05, 1.0, value=1.0, step=0.05, label="Top-p (nucleus)")
top_k = gr.Slider(0, 1000, value=0, step=1, label="Top-k")
repetition_penalty = gr.Slider(0.8, 2.0, value=1.0, step=0.05, label="Repetition penalty")
extract_btn = gr.Button("π€ Extract RAW Text", variant="primary")
clear_btn = gr.Button("π§Ή Clear")
raw_output = gr.Textbox(label="π Output (post-corrected if memory is ON)", lines=18, show_copy_button=True)
# Quick Feedback strip
gr.Markdown("### βοΈ Quick Feedback")
correction_box = gr.Textbox(label="Your Correction (optional)", placeholder="Paste your corrected text here; leave empty if the output is perfect.", lines=8)
ground_truth_box = gr.Textbox(label="Ground Truth (optional)", placeholder="If you have a reference transcription, paste it here.", lines=6)
with gr.Row():
btn_good = gr.Button("π Accept (Save Feedback as Correct)", variant="primary")
btn_bad = gr.Button("π Bad (Save Feedback as Incorrect)")
feedback_status = gr.Markdown("")
pdf_btn = gr.Button("β¬οΈ Download as PDF")
word_btn = gr.Button("β¬οΈ Download as Word")
audio_btn = gr.Button("π Download as Audio")
pdf_file, word_file, audio_file = gr.File(label="PDF File"), gr.File(label="Word File"), gr.File(label="Audio File")
extract_btn.click(
fn=ocr_image,
inputs=[image_input, model_choice, query_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty, use_memory],
outputs=[raw_output],
api_name="ocr_image"
)
pdf_btn.click(fn=save_as_pdf, inputs=[raw_output], outputs=[pdf_file])
word_btn.click(fn=save_as_word, inputs=[raw_output], outputs=[word_file])
audio_btn.click(fn=save_as_audio, inputs=[raw_output], outputs=[audio_file])
def _clear():
return ("", None, "", MAX_NEW_TOKENS_DEFAULT, 0.1, 1.0, 0, 1.0, True, "", "", "",)
clear_btn.click(
fn=_clear,
outputs=[raw_output, image_input, query_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty, use_memory, correction_box, ground_truth_box, feedback_status]
)
# Quick feedback save
btn_good.click(
fn=lambda img, mc, prmpt, pred, corr, gt: save_feedback(img, mc, prmpt, pred, corr, gt, reward=1),
inputs=[image_input, model_choice, query_input, raw_output, correction_box, ground_truth_box],
outputs=[feedback_status]
)
btn_bad.click(
fn=lambda img, mc, prmpt, pred, corr, gt: save_feedback(img, mc, prmpt, pred, corr, gt, reward=-1),
inputs=[image_input, model_choice, query_input, raw_output, correction_box, ground_truth_box],
outputs=[feedback_status]
)
with gr.Tab("π Model Evaluation"):
gr.Markdown("### π Evaluate Model Accuracy")
eval_image_input = gr.Image(type="pil", label="Upload Image for Evaluation", sources=["upload"])
eval_ground_truth = gr.Textbox(label="Ground Truth (Correct Transcription)", lines=10, placeholder="Type or paste the correct text here.")
eval_model_output = gr.Textbox(label="Model's Prediction", lines=10, interactive=False, show_copy_button=True)
eval_cer_output = gr.Textbox(label="Metrics", interactive=False)
eval_use_memory = gr.Checkbox(value=True, label="Enable Memory Post-correction")
with gr.Row():
run_evaluation_btn = gr.Button("π Run OCR and Evaluate", variant="primary")
clear_evaluation_btn = gr.Button("π§Ή Clear")
run_evaluation_btn.click(
fn=perform_evaluation,
inputs=[eval_image_input, model_choice, eval_ground_truth, max_new_tokens, temperature, top_p, top_k, repetition_penalty, eval_use_memory],
outputs=[eval_model_output, eval_cer_output]
)
clear_evaluation_btn.click(
fn=lambda: (None, "", "", ""),
outputs=[eval_image_input, eval_ground_truth, eval_model_output, eval_cer_output]
)
with gr.Tab("βοΈ Feedback & Memory"):
gr.Markdown("""
**Pipeline**
1) Save feedback (π / π) and add corrections.
2) Click **Build/Refresh Memory** to generate auto-fix rules from positive feedback.
3) Keep **Enable Memory Post-correction** checked on inference/eval tabs.
""")
build_mem_btn = gr.Button("π§ Build/Refresh Memory from Feedback")
mem_status = gr.Markdown("")
build_mem_btn.click(fn=compile_memory_rules, outputs=[mem_status])
csv_status = gr.Markdown("")
gr.Markdown("---")
gr.Markdown("### β¬οΈ Download Feedback Data")
with gr.Row():
download_csv_btn = gr.Button("β¬οΈ Download Feedback as CSV")
download_csv_file = gr.File(label="CSV File")
download_csv_btn.click(fn=get_csv_file, outputs=download_csv_file)
with gr.Tab("π§ͺ GRPO / Dataset"):
gr.Markdown("""
**GRPO Fine-tuning** (run offline or in a training Space):
- Click **Export GRPO Preferences** to produce `data/grpo_prefs.jsonl` of (prompt, chosen, rejected).
- Click **Write Trainer Script** to create `train/grpo_train.py`.
- Then run:
```bash
pip install trl accelerate peft transformers datasets
python train/grpo_train.py
Set BASE_MODEL/OUTPUT_DIR env vars if you like.
```""")
grpo_btn = gr.Button("π¦ Export GRPO Preferences")
grpo_status = gr.Markdown("")
grpo_btn.click(fn=export_grpo_preferences, outputs=[grpo_status])
write_script_btn = gr.Button("π Write grpo_train.py")
write_script_status = gr.Markdown("")
write_script_btn.click(fn=lambda: f"β
Trainer script written to {_write_trainer_script()}", outputs=[write_script_status])
gr.Markdown("---")
gr.Markdown("### β¬οΈ Download GRPO Dataset")
with gr.Row():
download_grpo_btn = gr.Button("β¬οΈ Download GRPO Data (grpo_prefs.jsonl)")
download_grpo_file = gr.File(label="GRPO Dataset File")
download_grpo_btn.click(fn=get_grpo_file, outputs=[download_grpo_file])
# The `if __name__ == "__main__":` block should be at the top level
if __name__ == "__main__":
demo.queue(max_size=50).launch(share=True) |