Emeritus-21 commited on
Commit
ded4e8a
Β·
verified Β·
1 Parent(s): 8998838

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -4
app.py CHANGED
@@ -8,13 +8,15 @@ from transformers import AutoProcessor, AutoModelForImageTextToText, Qwen2_5_VLF
8
  from reportlab.platypus import SimpleDocTemplate, Paragraph
9
  from reportlab.lib.styles import getSampleStyleSheet
10
  from docx import Document
 
 
11
 
12
  # ---------------- Models ----------------
13
  MODEL_PATHS = {
14
  "Model 1 (Complex handwrittings )": ("prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it", Qwen2_5_VLForConditionalGeneration),
15
  "Model 2 (simple and scanned handwritting )": ("nanonets/Nanonets-OCR-s", Qwen2_5_VLForConditionalGeneration),
16
- "Model 3 (structured handwritting)": ("Emeritus-21/Finetuned-full-HTR-model", AutoModelForImageTextToText),
17
  }
 
18
 
19
  MAX_NEW_TOKENS_DEFAULT = 512
20
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -62,12 +64,10 @@ def _build_inputs(processor, tokenizer, image: Image.Image, prompt: str):
62
  def _decode_text(model, processor, tokenizer, output_ids, prompt: str):
63
  try:
64
  decoded_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0]
65
- # Remove the prompt text and any preceding content to ensure only the transcription remains
66
  prompt_start = decoded_text.find(prompt)
67
  if prompt_start != -1:
68
  decoded_text = decoded_text[prompt_start + len(prompt):].strip()
69
  else:
70
- # If prompt is not found, return the stripped decoded text
71
  decoded_text = decoded_text.strip()
72
  return decoded_text
73
  except Exception:
@@ -133,7 +133,6 @@ def save_as_audio(text):
133
  text = _safe_text(text)
134
  if not text: return None
135
  try:
136
- from gTTS import gTTS
137
  tts = gTTS(text)
138
  tts.save("output.mp3")
139
  return "output.mp3"
@@ -141,10 +140,39 @@ def save_as_audio(text):
141
  print(f"gTTS failed: {e}")
142
  return None
143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
  # ---------------- Gradio Interface ----------------
145
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
146
  gr.Markdown("## ✍🏾 wilson Handwritten OCR")
147
  model_choice = gr.Radio(choices=list(MODEL_PATHS.keys()), value=list(MODEL_PATHS.keys())[0], label="Select OCR Model")
 
148
  with gr.Tab("πŸ–Ό Image Inference"):
149
  query_input = gr.Textbox(label="Custom Prompt (optional)", placeholder="Leave empty for RAW structured output")
150
  image_input = gr.Image(type="pil", label="Upload / Capture Handwritten Image", sources=["upload", "webcam"])
@@ -168,5 +196,26 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
168
  audio_btn.click(fn=save_as_audio, inputs=[raw_output], outputs=[audio_file])
169
  clear_btn.click(fn=lambda: ("", None, "", MAX_NEW_TOKENS_DEFAULT, 0.1, 1.0, 0, 1.0), outputs=[raw_output, image_input, query_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty])
170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  if __name__ == "__main__":
172
  demo.queue(max_size=50).launch(share=True)
 
8
  from reportlab.platypus import SimpleDocTemplate, Paragraph
9
  from reportlab.lib.styles import getSampleStyleSheet
10
  from docx import Document
11
+ from gTTS import gTTS
12
+ from jiwer import cer
13
 
14
  # ---------------- Models ----------------
15
  MODEL_PATHS = {
16
  "Model 1 (Complex handwrittings )": ("prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it", Qwen2_5_VLForConditionalGeneration),
17
  "Model 2 (simple and scanned handwritting )": ("nanonets/Nanonets-OCR-s", Qwen2_5_VLForConditionalGeneration),
 
18
  }
19
+ # Model 3 has been removed to conserve memory.
20
 
21
  MAX_NEW_TOKENS_DEFAULT = 512
22
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
64
  def _decode_text(model, processor, tokenizer, output_ids, prompt: str):
65
  try:
66
  decoded_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0]
 
67
  prompt_start = decoded_text.find(prompt)
68
  if prompt_start != -1:
69
  decoded_text = decoded_text[prompt_start + len(prompt):].strip()
70
  else:
 
71
  decoded_text = decoded_text.strip()
72
  return decoded_text
73
  except Exception:
 
133
  text = _safe_text(text)
134
  if not text: return None
135
  try:
 
136
  tts = gTTS(text)
137
  tts.save("output.mp3")
138
  return "output.mp3"
 
140
  print(f"gTTS failed: {e}")
141
  return None
142
 
143
+ # ---------------- Metrics Function ----------------
144
+ def calculate_cer_score(ground_truth: str, prediction: str) -> str:
145
+ """
146
+ Calculates the Character Error Rate (CER) between two strings.
147
+ A CER of 0.0 means the prediction is perfect.
148
+ """
149
+ if not ground_truth or not prediction:
150
+ return "Cannot calculate CER: Missing ground truth or prediction."
151
+
152
+ ground_truth_cleaned = " ".join(ground_truth.strip().split())
153
+ prediction_cleaned = " ".join(prediction.strip().split())
154
+
155
+ error_rate = cer(ground_truth_cleaned, prediction_cleaned)
156
+ return f"Character Error Rate (CER): {error_rate:.4f}"
157
+
158
+ # ---------------- Evaluation Orchestration ----------------
159
+ @spaces.GPU
160
+ def perform_evaluation(image: Image.Image, model_name: str, ground_truth: str,
161
+ max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float):
162
+ if image is None or not ground_truth:
163
+ return "Please upload an image and provide the ground truth.", "N/A"
164
+
165
+ prediction = ocr_image(image, model_name, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
166
+
167
+ cer_score = calculate_cer_score(ground_truth, prediction)
168
+
169
+ return prediction, cer_score
170
+
171
  # ---------------- Gradio Interface ----------------
172
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
173
  gr.Markdown("## ✍🏾 wilson Handwritten OCR")
174
  model_choice = gr.Radio(choices=list(MODEL_PATHS.keys()), value=list(MODEL_PATHS.keys())[0], label="Select OCR Model")
175
+
176
  with gr.Tab("πŸ–Ό Image Inference"):
177
  query_input = gr.Textbox(label="Custom Prompt (optional)", placeholder="Leave empty for RAW structured output")
178
  image_input = gr.Image(type="pil", label="Upload / Capture Handwritten Image", sources=["upload", "webcam"])
 
196
  audio_btn.click(fn=save_as_audio, inputs=[raw_output], outputs=[audio_file])
197
  clear_btn.click(fn=lambda: ("", None, "", MAX_NEW_TOKENS_DEFAULT, 0.1, 1.0, 0, 1.0), outputs=[raw_output, image_input, query_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty])
198
 
199
+ with gr.Tab("πŸ“Š Model Evaluation"):
200
+ gr.Markdown("### πŸ” Evaluate Model Accuracy")
201
+ eval_image_input = gr.Image(type="pil", label="Upload Image for Evaluation", sources=["upload"])
202
+ eval_ground_truth = gr.Textbox(label="Ground Truth (Correct Transcription)", lines=10, placeholder="Type or paste the correct text here.")
203
+ eval_model_output = gr.Textbox(label="Model's Prediction", lines=10, interactive=False, show_copy_button=True)
204
+ eval_cer_output = gr.Textbox(label="Metrics", interactive=False)
205
+
206
+ with gr.Row():
207
+ run_evaluation_btn = gr.Button("πŸš€ Run OCR and Evaluate", variant="primary")
208
+ clear_evaluation_btn = gr.Button("🧹 Clear")
209
+
210
+ run_evaluation_btn.click(
211
+ fn=perform_evaluation,
212
+ inputs=[eval_image_input, model_choice, eval_ground_truth, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
213
+ outputs=[eval_model_output, eval_cer_output]
214
+ )
215
+ clear_evaluation_btn.click(
216
+ fn=lambda: (None, "", "", ""),
217
+ outputs=[eval_image_input, eval_ground_truth, eval_model_output, eval_cer_output]
218
+ )
219
+
220
  if __name__ == "__main__":
221
  demo.queue(max_size=50).launch(share=True)