Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
-
# app.py β HTR Space
|
2 |
|
3 |
-
import os, time, json, hashlib, uuid, csv
|
4 |
from datetime import datetime
|
|
|
5 |
from threading import Thread
|
6 |
-
|
7 |
import gradio as gr
|
|
|
8 |
from PIL import Image
|
9 |
import torch
|
10 |
from transformers import AutoProcessor, AutoModelForImageTextToText, Qwen2_5_VLForConditionalGeneration
|
@@ -13,208 +15,575 @@ from reportlab.lib.styles import getSampleStyleSheet
|
|
13 |
from docx import Document
|
14 |
from gtts import gTTS
|
15 |
from jiwer import cer
|
16 |
-
import numpy as np
|
17 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
18 |
|
19 |
-
# ---------------- Paths ----------------
|
20 |
os.makedirs("data", exist_ok=True)
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
24 |
|
25 |
# ---------------- Models ----------------
|
26 |
MODEL_PATHS = {
|
27 |
"Model 1 (Complex handwrittings )": ("prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it", Qwen2_5_VLForConditionalGeneration),
|
28 |
-
"Model 2 (
|
29 |
}
|
30 |
|
|
|
|
|
31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
_loaded_processors, _loaded_models = {}, {}
|
33 |
|
34 |
-
print("π
|
35 |
for name, (repo_id, cls) in MODEL_PATHS.items():
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# ---------------- Helpers ----------------
|
44 |
-
def
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def _safe_text(text: str) -> str:
|
48 |
return (text or "").strip()
|
49 |
|
50 |
-
def
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
"- Preserve line breaks, indentation, bullets, numbering.\n"
|
55 |
-
"- Tables as Markdown tables if present.\n"
|
56 |
-
"- Do NOT autocorrect spelling or merge lines.\n"
|
57 |
-
"Return RAW transcription only.")
|
58 |
-
|
59 |
-
def _append_jsonl(path, obj):
|
60 |
-
with open(path, "a", encoding="utf-8") as f: f.write(json.dumps(obj, ensure_ascii=False) + "\n")
|
61 |
|
62 |
-
# ----------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def ocr_image(image: Image.Image, model_choice: str, query: str = None,
|
64 |
max_new_tokens: int = MAX_NEW_TOKENS_DEFAULT,
|
65 |
temperature: float = 0.1, top_p: float = 1.0, top_k: int = 0, repetition_penalty: float = 1.0,
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
prompt = _default_prompt(query)
|
70 |
-
|
71 |
-
# Build input
|
72 |
-
batch = processor(text=[prompt], images=[image], return_tensors="pt").to(device)
|
73 |
with torch.inference_mode():
|
74 |
output_ids = model.generate(**batch, max_new_tokens=max_new_tokens, do_sample=False,
|
75 |
temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
|
76 |
-
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
try:
|
81 |
-
current_embedding = np.random.rand(768).reshape(1, -1) # placeholder for real embedding
|
82 |
-
for line in open(FEEDBACK_RPL_PATH, encoding="utf-8"):
|
83 |
-
row = json.loads(line)
|
84 |
-
if row.get("reward", 0) < 1: continue
|
85 |
-
emb = np.array(row.get("embedding", np.random.rand(768))).reshape(1, -1)
|
86 |
-
sim = cosine_similarity(current_embedding, emb)[0][0]
|
87 |
-
if sim > 0.85:
|
88 |
-
raw_text = row.get("correction") or row.get("ground_truth")
|
89 |
-
break
|
90 |
-
except Exception: pass
|
91 |
-
return raw_text
|
92 |
-
|
93 |
-
# ---------------- Feedback ----------------
|
94 |
-
def save_feedback(image: Image.Image, model_choice: str, prompt: str,
|
95 |
-
prediction: str, correction: str, ground_truth: str, reward: int):
|
96 |
-
if image is None: return "Provide image.", 0
|
97 |
-
row = {
|
98 |
-
"id": str(uuid.uuid4()),
|
99 |
-
"timestamp": datetime.utcnow().isoformat(),
|
100 |
-
"model_choice": model_choice,
|
101 |
-
"image_sha256": _hash_image(image),
|
102 |
-
"prompt": _safe_text(prompt),
|
103 |
-
"prediction": _safe_text(prediction),
|
104 |
-
"correction": _safe_text(correction),
|
105 |
-
"ground_truth": _safe_text(ground_truth),
|
106 |
-
"reward": reward,
|
107 |
-
"embedding": np.random.rand(768).tolist()
|
108 |
-
}
|
109 |
-
_append_jsonl(FEEDBACK_RPL_PATH, row)
|
110 |
-
return f"β
Feedback saved (reward={reward}).", 1
|
111 |
-
|
112 |
-
def export_csv():
|
113 |
-
if not os.path.exists(FEEDBACK_RPL_PATH): return None
|
114 |
-
keys, rows = None, []
|
115 |
-
for line in open(FEEDBACK_RPL_PATH, encoding="utf-8"):
|
116 |
-
try: row = json.loads(line); rows.append(row); keys = keys or list(row.keys())
|
117 |
-
except: continue
|
118 |
-
if not rows: return None
|
119 |
-
with open(CSV_PATH, "w", newline="", encoding="utf-8") as f:
|
120 |
-
writer = csv.DictWriter(f, fieldnames=keys)
|
121 |
-
writer.writeheader(); writer.writerows(rows)
|
122 |
-
return CSV_PATH
|
123 |
-
|
124 |
-
# ---------------- Export Formats ----------------
|
125 |
-
def save_pdf(text):
|
126 |
text = _safe_text(text)
|
127 |
if not text: return None
|
128 |
doc = SimpleDocTemplate("output.pdf")
|
129 |
-
flowables = [Paragraph(
|
130 |
-
|
|
|
131 |
return "output.pdf"
|
132 |
|
133 |
-
def
|
134 |
text = _safe_text(text)
|
135 |
if not text: return None
|
136 |
doc = Document()
|
137 |
-
for
|
|
|
138 |
doc.save("output.docx")
|
139 |
return "output.docx"
|
140 |
|
141 |
-
def
|
142 |
text = _safe_text(text)
|
143 |
if not text: return None
|
144 |
-
try:
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
def
|
148 |
-
|
149 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
# ---------------- Gradio Interface ----------------
|
158 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
159 |
-
gr.Markdown("## βπΎ Handwritten
|
160 |
|
161 |
-
model_choice = gr.Radio(
|
|
|
|
|
162 |
|
163 |
-
with gr.Tab("πΌ
|
164 |
-
query_input = gr.Textbox(label="Custom Prompt (optional)")
|
165 |
-
image_input = gr.Image(type="pil", label="Upload / Capture Handwritten Image")
|
166 |
-
|
167 |
|
168 |
with gr.Accordion("βοΈ Advanced Options", open=False):
|
169 |
max_new_tokens = gr.Slider(1, 2048, value=MAX_NEW_TOKENS_DEFAULT, step=1, label="Max new tokens")
|
170 |
temperature = gr.Slider(0.1, 2.0, value=0.1, step=0.05, label="Temperature")
|
171 |
-
top_p = gr.Slider(0.05,1.0,value=1.0,step=0.05,label="Top-p")
|
172 |
-
top_k = gr.Slider(0,1000,value=0,step=1,label="Top-k")
|
173 |
-
repetition_penalty = gr.Slider(0.8,2.0,value=1.0,step=0.05,label="Repetition penalty")
|
|
|
|
|
|
|
174 |
|
175 |
-
|
176 |
-
raw_output = gr.Textbox(label="π Output", lines=18, show_copy_button=True)
|
177 |
|
|
|
178 |
gr.Markdown("### βοΈ Quick Feedback")
|
179 |
-
correction_box = gr.Textbox(label="Your Correction", lines=8)
|
180 |
-
ground_truth_box = gr.Textbox(label="Ground Truth", lines=6)
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
183 |
feedback_status = gr.Markdown()
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
grpo_status = gr.Markdown()
|
217 |
-
|
|
|
|
|
|
|
|
|
218 |
|
219 |
if __name__ == "__main__":
|
220 |
demo.queue(max_size=50).launch(share=True)
|
|
|
1 |
+
# app.py β HTR Space with Feedback Loop, Memory Post-Correction, and GRPO Export
|
2 |
|
3 |
+
import os, time, json, hashlib, difflib, uuid, csv
|
4 |
from datetime import datetime
|
5 |
+
from collections import Counter, defaultdict
|
6 |
from threading import Thread
|
7 |
+
|
8 |
import gradio as gr
|
9 |
+
import spaces
|
10 |
from PIL import Image
|
11 |
import torch
|
12 |
from transformers import AutoProcessor, AutoModelForImageTextToText, Qwen2_5_VLForConditionalGeneration
|
|
|
15 |
from docx import Document
|
16 |
from gtts import gTTS
|
17 |
from jiwer import cer
|
|
|
|
|
18 |
|
19 |
+
# ---------------- Storage & Paths ----------------
|
20 |
os.makedirs("data", exist_ok=True)
|
21 |
+
FEEDBACK_PATH = "data/feedback.jsonl" # raw feedback log (per sample)
|
22 |
+
MEMORY_RULES_PATH = "data/memory_rules.json" # compiled post-correction rules
|
23 |
+
GRPO_EXPORT_PATH = "data/grpo_prefs.jsonl" # preference pairs for GRPO
|
24 |
+
CSV_EXPORT_PATH = "data/feedback.csv" # optional tabular export
|
25 |
|
26 |
# ---------------- Models ----------------
|
27 |
MODEL_PATHS = {
|
28 |
"Model 1 (Complex handwrittings )": ("prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it", Qwen2_5_VLForConditionalGeneration),
|
29 |
+
"Model 2 (simple and scanned handwritting )": ("nanonets/Nanonets-OCR-s", Qwen2_5_VLForConditionalGeneration),
|
30 |
}
|
31 |
|
32 |
+
|
33 |
+
MAX_NEW_TOKENS_DEFAULT = 512
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
_loaded_processors, _loaded_models = {}, {}
|
36 |
|
37 |
+
print("π Preloading models into GPU/CPU memory...")
|
38 |
for name, (repo_id, cls) in MODEL_PATHS.items():
|
39 |
+
try:
|
40 |
+
processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
|
41 |
+
model = cls.from_pretrained(
|
42 |
+
repo_id,
|
43 |
+
trust_remote_code=True,
|
44 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
45 |
+
low_cpu_mem_usage=True
|
46 |
+
).to(device).eval()
|
47 |
+
_loaded_processors[name], _loaded_models[name] = processor, model
|
48 |
+
print(f"β
{name} ready.")
|
49 |
+
except Exception as e:
|
50 |
+
print(f"β οΈ Failed to load {name}: {e}")
|
51 |
+
|
52 |
+
# ---------------- GPU Warmup ----------------
|
53 |
+
@spaces.GPU
|
54 |
+
def warmup(progress=gr.Progress(track_tqdm=True)):
|
55 |
+
try:
|
56 |
+
default_model_choice = next(iter(MODEL_PATHS.keys()))
|
57 |
+
processor = _loaded_processors[default_model_choice]
|
58 |
+
model = _loaded_models[default_model_choice]
|
59 |
+
tokenizer = getattr(processor, "tokenizer", None)
|
60 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": "Warmup."}]}]
|
61 |
+
chat_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) if tokenizer and hasattr(tokenizer, "apply_chat_template") else "Warmup."
|
62 |
+
inputs = processor(text=[chat_prompt], images=None, return_tensors="pt").to(device)
|
63 |
+
with torch.inference_mode():
|
64 |
+
_ = model.generate(**inputs, max_new_tokens=1)
|
65 |
+
return f"GPU warm and {default_model_choice} ready."
|
66 |
+
except Exception as e:
|
67 |
+
return f"Warmup skipped: {e}"
|
68 |
|
69 |
# ---------------- Helpers ----------------
|
70 |
+
def _build_inputs(processor, tokenizer, image: Image.Image, prompt: str):
|
71 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
|
72 |
+
if tokenizer and hasattr(tokenizer, "apply_chat_template"):
|
73 |
+
chat_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
74 |
+
return processor(text=[chat_prompt], images=[image], return_tensors="pt")
|
75 |
+
return processor(text=[prompt], images=[image], return_tensors="pt")
|
76 |
+
|
77 |
+
def _decode_text(model, processor, tokenizer, output_ids, prompt: str):
|
78 |
+
try:
|
79 |
+
decoded_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
80 |
+
prompt_start = decoded_text.find(prompt)
|
81 |
+
if prompt_start != -1:
|
82 |
+
decoded_text = decoded_text[prompt_start + len(prompt):].strip()
|
83 |
+
else:
|
84 |
+
decoded_text = decoded_text.strip()
|
85 |
+
return decoded_text
|
86 |
+
except Exception:
|
87 |
+
try:
|
88 |
+
decoded_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
89 |
+
prompt_start = decoded_text.find(prompt)
|
90 |
+
if prompt_start != -1:
|
91 |
+
decoded_text = decoded_text[prompt_start + len(prompt):].strip()
|
92 |
+
return decoded_text
|
93 |
+
except Exception:
|
94 |
+
return str(output_ids).strip()
|
95 |
+
|
96 |
+
def _default_prompt(query: str | None) -> str:
|
97 |
+
if query and query.strip():
|
98 |
+
return query.strip()
|
99 |
+
return (
|
100 |
+
"You are a professional Handwritten OCR system.\n"
|
101 |
+
"TASK: Read the handwritten image and transcribe the text EXACTLY as written.\n"
|
102 |
+
"- Preserve original structure and line breaks.\n"
|
103 |
+
"- Keep spacing, bullet points, numbering, and indentation.\n"
|
104 |
+
"- Render tables as Markdown tables if present.\n"
|
105 |
+
"- Do NOT autocorrect spelling or grammar.\n"
|
106 |
+
"- Do NOT merge lines.\n"
|
107 |
+
"Return RAW transcription only."
|
108 |
+
)
|
109 |
|
110 |
def _safe_text(text: str) -> str:
|
111 |
return (text or "").strip()
|
112 |
|
113 |
+
def _hash_image(image: Image.Image) -> str:
|
114 |
+
# stable hash for dedup / linking feedback to the same page
|
115 |
+
img_bytes = image.tobytes()
|
116 |
+
return hashlib.sha256(img_bytes).hexdigest()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# ---------------- Memory: Post-correction Rules ----------------
|
119 |
+
def _load_memory_rules():
|
120 |
+
if os.path.exists(MEMORY_RULES_PATH):
|
121 |
+
try:
|
122 |
+
with open(MEMORY_RULES_PATH, "r", encoding="utf-8") as f:
|
123 |
+
return json.load(f)
|
124 |
+
except Exception:
|
125 |
+
pass
|
126 |
+
return {"global": {}, "by_model": {}}
|
127 |
+
|
128 |
+
def _save_memory_rules(rules):
|
129 |
+
with open(MEMORY_RULES_PATH, "w", encoding="utf-8") as f:
|
130 |
+
json.dump(rules, f, ensure_ascii=False, indent=2)
|
131 |
+
|
132 |
+
def _apply_memory(text: str, model_choice: str, enabled: bool):
|
133 |
+
if not enabled or not text:
|
134 |
+
return text
|
135 |
+
rules = _load_memory_rules()
|
136 |
+
# 1) Model-specific replacements
|
137 |
+
by_model = rules.get("by_model", {}).get(model_choice, {})
|
138 |
+
for wrong, right in by_model.items():
|
139 |
+
if wrong and right:
|
140 |
+
text = text.replace(wrong, right)
|
141 |
+
# 2) Global replacements
|
142 |
+
for wrong, right in rules.get("global", {}).items():
|
143 |
+
if wrong and right:
|
144 |
+
text = text.replace(wrong, right)
|
145 |
+
return text
|
146 |
+
|
147 |
+
def _compile_rules_from_feedback(min_count: int = 2, max_phrase_len: int = 40):
|
148 |
+
"""
|
149 |
+
Build replacement rules by mining feedback pairs (prediction -> correction).
|
150 |
+
We extract phrases that consistently changed, with frequency >= min_count.
|
151 |
+
"""
|
152 |
+
changes_counter_global = Counter()
|
153 |
+
changes_counter_by_model = defaultdict(Counter)
|
154 |
+
|
155 |
+
if not os.path.exists(FEEDBACK_PATH):
|
156 |
+
return
|
157 |
+
|
158 |
+
with open(FEEDBACK_PATH, "r", encoding="utf-8") as f:
|
159 |
+
for line in f:
|
160 |
+
try:
|
161 |
+
row = json.loads(line)
|
162 |
+
except Exception:
|
163 |
+
continue
|
164 |
+
if row.get("reward", 0) < 1: # only learn from thumbs-up or explicit 'accepted_correction'
|
165 |
+
continue
|
166 |
+
pred = _safe_text(row.get("prediction", ""))
|
167 |
+
corr = _safe_text(row.get("correction", "")) or _safe_text(row.get("ground_truth", ""))
|
168 |
+
if not pred or not corr:
|
169 |
+
continue
|
170 |
+
model_choice = row.get("model_choice", "")
|
171 |
+
# Extract ops
|
172 |
+
s = difflib.SequenceMatcher(None, pred, corr)
|
173 |
+
for tag, i1, i2, j1, j2 in s.get_opcodes():
|
174 |
+
if tag in ("replace", "delete", "insert"):
|
175 |
+
wrong = pred[i1:i2]
|
176 |
+
right = corr[j1:j2]
|
177 |
+
# keep short-ish tokens/phrases
|
178 |
+
if 0 < len(wrong) <= max_phrase_len or 0 < len(right) <= max_phrase_len:
|
179 |
+
if wrong.strip():
|
180 |
+
changes_counter_global[(wrong, right)] += 1
|
181 |
+
if model_choice:
|
182 |
+
changes_counter_by_model[model_choice][(wrong, right)] += 1
|
183 |
+
|
184 |
+
rules = {"global": {}, "by_model": {}}
|
185 |
+
# Global
|
186 |
+
for (wrong, right), cnt in changes_counter_global.items():
|
187 |
+
if cnt >= min_count and wrong and right and wrong != right:
|
188 |
+
rules["global"][wrong] = right
|
189 |
+
# Per model
|
190 |
+
for model_choice, ctr in changes_counter_by_model.items():
|
191 |
+
rules["by_model"].setdefault(model_choice, {})
|
192 |
+
for (wrong, right), cnt in ctr.items():
|
193 |
+
if cnt >= min_count and wrong and right and wrong != right:
|
194 |
+
rules["by_model"][model_choice][wrong] = right
|
195 |
+
|
196 |
+
_save_memory_rules(rules)
|
197 |
+
|
198 |
+
# ---------------- OCR Function ----------------
|
199 |
+
@spaces.GPU
|
200 |
def ocr_image(image: Image.Image, model_choice: str, query: str = None,
|
201 |
max_new_tokens: int = MAX_NEW_TOKENS_DEFAULT,
|
202 |
temperature: float = 0.1, top_p: float = 1.0, top_k: int = 0, repetition_penalty: float = 1.0,
|
203 |
+
use_memory: bool = True,
|
204 |
+
progress=gr.Progress(track_tqdm=True)):
|
205 |
+
if image is None: return "Please upload or capture an image."
|
206 |
+
if model_choice not in _loaded_models: return f"Invalid model: {model_choice}"
|
207 |
+
processor, model, tokenizer = _loaded_processors[model_choice], _loaded_models[model_choice], getattr(_loaded_processors[model_choice], "tokenizer", None)
|
208 |
prompt = _default_prompt(query)
|
209 |
+
batch = _build_inputs(processor, tokenizer, image, prompt).to(device)
|
|
|
|
|
210 |
with torch.inference_mode():
|
211 |
output_ids = model.generate(**batch, max_new_tokens=max_new_tokens, do_sample=False,
|
212 |
temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
|
213 |
+
raw = _decode_text(model, processor, tokenizer, output_ids, prompt).replace("<|im_end|>", "").strip()
|
214 |
+
# Apply memory post-correction
|
215 |
+
post = _apply_memory(raw, model_choice, use_memory)
|
216 |
+
return post
|
217 |
|
218 |
+
# ---------------- Export Helpers ----------------
|
219 |
+
def save_as_pdf(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
text = _safe_text(text)
|
221 |
if not text: return None
|
222 |
doc = SimpleDocTemplate("output.pdf")
|
223 |
+
flowables = [Paragraph(t, getSampleStyleSheet()["Normal"]) for t in text.splitlines() if t != ""]
|
224 |
+
if not flowables: flowables = [Paragraph(" ", getSampleStyleSheet()["Normal"])]
|
225 |
+
doc.build(flowables)
|
226 |
return "output.pdf"
|
227 |
|
228 |
+
def save_as_word(text):
|
229 |
text = _safe_text(text)
|
230 |
if not text: return None
|
231 |
doc = Document()
|
232 |
+
for line in text.splitlines():
|
233 |
+
doc.add_paragraph(line)
|
234 |
doc.save("output.docx")
|
235 |
return "output.docx"
|
236 |
|
237 |
+
def save_as_audio(text):
|
238 |
text = _safe_text(text)
|
239 |
if not text: return None
|
240 |
+
try:
|
241 |
+
tts = gTTS(text)
|
242 |
+
tts.save("output.mp3")
|
243 |
+
return "output.mp3"
|
244 |
+
except Exception as e:
|
245 |
+
print(f"gTTS failed: {e}")
|
246 |
+
return None
|
247 |
+
|
248 |
+
# ---------------- Metrics Function ----------------
|
249 |
+
def calculate_cer_score(ground_truth: str, prediction: str) -> str:
|
250 |
+
"""
|
251 |
+
Calculates the Character Error Rate (CER).
|
252 |
+
A CER of 0.0 means the prediction is perfect.
|
253 |
+
"""
|
254 |
+
if not ground_truth or not prediction:
|
255 |
+
return "Cannot calculate CER: Missing ground truth or prediction."
|
256 |
+
ground_truth_cleaned = " ".join(ground_truth.strip().split())
|
257 |
+
prediction_cleaned = " ".join(prediction.strip().split())
|
258 |
+
error_rate = cer(ground_truth_cleaned, prediction_cleaned)
|
259 |
+
return f"Character Error Rate (CER): {error_rate:.4f}"
|
260 |
+
|
261 |
+
# ---------------- Feedback & Dataset ----------------
|
262 |
+
def _append_jsonl(path, obj):
|
263 |
+
with open(path, "a", encoding="utf-8") as f:
|
264 |
+
f.write(json.dumps(obj, ensure_ascii=False) + "\n")
|
265 |
+
|
266 |
+
def _export_csv():
|
267 |
+
# optional: CSV summary for spreadsheet views
|
268 |
+
if not os.path.exists(FEEDBACK_PATH):
|
269 |
+
return CSV_EXPORT_PATH if os.path.exists(CSV_EXPORT_PATH) else None
|
270 |
+
rows = []
|
271 |
+
with open(FEEDBACK_PATH, "r", encoding="utf-8") as f:
|
272 |
+
for line in f:
|
273 |
+
try:
|
274 |
+
rows.append(json.loads(line))
|
275 |
+
except Exception:
|
276 |
+
pass
|
277 |
+
if not rows:
|
278 |
+
return None
|
279 |
+
keys = ["id","timestamp","model_choice","image_sha256","prompt","prediction","correction","ground_truth","reward","cer"]
|
280 |
+
with open(CSV_EXPORT_PATH, "w", newline="", encoding="utf-8") as f:
|
281 |
+
w = csv.DictWriter(f, fieldnames=keys)
|
282 |
+
w.writeheader()
|
283 |
+
for r in rows:
|
284 |
+
flat = {k: r.get(k, "") for k in keys}
|
285 |
+
w.writerow(flat)
|
286 |
+
return CSV_EXPORT_PATH
|
287 |
+
|
288 |
+
def save_feedback(image: Image.Image, model_choice: str, prompt: str,
|
289 |
+
prediction: str, correction: str, ground_truth: str, reward: int):
|
290 |
+
"""
|
291 |
+
reward: 1 = good/accepted, 0 = neutral, -1 = bad
|
292 |
+
"""
|
293 |
+
if image is None:
|
294 |
+
return "Please provide the image again to link feedback.", 0
|
295 |
+
if not prediction and not correction and not ground_truth:
|
296 |
+
return "Nothing to save.", 0
|
297 |
+
|
298 |
+
image_hash = _hash_image(image)
|
299 |
+
# best target = correction, else ground_truth, else prediction
|
300 |
+
target = _safe_text(correction) or _safe_text(ground_truth)
|
301 |
+
pred = _safe_text(prediction)
|
302 |
+
cer_score = None
|
303 |
+
if target and pred:
|
304 |
+
try:
|
305 |
+
cer_score = cer(" ".join(target.split()), " ".join(pred.split()))
|
306 |
+
except Exception:
|
307 |
+
cer_score = None
|
308 |
+
|
309 |
+
row = {
|
310 |
+
"id": str(uuid.uuid4()),
|
311 |
+
"timestamp": datetime.utcnow().isoformat(),
|
312 |
+
"model_choice": model_choice or "",
|
313 |
+
"image_sha256": image_hash,
|
314 |
+
"prompt": _safe_text(prompt),
|
315 |
+
"prediction": pred,
|
316 |
+
"correction": _safe_text(correction),
|
317 |
+
"ground_truth": _safe_text(ground_truth),
|
318 |
+
"reward": int(reward),
|
319 |
+
"cer": float(cer_score) if cer_score is not None else None,
|
320 |
+
}
|
321 |
+
_append_jsonl(FEEDBACK_PATH, row)
|
322 |
+
return f"β
Feedback saved (reward={reward}).", 1
|
323 |
|
324 |
+
def compile_memory_rules():
|
325 |
+
_compile_rules_from_feedback(min_count=2, max_phrase_len=60)
|
326 |
+
return "β
Memory rules recompiled from positive feedback."
|
327 |
+
|
328 |
+
def export_grpo_preferences():
|
329 |
+
"""
|
330 |
+
Build preference pairs for GRPO training:
|
331 |
+
- chosen: correction/ground_truth when present
|
332 |
+
- rejected: original prediction
|
333 |
+
"""
|
334 |
+
if not os.path.exists(FEEDBACK_PATH):
|
335 |
+
return "No feedback to export."
|
336 |
+
count = 0
|
337 |
+
with open(GRPO_EXPORT_PATH, "w", encoding="utf-8") as out_f:
|
338 |
+
with open(FEEDBACK_PATH, "r", encoding="utf-8") as f:
|
339 |
+
for line in f:
|
340 |
+
try:
|
341 |
+
row = json.loads(line)
|
342 |
+
except Exception:
|
343 |
+
continue
|
344 |
+
pred = _safe_text(row.get("prediction", ""))
|
345 |
+
corr = _safe_text(row.get("correction", "")) or _safe_text(row.get("ground_truth", ""))
|
346 |
+
prompt = _safe_text(row.get("prompt", "")) or "Transcribe the image exactly."
|
347 |
+
if corr and pred and corr != pred and row.get("reward", 0) >= 0:
|
348 |
+
# One preference datapoint
|
349 |
+
out = {
|
350 |
+
"prompt": prompt,
|
351 |
+
"image_sha256": row.get("image_sha256", ""),
|
352 |
+
"chosen": corr,
|
353 |
+
"rejected": pred,
|
354 |
+
"model_choice": row.get("model_choice", "")
|
355 |
+
}
|
356 |
+
out_f.write(json.dumps(out, ensure_ascii=False) + "\n")
|
357 |
+
count += 1
|
358 |
+
return f"β
Exported {count} GRPO preference pairs to {GRPO_EXPORT_PATH}."
|
359 |
|
360 |
+
def export_csv():
|
361 |
+
p = _export_csv()
|
362 |
+
if p:
|
363 |
+
return f"β
CSV exported: {p}"
|
364 |
+
return "No data to export."
|
365 |
+
|
366 |
+
# ---------------- Evaluation Orchestration ----------------
|
367 |
+
@spaces.GPU
|
368 |
+
def perform_evaluation(image: Image.Image, model_name: str, ground_truth: str,
|
369 |
+
max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float,
|
370 |
+
use_memory: bool = True):
|
371 |
+
if image is None or not ground_truth:
|
372 |
+
return "Please upload an image and provide the ground truth.", "N/A"
|
373 |
+
prediction = ocr_image(image, model_name, max_new_tokens=max_new_tokens,
|
374 |
+
temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty,
|
375 |
+
use_memory=use_memory)
|
376 |
+
cer_score = calculate_cer_score(ground_truth, prediction)
|
377 |
+
return prediction, cer_score
|
378 |
+
|
379 |
+
# ---------------- GRPO Trainer Script Writer ----------------
|
380 |
+
TRAINER_SCRIPT = r"""# grpo_train.py β Offline GRPO training with TRL (run separately)
|
381 |
+
# pip install trl accelerate peft transformers datasets
|
382 |
+
# This script expects data/grpo_prefs.jsonl produced by the app.
|
383 |
+
|
384 |
+
import os, json
|
385 |
+
from datasets import load_dataset
|
386 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
387 |
+
from trl import GRPOConfig, GRPOTrainer
|
388 |
+
|
389 |
+
MODEL_ID = os.environ.get("BASE_MODEL", "Qwen/Qwen2.5-VL-7B-Instruct") # change if needed
|
390 |
+
OUTPUT_DIR = os.environ.get("OUTPUT_DIR", "grpo_output")
|
391 |
+
DATA_PATH = os.environ.get("DATA_PATH", "data/grpo_prefs.jsonl")
|
392 |
+
|
393 |
+
# Our jsonl: each line has prompt, chosen, rejected (and image_sha256/model_choice optionally)
|
394 |
+
# We'll format as required by TRL: prompt + responses with one preferred
|
395 |
+
|
396 |
+
def _jsonl_dataset(jsonl_path):
|
397 |
+
data = []
|
398 |
+
with open(jsonl_path, "r", encoding="utf-8") as f:
|
399 |
+
for line in f:
|
400 |
+
try:
|
401 |
+
row = json.loads(line)
|
402 |
+
except Exception:
|
403 |
+
continue
|
404 |
+
prompt = row.get("prompt", "")
|
405 |
+
chosen = row.get("chosen", "")
|
406 |
+
rejected = row.get("rejected", "")
|
407 |
+
if prompt and chosen and rejected:
|
408 |
+
data.append({"prompt": prompt, "chosen": chosen, "rejected": rejected})
|
409 |
+
return data
|
410 |
+
|
411 |
+
def main():
|
412 |
+
data = _jsonl_dataset(DATA_PATH)
|
413 |
+
if not data:
|
414 |
+
print("No GRPO data found.")
|
415 |
+
return
|
416 |
+
# Create a HuggingFace datasets Dataset from memory
|
417 |
+
from datasets import Dataset
|
418 |
+
ds = Dataset.from_list(data)
|
419 |
+
|
420 |
+
tok = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
421 |
+
model = AutoModelForCausalLM.from_pretrained(
|
422 |
+
MODEL_ID, trust_remote_code=True, device_map="auto"
|
423 |
+
)
|
424 |
+
|
425 |
+
# Minimal config β tune to your GPU
|
426 |
+
cfg = GRPOConfig(
|
427 |
+
output_dir=OUTPUT_DIR,
|
428 |
+
learning_rate=5e-6,
|
429 |
+
per_device_train_batch_size=1,
|
430 |
+
gradient_accumulation_steps=8,
|
431 |
+
num_train_epochs=1,
|
432 |
+
logging_steps=10,
|
433 |
+
save_steps=200,
|
434 |
+
max_prompt_length=512,
|
435 |
+
max_completion_length=768,
|
436 |
+
bf16=True
|
437 |
+
)
|
438 |
+
|
439 |
+
trainer = GRPOTrainer(
|
440 |
+
model=model,
|
441 |
+
ref_model=None, # let TRL create a frozen copy internally
|
442 |
+
args=cfg,
|
443 |
+
tokenizer=tok,
|
444 |
+
train_dataset=ds
|
445 |
+
)
|
446 |
+
trainer.train()
|
447 |
+
trainer.save_model(OUTPUT_DIR)
|
448 |
+
print("β
GRPO training complete. LoRA/weights saved to", OUTPUT_DIR)
|
449 |
+
|
450 |
+
if __name__ == "__main__":
|
451 |
+
main()
|
452 |
+
"""
|
453 |
+
|
454 |
+
def _write_trainer_script():
|
455 |
+
os.makedirs("train", exist_ok=True)
|
456 |
+
path = os.path.join("train", "grpo_train.py")
|
457 |
+
with open(path, "w", encoding="utf-8") as f:
|
458 |
+
f.write(TRAINER_SCRIPT)
|
459 |
+
return path
|
460 |
|
461 |
# ---------------- Gradio Interface ----------------
|
462 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
463 |
+
gr.Markdown("## βπΎ wilson Handwritten text recognition with Feedback Loop")
|
464 |
|
465 |
+
model_choice = gr.Radio(choices=list(MODEL_PATHS.keys()),
|
466 |
+
value=list(MODEL_PATHS.keys())[0],
|
467 |
+
label="Select OCR Model")
|
468 |
|
469 |
+
with gr.Tab("πΌ Image Inference"):
|
470 |
+
query_input = gr.Textbox(label="Custom Prompt (optional)", placeholder="Leave empty for RAW structured output")
|
471 |
+
image_input = gr.Image(type="pil", label="Upload / Capture Handwritten Image", sources=["upload", "webcam"])
|
472 |
+
use_memory = gr.Checkbox(value=True, label="Enable Memory Post-correction (auto-fix known mistakes)")
|
473 |
|
474 |
with gr.Accordion("βοΈ Advanced Options", open=False):
|
475 |
max_new_tokens = gr.Slider(1, 2048, value=MAX_NEW_TOKENS_DEFAULT, step=1, label="Max new tokens")
|
476 |
temperature = gr.Slider(0.1, 2.0, value=0.1, step=0.05, label="Temperature")
|
477 |
+
top_p = gr.Slider(0.05, 1.0, value=1.0, step=0.05, label="Top-p (nucleus)")
|
478 |
+
top_k = gr.Slider(0, 1000, value=0, step=1, label="Top-k")
|
479 |
+
repetition_penalty = gr.Slider(0.8, 2.0, value=1.0, step=0.05, label="Repetition penalty")
|
480 |
+
|
481 |
+
extract_btn = gr.Button("π€ Extract RAW Text", variant="primary")
|
482 |
+
clear_btn = gr.Button("π§Ή Clear")
|
483 |
|
484 |
+
raw_output = gr.Textbox(label="π Output (post-corrected if memory is ON)", lines=18, show_copy_button=True)
|
|
|
485 |
|
486 |
+
# Quick Feedback strip
|
487 |
gr.Markdown("### βοΈ Quick Feedback")
|
488 |
+
correction_box = gr.Textbox(label="Your Correction (optional)", placeholder="Paste your corrected text here; leave empty if the output is perfect.", lines=8)
|
489 |
+
ground_truth_box = gr.Textbox(label="Ground Truth (optional)", placeholder="If you have a reference transcription, paste it here.", lines=6)
|
490 |
+
|
491 |
+
with gr.Row():
|
492 |
+
btn_good = gr.Button("π Accept (Save Feedback as Correct)", variant="primary")
|
493 |
+
btn_bad = gr.Button("π Bad (Save Feedback as Incorrect)")
|
494 |
+
|
495 |
feedback_status = gr.Markdown()
|
496 |
|
497 |
+
pdf_btn = gr.Button("β¬οΈ Download as PDF")
|
498 |
+
word_btn = gr.Button("β¬οΈ Download as Word")
|
499 |
+
audio_btn = gr.Button("π Download as Audio")
|
500 |
+
pdf_file, word_file, audio_file = gr.File(label="PDF File"), gr.File(label="Word File"), gr.File(label="Audio File")
|
501 |
+
|
502 |
+
extract_btn.click(
|
503 |
+
fn=ocr_image,
|
504 |
+
inputs=[image_input, model_choice, query_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty, use_memory],
|
505 |
+
outputs=[raw_output],
|
506 |
+
api_name="ocr_image"
|
507 |
+
)
|
508 |
+
pdf_btn.click(fn=save_as_pdf, inputs=[raw_output], outputs=[pdf_file])
|
509 |
+
word_btn.click(fn=save_as_word, inputs=[raw_output], outputs=[word_file])
|
510 |
+
audio_btn.click(fn=save_as_audio, inputs=[raw_output], outputs=[audio_file])
|
511 |
+
|
512 |
+
def _clear():
|
513 |
+
return ("", None, "", MAX_NEW_TOKENS_DEFAULT, 0.1, 1.0, 0, 1.0, True, "", "", "",)
|
514 |
+
clear_btn.click(
|
515 |
+
fn=_clear,
|
516 |
+
outputs=[raw_output, image_input, query_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty, use_memory, correction_box, ground_truth_box, feedback_status]
|
517 |
+
)
|
518 |
+
|
519 |
+
# Quick feedback save
|
520 |
+
btn_good.click(
|
521 |
+
fn=lambda img, mc, prmpt, pred, corr, gt: save_feedback(img, mc, prmpt, pred, corr, gt, reward=1),
|
522 |
+
inputs=[image_input, model_choice, query_input, raw_output, correction_box, ground_truth_box],
|
523 |
+
outputs=[feedback_status]
|
524 |
+
)
|
525 |
+
btn_bad.click(
|
526 |
+
fn=lambda img, mc, prmpt, pred, corr, gt: save_feedback(img, mc, prmpt, pred, corr, gt, reward=-1),
|
527 |
+
inputs=[image_input, model_choice, query_input, raw_output, correction_box, ground_truth_box],
|
528 |
+
outputs=[feedback_status]
|
529 |
+
)
|
530 |
+
|
531 |
+
with gr.Tab("π Model Evaluation"):
|
532 |
+
gr.Markdown("### π Evaluate Model Accuracy")
|
533 |
+
eval_image_input = gr.Image(type="pil", label="Upload Image for Evaluation", sources=["upload"])
|
534 |
+
eval_ground_truth = gr.Textbox(label="Ground Truth (Correct Transcription)", lines=10, placeholder="Type or paste the correct text here.")
|
535 |
+
eval_model_output = gr.Textbox(label="Model's Prediction", lines=10, interactive=False, show_copy_button=True)
|
536 |
+
eval_cer_output = gr.Textbox(label="Metrics", interactive=False)
|
537 |
+
eval_use_memory = gr.Checkbox(value=True, label="Enable Memory Post-correction")
|
538 |
+
|
539 |
+
with gr.Row():
|
540 |
+
run_evaluation_btn = gr.Button("π Run OCR and Evaluate", variant="primary")
|
541 |
+
clear_evaluation_btn = gr.Button("π§Ή Clear")
|
542 |
+
|
543 |
+
run_evaluation_btn.click(
|
544 |
+
fn=perform_evaluation,
|
545 |
+
inputs=[eval_image_input, model_choice, eval_ground_truth, max_new_tokens, temperature, top_p, top_k, repetition_penalty, eval_use_memory],
|
546 |
+
outputs=[eval_model_output, eval_cer_output]
|
547 |
+
)
|
548 |
+
clear_evaluation_btn.click(
|
549 |
+
fn=lambda: (None, "", "", ""),
|
550 |
+
outputs=[eval_image_input, eval_ground_truth, eval_model_output, eval_cer_output]
|
551 |
+
)
|
552 |
+
|
553 |
+
with gr.Tab("βοΈ Feedback & Memory"):
|
554 |
+
gr.Markdown("""
|
555 |
+
**Pipeline**
|
556 |
+
1) Save feedback (π / π) and add corrections.
|
557 |
+
2) Click **Build/Refresh Memory** to generate auto-fix rules from positive feedback.
|
558 |
+
3) Keep **Enable Memory Post-correction** checked on inference/eval tabs.
|
559 |
+
""")
|
560 |
+
build_mem_btn = gr.Button("π§ Build/Refresh Memory from Feedback")
|
561 |
+
mem_status = gr.Markdown()
|
562 |
+
build_mem_btn.click(fn=compile_memory_rules, outputs=[mem_status])
|
563 |
+
|
564 |
+
csv_btn = gr.Button("π€ Export Feedback as CSV")
|
565 |
+
csv_status = gr.Markdown()
|
566 |
+
csv_btn.click(fn=export_csv, outputs=[csv_status])
|
567 |
+
|
568 |
+
with gr.Tab("π§ͺ GRPO / Dataset"):
|
569 |
+
gr.Markdown("""
|
570 |
+
**GRPO Fine-tuning** (run offline or in a training Space):
|
571 |
+
- Click **Export GRPO Preferences** to produce `data/grpo_prefs.jsonl` of (prompt, chosen, rejected).
|
572 |
+
- Click **Write Trainer Script** to create `train/grpo_train.py`.
|
573 |
+
- Then run:
|
574 |
+
```bash
|
575 |
+
pip install trl accelerate peft transformers datasets
|
576 |
+
python train/grpo_train.py
|
577 |
+
```
|
578 |
+
Set `BASE_MODEL`/`OUTPUT_DIR` env vars if you like.
|
579 |
+
""")
|
580 |
+
grpo_btn = gr.Button("π¦ Export GRPO Preferences")
|
581 |
grpo_status = gr.Markdown()
|
582 |
+
grpo_btn.click(fn=export_grpo_preferences, outputs=[grpo_status])
|
583 |
+
|
584 |
+
write_script_btn = gr.Button("π Write grpo_train.py")
|
585 |
+
write_script_status = gr.Markdown()
|
586 |
+
write_script_btn.click(fn=lambda: f"β
Trainer script written to `{_write_trainer_script()}`", outputs=[write_script_status])
|
587 |
|
588 |
if __name__ == "__main__":
|
589 |
demo.queue(max_size=50).launch(share=True)
|