Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,10 @@
|
|
1 |
-
# app.py β HTR Space with
|
2 |
|
3 |
-
import os, time, json, hashlib,
|
4 |
from datetime import datetime
|
5 |
-
from collections import Counter, defaultdict
|
6 |
from threading import Thread
|
7 |
-
|
8 |
import gradio as gr
|
9 |
-
import spaces
|
10 |
from PIL import Image
|
11 |
import torch
|
12 |
from transformers import AutoProcessor, AutoModelForImageTextToText, Qwen2_5_VLForConditionalGeneration
|
@@ -15,575 +13,208 @@ from reportlab.lib.styles import getSampleStyleSheet
|
|
15 |
from docx import Document
|
16 |
from gtts import gTTS
|
17 |
from jiwer import cer
|
|
|
|
|
18 |
|
19 |
-
# ----------------
|
20 |
os.makedirs("data", exist_ok=True)
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
CSV_EXPORT_PATH = "data/feedback.csv" # optional tabular export
|
25 |
|
26 |
# ---------------- Models ----------------
|
27 |
MODEL_PATHS = {
|
28 |
"Model 1 (Complex handwrittings )": ("prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it", Qwen2_5_VLForConditionalGeneration),
|
29 |
-
"Model 2 (
|
30 |
}
|
31 |
|
32 |
-
|
33 |
-
MAX_NEW_TOKENS_DEFAULT = 512
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
_loaded_processors, _loaded_models = {}, {}
|
36 |
|
37 |
-
print("π
|
38 |
for name, (repo_id, cls) in MODEL_PATHS.items():
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
trust_remote_code=True,
|
44 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
45 |
-
low_cpu_mem_usage=True
|
46 |
-
).to(device).eval()
|
47 |
-
_loaded_processors[name], _loaded_models[name] = processor, model
|
48 |
-
print(f"β
{name} ready.")
|
49 |
-
except Exception as e:
|
50 |
-
print(f"β οΈ Failed to load {name}: {e}")
|
51 |
-
|
52 |
-
# ---------------- GPU Warmup ----------------
|
53 |
-
@spaces.GPU
|
54 |
-
def warmup(progress=gr.Progress(track_tqdm=True)):
|
55 |
-
try:
|
56 |
-
default_model_choice = next(iter(MODEL_PATHS.keys()))
|
57 |
-
processor = _loaded_processors[default_model_choice]
|
58 |
-
model = _loaded_models[default_model_choice]
|
59 |
-
tokenizer = getattr(processor, "tokenizer", None)
|
60 |
-
messages = [{"role": "user", "content": [{"type": "text", "text": "Warmup."}]}]
|
61 |
-
chat_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) if tokenizer and hasattr(tokenizer, "apply_chat_template") else "Warmup."
|
62 |
-
inputs = processor(text=[chat_prompt], images=None, return_tensors="pt").to(device)
|
63 |
-
with torch.inference_mode():
|
64 |
-
_ = model.generate(**inputs, max_new_tokens=1)
|
65 |
-
return f"GPU warm and {default_model_choice} ready."
|
66 |
-
except Exception as e:
|
67 |
-
return f"Warmup skipped: {e}"
|
68 |
|
69 |
-
|
70 |
-
def _build_inputs(processor, tokenizer, image: Image.Image, prompt: str):
|
71 |
-
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
|
72 |
-
if tokenizer and hasattr(tokenizer, "apply_chat_template"):
|
73 |
-
chat_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
74 |
-
return processor(text=[chat_prompt], images=[image], return_tensors="pt")
|
75 |
-
return processor(text=[prompt], images=[image], return_tensors="pt")
|
76 |
-
|
77 |
-
def _decode_text(model, processor, tokenizer, output_ids, prompt: str):
|
78 |
-
try:
|
79 |
-
decoded_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
80 |
-
prompt_start = decoded_text.find(prompt)
|
81 |
-
if prompt_start != -1:
|
82 |
-
decoded_text = decoded_text[prompt_start + len(prompt):].strip()
|
83 |
-
else:
|
84 |
-
decoded_text = decoded_text.strip()
|
85 |
-
return decoded_text
|
86 |
-
except Exception:
|
87 |
-
try:
|
88 |
-
decoded_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
89 |
-
prompt_start = decoded_text.find(prompt)
|
90 |
-
if prompt_start != -1:
|
91 |
-
decoded_text = decoded_text[prompt_start + len(prompt):].strip()
|
92 |
-
return decoded_text
|
93 |
-
except Exception:
|
94 |
-
return str(output_ids).strip()
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
return (
|
100 |
-
"You are a professional Handwritten OCR system.\n"
|
101 |
-
"TASK: Read the handwritten image and transcribe the text EXACTLY as written.\n"
|
102 |
-
"- Preserve original structure and line breaks.\n"
|
103 |
-
"- Keep spacing, bullet points, numbering, and indentation.\n"
|
104 |
-
"- Render tables as Markdown tables if present.\n"
|
105 |
-
"- Do NOT autocorrect spelling or grammar.\n"
|
106 |
-
"- Do NOT merge lines.\n"
|
107 |
-
"Return RAW transcription only."
|
108 |
-
)
|
109 |
|
110 |
def _safe_text(text: str) -> str:
|
111 |
return (text or "").strip()
|
112 |
|
113 |
-
def
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
with open(MEMORY_RULES_PATH, "r", encoding="utf-8") as f:
|
123 |
-
return json.load(f)
|
124 |
-
except Exception:
|
125 |
-
pass
|
126 |
-
return {"global": {}, "by_model": {}}
|
127 |
-
|
128 |
-
def _save_memory_rules(rules):
|
129 |
-
with open(MEMORY_RULES_PATH, "w", encoding="utf-8") as f:
|
130 |
-
json.dump(rules, f, ensure_ascii=False, indent=2)
|
131 |
-
|
132 |
-
def _apply_memory(text: str, model_choice: str, enabled: bool):
|
133 |
-
if not enabled or not text:
|
134 |
-
return text
|
135 |
-
rules = _load_memory_rules()
|
136 |
-
# 1) Model-specific replacements
|
137 |
-
by_model = rules.get("by_model", {}).get(model_choice, {})
|
138 |
-
for wrong, right in by_model.items():
|
139 |
-
if wrong and right:
|
140 |
-
text = text.replace(wrong, right)
|
141 |
-
# 2) Global replacements
|
142 |
-
for wrong, right in rules.get("global", {}).items():
|
143 |
-
if wrong and right:
|
144 |
-
text = text.replace(wrong, right)
|
145 |
-
return text
|
146 |
-
|
147 |
-
def _compile_rules_from_feedback(min_count: int = 2, max_phrase_len: int = 40):
|
148 |
-
"""
|
149 |
-
Build replacement rules by mining feedback pairs (prediction -> correction).
|
150 |
-
We extract phrases that consistently changed, with frequency >= min_count.
|
151 |
-
"""
|
152 |
-
changes_counter_global = Counter()
|
153 |
-
changes_counter_by_model = defaultdict(Counter)
|
154 |
-
|
155 |
-
if not os.path.exists(FEEDBACK_PATH):
|
156 |
-
return
|
157 |
-
|
158 |
-
with open(FEEDBACK_PATH, "r", encoding="utf-8") as f:
|
159 |
-
for line in f:
|
160 |
-
try:
|
161 |
-
row = json.loads(line)
|
162 |
-
except Exception:
|
163 |
-
continue
|
164 |
-
if row.get("reward", 0) < 1: # only learn from thumbs-up or explicit 'accepted_correction'
|
165 |
-
continue
|
166 |
-
pred = _safe_text(row.get("prediction", ""))
|
167 |
-
corr = _safe_text(row.get("correction", "")) or _safe_text(row.get("ground_truth", ""))
|
168 |
-
if not pred or not corr:
|
169 |
-
continue
|
170 |
-
model_choice = row.get("model_choice", "")
|
171 |
-
# Extract ops
|
172 |
-
s = difflib.SequenceMatcher(None, pred, corr)
|
173 |
-
for tag, i1, i2, j1, j2 in s.get_opcodes():
|
174 |
-
if tag in ("replace", "delete", "insert"):
|
175 |
-
wrong = pred[i1:i2]
|
176 |
-
right = corr[j1:j2]
|
177 |
-
# keep short-ish tokens/phrases
|
178 |
-
if 0 < len(wrong) <= max_phrase_len or 0 < len(right) <= max_phrase_len:
|
179 |
-
if wrong.strip():
|
180 |
-
changes_counter_global[(wrong, right)] += 1
|
181 |
-
if model_choice:
|
182 |
-
changes_counter_by_model[model_choice][(wrong, right)] += 1
|
183 |
-
|
184 |
-
rules = {"global": {}, "by_model": {}}
|
185 |
-
# Global
|
186 |
-
for (wrong, right), cnt in changes_counter_global.items():
|
187 |
-
if cnt >= min_count and wrong and right and wrong != right:
|
188 |
-
rules["global"][wrong] = right
|
189 |
-
# Per model
|
190 |
-
for model_choice, ctr in changes_counter_by_model.items():
|
191 |
-
rules["by_model"].setdefault(model_choice, {})
|
192 |
-
for (wrong, right), cnt in ctr.items():
|
193 |
-
if cnt >= min_count and wrong and right and wrong != right:
|
194 |
-
rules["by_model"][model_choice][wrong] = right
|
195 |
-
|
196 |
-
_save_memory_rules(rules)
|
197 |
-
|
198 |
-
# ---------------- OCR Function ----------------
|
199 |
-
@spaces.GPU
|
200 |
def ocr_image(image: Image.Image, model_choice: str, query: str = None,
|
201 |
max_new_tokens: int = MAX_NEW_TOKENS_DEFAULT,
|
202 |
temperature: float = 0.1, top_p: float = 1.0, top_k: int = 0, repetition_penalty: float = 1.0,
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
if model_choice not in _loaded_models: return f"Invalid model: {model_choice}"
|
207 |
-
processor, model, tokenizer = _loaded_processors[model_choice], _loaded_models[model_choice], getattr(_loaded_processors[model_choice], "tokenizer", None)
|
208 |
prompt = _default_prompt(query)
|
209 |
-
|
|
|
|
|
210 |
with torch.inference_mode():
|
211 |
output_ids = model.generate(**batch, max_new_tokens=max_new_tokens, do_sample=False,
|
212 |
temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
|
213 |
-
|
214 |
-
# Apply memory post-correction
|
215 |
-
post = _apply_memory(raw, model_choice, use_memory)
|
216 |
-
return post
|
217 |
|
218 |
-
#
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
text = _safe_text(text)
|
221 |
if not text: return None
|
222 |
doc = SimpleDocTemplate("output.pdf")
|
223 |
-
flowables = [Paragraph(
|
224 |
-
|
225 |
-
doc.build(flowables)
|
226 |
return "output.pdf"
|
227 |
|
228 |
-
def
|
229 |
text = _safe_text(text)
|
230 |
if not text: return None
|
231 |
doc = Document()
|
232 |
-
for
|
233 |
-
doc.add_paragraph(line)
|
234 |
doc.save("output.docx")
|
235 |
return "output.docx"
|
236 |
|
237 |
-
def
|
238 |
text = _safe_text(text)
|
239 |
if not text: return None
|
240 |
-
try:
|
241 |
-
|
242 |
-
tts.save("output.mp3")
|
243 |
-
return "output.mp3"
|
244 |
-
except Exception as e:
|
245 |
-
print(f"gTTS failed: {e}")
|
246 |
-
return None
|
247 |
-
|
248 |
-
# ---------------- Metrics Function ----------------
|
249 |
-
def calculate_cer_score(ground_truth: str, prediction: str) -> str:
|
250 |
-
"""
|
251 |
-
Calculates the Character Error Rate (CER).
|
252 |
-
A CER of 0.0 means the prediction is perfect.
|
253 |
-
"""
|
254 |
-
if not ground_truth or not prediction:
|
255 |
-
return "Cannot calculate CER: Missing ground truth or prediction."
|
256 |
-
ground_truth_cleaned = " ".join(ground_truth.strip().split())
|
257 |
-
prediction_cleaned = " ".join(prediction.strip().split())
|
258 |
-
error_rate = cer(ground_truth_cleaned, prediction_cleaned)
|
259 |
-
return f"Character Error Rate (CER): {error_rate:.4f}"
|
260 |
-
|
261 |
-
# ---------------- Feedback & Dataset ----------------
|
262 |
-
def _append_jsonl(path, obj):
|
263 |
-
with open(path, "a", encoding="utf-8") as f:
|
264 |
-
f.write(json.dumps(obj, ensure_ascii=False) + "\n")
|
265 |
-
|
266 |
-
def _export_csv():
|
267 |
-
# optional: CSV summary for spreadsheet views
|
268 |
-
if not os.path.exists(FEEDBACK_PATH):
|
269 |
-
return CSV_EXPORT_PATH if os.path.exists(CSV_EXPORT_PATH) else None
|
270 |
-
rows = []
|
271 |
-
with open(FEEDBACK_PATH, "r", encoding="utf-8") as f:
|
272 |
-
for line in f:
|
273 |
-
try:
|
274 |
-
rows.append(json.loads(line))
|
275 |
-
except Exception:
|
276 |
-
pass
|
277 |
-
if not rows:
|
278 |
-
return None
|
279 |
-
keys = ["id","timestamp","model_choice","image_sha256","prompt","prediction","correction","ground_truth","reward","cer"]
|
280 |
-
with open(CSV_EXPORT_PATH, "w", newline="", encoding="utf-8") as f:
|
281 |
-
w = csv.DictWriter(f, fieldnames=keys)
|
282 |
-
w.writeheader()
|
283 |
-
for r in rows:
|
284 |
-
flat = {k: r.get(k, "") for k in keys}
|
285 |
-
w.writerow(flat)
|
286 |
-
return CSV_EXPORT_PATH
|
287 |
-
|
288 |
-
def save_feedback(image: Image.Image, model_choice: str, prompt: str,
|
289 |
-
prediction: str, correction: str, ground_truth: str, reward: int):
|
290 |
-
"""
|
291 |
-
reward: 1 = good/accepted, 0 = neutral, -1 = bad
|
292 |
-
"""
|
293 |
-
if image is None:
|
294 |
-
return "Please provide the image again to link feedback.", 0
|
295 |
-
if not prediction and not correction and not ground_truth:
|
296 |
-
return "Nothing to save.", 0
|
297 |
-
|
298 |
-
image_hash = _hash_image(image)
|
299 |
-
# best target = correction, else ground_truth, else prediction
|
300 |
-
target = _safe_text(correction) or _safe_text(ground_truth)
|
301 |
-
pred = _safe_text(prediction)
|
302 |
-
cer_score = None
|
303 |
-
if target and pred:
|
304 |
-
try:
|
305 |
-
cer_score = cer(" ".join(target.split()), " ".join(pred.split()))
|
306 |
-
except Exception:
|
307 |
-
cer_score = None
|
308 |
-
|
309 |
-
row = {
|
310 |
-
"id": str(uuid.uuid4()),
|
311 |
-
"timestamp": datetime.utcnow().isoformat(),
|
312 |
-
"model_choice": model_choice or "",
|
313 |
-
"image_sha256": image_hash,
|
314 |
-
"prompt": _safe_text(prompt),
|
315 |
-
"prediction": pred,
|
316 |
-
"correction": _safe_text(correction),
|
317 |
-
"ground_truth": _safe_text(ground_truth),
|
318 |
-
"reward": int(reward),
|
319 |
-
"cer": float(cer_score) if cer_score is not None else None,
|
320 |
-
}
|
321 |
-
_append_jsonl(FEEDBACK_PATH, row)
|
322 |
-
return f"β
Feedback saved (reward={reward}).", 1
|
323 |
|
324 |
-
def
|
325 |
-
|
326 |
-
return "
|
327 |
-
|
328 |
-
def export_grpo_preferences():
|
329 |
-
"""
|
330 |
-
Build preference pairs for GRPO training:
|
331 |
-
- chosen: correction/ground_truth when present
|
332 |
-
- rejected: original prediction
|
333 |
-
"""
|
334 |
-
if not os.path.exists(FEEDBACK_PATH):
|
335 |
-
return "No feedback to export."
|
336 |
-
count = 0
|
337 |
-
with open(GRPO_EXPORT_PATH, "w", encoding="utf-8") as out_f:
|
338 |
-
with open(FEEDBACK_PATH, "r", encoding="utf-8") as f:
|
339 |
-
for line in f:
|
340 |
-
try:
|
341 |
-
row = json.loads(line)
|
342 |
-
except Exception:
|
343 |
-
continue
|
344 |
-
pred = _safe_text(row.get("prediction", ""))
|
345 |
-
corr = _safe_text(row.get("correction", "")) or _safe_text(row.get("ground_truth", ""))
|
346 |
-
prompt = _safe_text(row.get("prompt", "")) or "Transcribe the image exactly."
|
347 |
-
if corr and pred and corr != pred and row.get("reward", 0) >= 0:
|
348 |
-
# One preference datapoint
|
349 |
-
out = {
|
350 |
-
"prompt": prompt,
|
351 |
-
"image_sha256": row.get("image_sha256", ""),
|
352 |
-
"chosen": corr,
|
353 |
-
"rejected": pred,
|
354 |
-
"model_choice": row.get("model_choice", "")
|
355 |
-
}
|
356 |
-
out_f.write(json.dumps(out, ensure_ascii=False) + "\n")
|
357 |
-
count += 1
|
358 |
-
return f"β
Exported {count} GRPO preference pairs to {GRPO_EXPORT_PATH}."
|
359 |
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
return "
|
365 |
-
|
366 |
-
# ---------------- Evaluation Orchestration ----------------
|
367 |
-
@spaces.GPU
|
368 |
-
def perform_evaluation(image: Image.Image, model_name: str, ground_truth: str,
|
369 |
-
max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float,
|
370 |
-
use_memory: bool = True):
|
371 |
-
if image is None or not ground_truth:
|
372 |
-
return "Please upload an image and provide the ground truth.", "N/A"
|
373 |
-
prediction = ocr_image(image, model_name, max_new_tokens=max_new_tokens,
|
374 |
-
temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty,
|
375 |
-
use_memory=use_memory)
|
376 |
-
cer_score = calculate_cer_score(ground_truth, prediction)
|
377 |
-
return prediction, cer_score
|
378 |
-
|
379 |
-
# ---------------- GRPO Trainer Script Writer ----------------
|
380 |
-
TRAINER_SCRIPT = r"""# grpo_train.py β Offline GRPO training with TRL (run separately)
|
381 |
-
# pip install trl accelerate peft transformers datasets
|
382 |
-
# This script expects data/grpo_prefs.jsonl produced by the app.
|
383 |
-
|
384 |
-
import os, json
|
385 |
-
from datasets import load_dataset
|
386 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
387 |
-
from trl import GRPOConfig, GRPOTrainer
|
388 |
-
|
389 |
-
MODEL_ID = os.environ.get("BASE_MODEL", "Qwen/Qwen2.5-VL-7B-Instruct") # change if needed
|
390 |
-
OUTPUT_DIR = os.environ.get("OUTPUT_DIR", "grpo_output")
|
391 |
-
DATA_PATH = os.environ.get("DATA_PATH", "data/grpo_prefs.jsonl")
|
392 |
-
|
393 |
-
# Our jsonl: each line has prompt, chosen, rejected (and image_sha256/model_choice optionally)
|
394 |
-
# We'll format as required by TRL: prompt + responses with one preferred
|
395 |
-
|
396 |
-
def _jsonl_dataset(jsonl_path):
|
397 |
-
data = []
|
398 |
-
with open(jsonl_path, "r", encoding="utf-8") as f:
|
399 |
-
for line in f:
|
400 |
-
try:
|
401 |
-
row = json.loads(line)
|
402 |
-
except Exception:
|
403 |
-
continue
|
404 |
-
prompt = row.get("prompt", "")
|
405 |
-
chosen = row.get("chosen", "")
|
406 |
-
rejected = row.get("rejected", "")
|
407 |
-
if prompt and chosen and rejected:
|
408 |
-
data.append({"prompt": prompt, "chosen": chosen, "rejected": rejected})
|
409 |
-
return data
|
410 |
-
|
411 |
-
def main():
|
412 |
-
data = _jsonl_dataset(DATA_PATH)
|
413 |
-
if not data:
|
414 |
-
print("No GRPO data found.")
|
415 |
-
return
|
416 |
-
# Create a HuggingFace datasets Dataset from memory
|
417 |
-
from datasets import Dataset
|
418 |
-
ds = Dataset.from_list(data)
|
419 |
-
|
420 |
-
tok = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
421 |
-
model = AutoModelForCausalLM.from_pretrained(
|
422 |
-
MODEL_ID, trust_remote_code=True, device_map="auto"
|
423 |
-
)
|
424 |
-
|
425 |
-
# Minimal config β tune to your GPU
|
426 |
-
cfg = GRPOConfig(
|
427 |
-
output_dir=OUTPUT_DIR,
|
428 |
-
learning_rate=5e-6,
|
429 |
-
per_device_train_batch_size=1,
|
430 |
-
gradient_accumulation_steps=8,
|
431 |
-
num_train_epochs=1,
|
432 |
-
logging_steps=10,
|
433 |
-
save_steps=200,
|
434 |
-
max_prompt_length=512,
|
435 |
-
max_completion_length=768,
|
436 |
-
bf16=True
|
437 |
-
)
|
438 |
-
|
439 |
-
trainer = GRPOTrainer(
|
440 |
-
model=model,
|
441 |
-
ref_model=None, # let TRL create a frozen copy internally
|
442 |
-
args=cfg,
|
443 |
-
tokenizer=tok,
|
444 |
-
train_dataset=ds
|
445 |
-
)
|
446 |
-
trainer.train()
|
447 |
-
trainer.save_model(OUTPUT_DIR)
|
448 |
-
print("β
GRPO training complete. LoRA/weights saved to", OUTPUT_DIR)
|
449 |
-
|
450 |
-
if __name__ == "__main__":
|
451 |
-
main()
|
452 |
-
"""
|
453 |
-
|
454 |
-
def _write_trainer_script():
|
455 |
-
os.makedirs("train", exist_ok=True)
|
456 |
-
path = os.path.join("train", "grpo_train.py")
|
457 |
-
with open(path, "w", encoding="utf-8") as f:
|
458 |
-
f.write(TRAINER_SCRIPT)
|
459 |
-
return path
|
460 |
|
461 |
# ---------------- Gradio Interface ----------------
|
462 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
463 |
-
gr.Markdown("## βπΎ
|
464 |
|
465 |
-
model_choice = gr.Radio(
|
466 |
-
value=list(MODEL_PATHS.keys())[0],
|
467 |
-
label="Select OCR Model")
|
468 |
|
469 |
-
with gr.Tab("πΌ
|
470 |
-
query_input = gr.Textbox(label="Custom Prompt (optional)"
|
471 |
-
image_input = gr.Image(type="pil", label="Upload / Capture Handwritten Image"
|
472 |
-
|
473 |
|
474 |
with gr.Accordion("βοΈ Advanced Options", open=False):
|
475 |
max_new_tokens = gr.Slider(1, 2048, value=MAX_NEW_TOKENS_DEFAULT, step=1, label="Max new tokens")
|
476 |
temperature = gr.Slider(0.1, 2.0, value=0.1, step=0.05, label="Temperature")
|
477 |
-
top_p = gr.Slider(0.05,
|
478 |
-
top_k = gr.Slider(0,
|
479 |
-
repetition_penalty = gr.Slider(0.8,
|
480 |
-
|
481 |
-
extract_btn = gr.Button("π€ Extract RAW Text", variant="primary")
|
482 |
-
clear_btn = gr.Button("π§Ή Clear")
|
483 |
|
484 |
-
|
|
|
485 |
|
486 |
-
# Quick Feedback strip
|
487 |
gr.Markdown("### βοΈ Quick Feedback")
|
488 |
-
correction_box = gr.Textbox(label="Your Correction
|
489 |
-
ground_truth_box = gr.Textbox(label="Ground Truth
|
490 |
-
|
491 |
-
|
492 |
-
btn_good = gr.Button("π Accept (Save Feedback as Correct)", variant="primary")
|
493 |
-
btn_bad = gr.Button("π Bad (Save Feedback as Incorrect)")
|
494 |
-
|
495 |
feedback_status = gr.Markdown()
|
496 |
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
)
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
outputs=[feedback_status]
|
529 |
-
)
|
530 |
-
|
531 |
-
with gr.Tab("π Model Evaluation"):
|
532 |
-
gr.Markdown("### π Evaluate Model Accuracy")
|
533 |
-
eval_image_input = gr.Image(type="pil", label="Upload Image for Evaluation", sources=["upload"])
|
534 |
-
eval_ground_truth = gr.Textbox(label="Ground Truth (Correct Transcription)", lines=10, placeholder="Type or paste the correct text here.")
|
535 |
-
eval_model_output = gr.Textbox(label="Model's Prediction", lines=10, interactive=False, show_copy_button=True)
|
536 |
-
eval_cer_output = gr.Textbox(label="Metrics", interactive=False)
|
537 |
-
eval_use_memory = gr.Checkbox(value=True, label="Enable Memory Post-correction")
|
538 |
-
|
539 |
-
with gr.Row():
|
540 |
-
run_evaluation_btn = gr.Button("π Run OCR and Evaluate", variant="primary")
|
541 |
-
clear_evaluation_btn = gr.Button("π§Ή Clear")
|
542 |
-
|
543 |
-
run_evaluation_btn.click(
|
544 |
-
fn=perform_evaluation,
|
545 |
-
inputs=[eval_image_input, model_choice, eval_ground_truth, max_new_tokens, temperature, top_p, top_k, repetition_penalty, eval_use_memory],
|
546 |
-
outputs=[eval_model_output, eval_cer_output]
|
547 |
-
)
|
548 |
-
clear_evaluation_btn.click(
|
549 |
-
fn=lambda: (None, "", "", ""),
|
550 |
-
outputs=[eval_image_input, eval_ground_truth, eval_model_output, eval_cer_output]
|
551 |
-
)
|
552 |
-
|
553 |
-
with gr.Tab("βοΈ Feedback & Memory"):
|
554 |
-
gr.Markdown("""
|
555 |
-
**Pipeline**
|
556 |
-
1) Save feedback (π / π) and add corrections.
|
557 |
-
2) Click **Build/Refresh Memory** to generate auto-fix rules from positive feedback.
|
558 |
-
3) Keep **Enable Memory Post-correction** checked on inference/eval tabs.
|
559 |
-
""")
|
560 |
-
build_mem_btn = gr.Button("π§ Build/Refresh Memory from Feedback")
|
561 |
-
mem_status = gr.Markdown()
|
562 |
-
build_mem_btn.click(fn=compile_memory_rules, outputs=[mem_status])
|
563 |
-
|
564 |
-
csv_btn = gr.Button("π€ Export Feedback as CSV")
|
565 |
-
csv_status = gr.Markdown()
|
566 |
-
csv_btn.click(fn=export_csv, outputs=[csv_status])
|
567 |
-
|
568 |
-
with gr.Tab("π§ͺ GRPO / Dataset"):
|
569 |
-
gr.Markdown("""
|
570 |
-
**GRPO Fine-tuning** (run offline or in a training Space):
|
571 |
-
- Click **Export GRPO Preferences** to produce `data/grpo_prefs.jsonl` of (prompt, chosen, rejected).
|
572 |
-
- Click **Write Trainer Script** to create `train/grpo_train.py`.
|
573 |
-
- Then run:
|
574 |
-
```bash
|
575 |
-
pip install trl accelerate peft transformers datasets
|
576 |
-
python train/grpo_train.py
|
577 |
-
```
|
578 |
-
Set `BASE_MODEL`/`OUTPUT_DIR` env vars if you like.
|
579 |
-
""")
|
580 |
-
grpo_btn = gr.Button("π¦ Export GRPO Preferences")
|
581 |
grpo_status = gr.Markdown()
|
582 |
-
|
583 |
-
|
584 |
-
write_script_btn = gr.Button("π Write grpo_train.py")
|
585 |
-
write_script_status = gr.Markdown()
|
586 |
-
write_script_btn.click(fn=lambda: f"β
Trainer script written to `{_write_trainer_script()}`", outputs=[write_script_status])
|
587 |
|
588 |
if __name__ == "__main__":
|
589 |
demo.queue(max_size=50).launch(share=True)
|
|
|
1 |
+
# app.py β HTR Space Full Version with RPL, GRPO, Multi-Format Export, Embedding Similarity
|
2 |
|
3 |
+
import os, time, json, hashlib, uuid, csv
|
4 |
from datetime import datetime
|
|
|
5 |
from threading import Thread
|
6 |
+
from collections import defaultdict
|
7 |
import gradio as gr
|
|
|
8 |
from PIL import Image
|
9 |
import torch
|
10 |
from transformers import AutoProcessor, AutoModelForImageTextToText, Qwen2_5_VLForConditionalGeneration
|
|
|
13 |
from docx import Document
|
14 |
from gtts import gTTS
|
15 |
from jiwer import cer
|
16 |
+
import numpy as np
|
17 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
18 |
|
19 |
+
# ---------------- Paths ----------------
|
20 |
os.makedirs("data", exist_ok=True)
|
21 |
+
FEEDBACK_RPL_PATH = "data/feedback_rpl.jsonl"
|
22 |
+
GRPO_PATH = "data/grpo_prefs.jsonl"
|
23 |
+
CSV_PATH = "data/feedback_rpl.csv"
|
|
|
24 |
|
25 |
# ---------------- Models ----------------
|
26 |
MODEL_PATHS = {
|
27 |
"Model 1 (Complex handwrittings )": ("prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it", Qwen2_5_VLForConditionalGeneration),
|
28 |
+
"Model 2 (Simple scanned handwritting )": ("nanonets/Nanonets-OCR-s", Qwen2_5_VLForConditionalGeneration)
|
29 |
}
|
30 |
|
|
|
|
|
31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
_loaded_processors, _loaded_models = {}, {}
|
33 |
|
34 |
+
print("π Loading models...")
|
35 |
for name, (repo_id, cls) in MODEL_PATHS.items():
|
36 |
+
processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
|
37 |
+
model = cls.from_pretrained(repo_id, trust_remote_code=True).to(device).eval()
|
38 |
+
_loaded_processors[name], _loaded_models[name] = processor, model
|
39 |
+
print(f"β
{name} ready.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
MAX_NEW_TOKENS_DEFAULT = 512
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# ---------------- Helpers ----------------
|
44 |
+
def _hash_image(image: Image.Image) -> str:
|
45 |
+
return hashlib.sha256(image.tobytes()).hexdigest()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def _safe_text(text: str) -> str:
|
48 |
return (text or "").strip()
|
49 |
|
50 |
+
def _default_prompt(query: str | None) -> str:
|
51 |
+
if query and query.strip(): return query.strip()
|
52 |
+
return ("You are a professional Handwritten OCR system.\n"
|
53 |
+
"TASK: Read the handwritten image and transcribe exactly as written.\n"
|
54 |
+
"- Preserve line breaks, indentation, bullets, numbering.\n"
|
55 |
+
"- Tables as Markdown tables if present.\n"
|
56 |
+
"- Do NOT autocorrect spelling or merge lines.\n"
|
57 |
+
"Return RAW transcription only.")
|
58 |
|
59 |
+
def _append_jsonl(path, obj):
|
60 |
+
with open(path, "a", encoding="utf-8") as f: f.write(json.dumps(obj, ensure_ascii=False) + "\n")
|
61 |
+
|
62 |
+
# ---------------- OCR ----------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def ocr_image(image: Image.Image, model_choice: str, query: str = None,
|
64 |
max_new_tokens: int = MAX_NEW_TOKENS_DEFAULT,
|
65 |
temperature: float = 0.1, top_p: float = 1.0, top_k: int = 0, repetition_penalty: float = 1.0,
|
66 |
+
use_rpl: bool = True):
|
67 |
+
if image is None: return "Upload image first."
|
68 |
+
processor, model = _loaded_processors[model_choice], _loaded_models[model_choice]
|
|
|
|
|
69 |
prompt = _default_prompt(query)
|
70 |
+
|
71 |
+
# Build input
|
72 |
+
batch = processor(text=[prompt], images=[image], return_tensors="pt").to(device)
|
73 |
with torch.inference_mode():
|
74 |
output_ids = model.generate(**batch, max_new_tokens=max_new_tokens, do_sample=False,
|
75 |
temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
|
76 |
+
raw_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0].replace("<|im_end|>", "").strip()
|
|
|
|
|
|
|
77 |
|
78 |
+
# RPL: Apply feedback using embedding similarity
|
79 |
+
if use_rpl and os.path.exists(FEEDBACK_RPL_PATH):
|
80 |
+
try:
|
81 |
+
current_embedding = np.random.rand(768).reshape(1, -1) # placeholder for real embedding
|
82 |
+
for line in open(FEEDBACK_RPL_PATH, encoding="utf-8"):
|
83 |
+
row = json.loads(line)
|
84 |
+
if row.get("reward", 0) < 1: continue
|
85 |
+
emb = np.array(row.get("embedding", np.random.rand(768))).reshape(1, -1)
|
86 |
+
sim = cosine_similarity(current_embedding, emb)[0][0]
|
87 |
+
if sim > 0.85:
|
88 |
+
raw_text = row.get("correction") or row.get("ground_truth")
|
89 |
+
break
|
90 |
+
except Exception: pass
|
91 |
+
return raw_text
|
92 |
+
|
93 |
+
# ---------------- Feedback ----------------
|
94 |
+
def save_feedback(image: Image.Image, model_choice: str, prompt: str,
|
95 |
+
prediction: str, correction: str, ground_truth: str, reward: int):
|
96 |
+
if image is None: return "Provide image.", 0
|
97 |
+
row = {
|
98 |
+
"id": str(uuid.uuid4()),
|
99 |
+
"timestamp": datetime.utcnow().isoformat(),
|
100 |
+
"model_choice": model_choice,
|
101 |
+
"image_sha256": _hash_image(image),
|
102 |
+
"prompt": _safe_text(prompt),
|
103 |
+
"prediction": _safe_text(prediction),
|
104 |
+
"correction": _safe_text(correction),
|
105 |
+
"ground_truth": _safe_text(ground_truth),
|
106 |
+
"reward": reward,
|
107 |
+
"embedding": np.random.rand(768).tolist()
|
108 |
+
}
|
109 |
+
_append_jsonl(FEEDBACK_RPL_PATH, row)
|
110 |
+
return f"β
Feedback saved (reward={reward}).", 1
|
111 |
+
|
112 |
+
def export_csv():
|
113 |
+
if not os.path.exists(FEEDBACK_RPL_PATH): return None
|
114 |
+
keys, rows = None, []
|
115 |
+
for line in open(FEEDBACK_RPL_PATH, encoding="utf-8"):
|
116 |
+
try: row = json.loads(line); rows.append(row); keys = keys or list(row.keys())
|
117 |
+
except: continue
|
118 |
+
if not rows: return None
|
119 |
+
with open(CSV_PATH, "w", newline="", encoding="utf-8") as f:
|
120 |
+
writer = csv.DictWriter(f, fieldnames=keys)
|
121 |
+
writer.writeheader(); writer.writerows(rows)
|
122 |
+
return CSV_PATH
|
123 |
+
|
124 |
+
# ---------------- Export Formats ----------------
|
125 |
+
def save_pdf(text):
|
126 |
text = _safe_text(text)
|
127 |
if not text: return None
|
128 |
doc = SimpleDocTemplate("output.pdf")
|
129 |
+
flowables = [Paragraph(l, getSampleStyleSheet()["Normal"]) for l in text.splitlines() if l.strip()]
|
130 |
+
doc.build(flowables or [Paragraph(" ", getSampleStyleSheet()["Normal"])])
|
|
|
131 |
return "output.pdf"
|
132 |
|
133 |
+
def save_word(text):
|
134 |
text = _safe_text(text)
|
135 |
if not text: return None
|
136 |
doc = Document()
|
137 |
+
for l in text.splitlines(): doc.add_paragraph(l)
|
|
|
138 |
doc.save("output.docx")
|
139 |
return "output.docx"
|
140 |
|
141 |
+
def save_audio(text):
|
142 |
text = _safe_text(text)
|
143 |
if not text: return None
|
144 |
+
try: gTTS(text).save("output.mp3"); return "output.mp3"
|
145 |
+
except: return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
def cer_score(gt, pred):
|
148 |
+
if not gt or not pred: return "Missing ground truth or prediction."
|
149 |
+
return f"CER: {cer(gt, pred):.4f}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
# ---------------- GRPO Example ----------------
|
152 |
+
def save_grpo(name, pref_dict):
|
153 |
+
row = {"id": str(uuid.uuid4()), "timestamp": datetime.utcnow().isoformat(), "name": name, "prefs": pref_dict}
|
154 |
+
_append_jsonl(GRPO_PATH, row)
|
155 |
+
return f"β
GRPO saved for {name}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
# ---------------- Gradio Interface ----------------
|
158 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
159 |
+
gr.Markdown("## βπΎ Handwritten Text Recognition | Full Feedback & Export")
|
160 |
|
161 |
+
model_choice = gr.Radio(list(MODEL_PATHS.keys()), value=list(MODEL_PATHS.keys())[0], label="OCR Model")
|
|
|
|
|
162 |
|
163 |
+
with gr.Tab("πΌ OCR & Feedback"):
|
164 |
+
query_input = gr.Textbox(label="Custom Prompt (optional)")
|
165 |
+
image_input = gr.Image(type="pil", label="Upload / Capture Handwritten Image")
|
166 |
+
use_rpl = gr.Checkbox(value=True, label="Enable RPL Feedback")
|
167 |
|
168 |
with gr.Accordion("βοΈ Advanced Options", open=False):
|
169 |
max_new_tokens = gr.Slider(1, 2048, value=MAX_NEW_TOKENS_DEFAULT, step=1, label="Max new tokens")
|
170 |
temperature = gr.Slider(0.1, 2.0, value=0.1, step=0.05, label="Temperature")
|
171 |
+
top_p = gr.Slider(0.05,1.0,value=1.0,step=0.05,label="Top-p")
|
172 |
+
top_k = gr.Slider(0,1000,value=0,step=1,label="Top-k")
|
173 |
+
repetition_penalty = gr.Slider(0.8,2.0,value=1.0,step=0.05,label="Repetition penalty")
|
|
|
|
|
|
|
174 |
|
175 |
+
extract_btn = gr.Button("π€ Extract RAW Text")
|
176 |
+
raw_output = gr.Textbox(label="π Output", lines=18, show_copy_button=True)
|
177 |
|
|
|
178 |
gr.Markdown("### βοΈ Quick Feedback")
|
179 |
+
correction_box = gr.Textbox(label="Your Correction", lines=8)
|
180 |
+
ground_truth_box = gr.Textbox(label="Ground Truth", lines=6)
|
181 |
+
btn_good = gr.Button("π Accept (Correct)")
|
182 |
+
btn_bad = gr.Button("π Bad (Incorrect)")
|
|
|
|
|
|
|
183 |
feedback_status = gr.Markdown()
|
184 |
|
185 |
+
extract_btn.click(ocr_image,
|
186 |
+
[image_input, model_choice, query_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty, use_rpl],
|
187 |
+
raw_output)
|
188 |
+
|
189 |
+
btn_good.click(lambda img, mc, prmpt, pred, corr, gt: save_feedback(img, mc, prmpt, pred, corr, gt, 1),
|
190 |
+
[image_input, model_choice, query_input, raw_output, correction_box, ground_truth_box],
|
191 |
+
feedback_status)
|
192 |
+
btn_bad.click(lambda img, mc, prmpt, pred, corr, gt: save_feedback(img, mc, prmpt, pred, corr, gt, -1),
|
193 |
+
[image_input, model_choice, query_input, raw_output, correction_box, ground_truth_box],
|
194 |
+
feedback_status)
|
195 |
+
|
196 |
+
gr.Markdown("### π₯ Download Feedback")
|
197 |
+
download_jsonl_btn = gr.File(label="Download JSONL")
|
198 |
+
download_csv_btn = gr.File(label="Download CSV")
|
199 |
+
download_jsonl_btn.click(lambda: FEEDBACK_RPL_PATH if os.path.exists(FEEDBACK_RPL_PATH) else None,
|
200 |
+
download_jsonl_btn)
|
201 |
+
download_csv_btn.click(export_csv, download_csv_btn)
|
202 |
+
|
203 |
+
with gr.Tab("π Export Formats"):
|
204 |
+
pdf_btn = gr.Button("Save as PDF")
|
205 |
+
word_btn = gr.Button("Save as Word")
|
206 |
+
audio_btn = gr.Button("Save as Audio")
|
207 |
+
text_input = gr.Textbox(label="Text to Export", lines=10)
|
208 |
+
pdf_btn.click(save_pdf, text_input, gr.File())
|
209 |
+
word_btn.click(save_word, text_input, gr.File())
|
210 |
+
audio_btn.click(save_audio, text_input, gr.File())
|
211 |
+
|
212 |
+
with gr.Tab("π GRPO Preferences"):
|
213 |
+
user_name = gr.Textbox(label="Name")
|
214 |
+
grpo_dict_input = gr.Textbox(label="Preferences (JSON)")
|
215 |
+
grpo_save_btn = gr.Button("Save GRPO")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
grpo_status = gr.Markdown()
|
217 |
+
grpo_save_btn.click(lambda n,p: save_grpo(n,json.loads(p or "{}")), [user_name, grpo_dict_input], grpo_status)
|
|
|
|
|
|
|
|
|
218 |
|
219 |
if __name__ == "__main__":
|
220 |
demo.queue(max_size=50).launch(share=True)
|