File size: 10,515 Bytes
cfb37bf
fb3185e
 
 
133333c
c662fe8
c79571d
1ec4316
f094617
c79571d
fb3185e
 
cfb37bf
c79571d
c662fe8
c79571d
 
 
 
 
 
490767e
 
c79571d
 
 
490767e
c662fe8
fb3185e
 
 
 
 
 
 
c79571d
 
 
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79571d
 
 
fb3185e
 
 
 
 
 
 
c79571d
 
 
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79571d
 
 
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79571d
 
 
fb3185e
 
 
 
 
 
 
c79571d
 
 
fb3185e
 
 
 
 
 
 
 
c79571d
fb3185e
c79571d
 
 
0dfe1bf
c79571d
91e2f1d
0dfe1bf
fb3185e
0dfe1bf
 
 
 
 
 
 
 
 
 
c79571d
d6e55c9
0dfe1bf
 
 
 
fb3185e
c79571d
 
 
 
 
 
466f0d3
 
 
 
 
0dfe1bf
c79571d
 
 
0dfe1bf
 
c79571d
0dfe1bf
 
133333c
c79571d
 
 
 
 
 
 
 
0dfe1bf
 
c79571d
0dfe1bf
 
 
 
 
c79571d
 
 
 
fb3185e
c662fe8
 
 
c79571d
c662fe8
 
 
f31f6ca
 
c79571d
 
 
 
 
f31f6ca
 
 
c662fe8
c79571d
91e2f1d
0dfe1bf
91e2f1d
0dfe1bf
c79571d
fb3185e
0dfe1bf
133333c
fb3185e
c662fe8
 
fb3185e
 
a987d91
c662fe8
 
fb3185e
c79571d
fb3185e
0dfe1bf
 
 
 
c79571d
 
 
 
 
 
 
 
0dfe1bf
c79571d
0dfe1bf
 
 
 
 
 
c662fe8
f31f6ca
c79571d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133333c
c79571d
0dfe1bf
 
c6b50f6
 
 
 
 
c79571d
 
466f0d3
 
 
 
 
c6b50f6
c79571d
 
 
fb3185e
c6b50f6
 
0dfe1bf
 
c6b50f6
 
 
fb3185e
 
c79571d
fb3185e
 
466f0d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import gradio as gr
import json
import tempfile
import os
from typing import List, Optional, Literal, Tuple
from PIL import Image

import spaces
from pathlib import Path
from visualizer import htrflow_visualizer
from htrflow.volume.volume import Collection
from htrflow.pipeline.pipeline import Pipeline


DEFAULT_OUTPUT = "alto"
FORMAT_CHOICES = [
    "letter_english",
    "letter_swedish",
    "spread_english",
    "spread_swedish",
]
FILE_CHOICES = ["txt", "alto", "page", "json"]

FormatChoices = Literal[
    "letter_english", "letter_swedish", "spread_english", "spread_swedish"
]
FileChoices = Literal["txt", "alto", "page", "json"]

PIPELINE_CONFIGS = {
    "letter_english": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {
                        "model": "Riksarkivet/yolov9-lines-within-regions-1"
                    },
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {"model": "microsoft/trocr-base-handwritten"},
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "OrderLines"},
        ]
    },
    "letter_swedish": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {
                        "model": "Riksarkivet/yolov9-lines-within-regions-1"
                    },
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {
                        "model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"
                    },
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "OrderLines"},
        ]
    },
    "spread_english": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
                    "generation_settings": {"batch_size": 4},
                },
            },
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {
                        "model": "Riksarkivet/yolov9-lines-within-regions-1"
                    },
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {"model": "microsoft/trocr-base-handwritten"},
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
        ]
    },
    "spread_swedish": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
                    "generation_settings": {"batch_size": 4},
                },
            },
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {
                        "model": "Riksarkivet/yolov9-lines-within-regions-1"
                    },
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {
                        "model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"
                    },
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
        ]
    },
}


@spaces.GPU
def _process_htr_pipeline(
    image_path: str, document_type: FormatChoices, custom_settings: Optional[str] = None
) -> Collection:
    """Process HTR pipeline and return the processed collection."""

    if not image_path:
        raise ValueError("No image provided")

    if custom_settings:
        try:
            config = json.loads(custom_settings)
        except json.JSONDecodeError:
            raise ValueError("Invalid JSON in custom_settings parameter")
    else:
        config = PIPELINE_CONFIGS[document_type]

    collection = Collection([image_path])
    pipeline = Pipeline.from_config(config)

    try:
        processed_collection = pipeline.run(collection)
        return processed_collection
    except Exception as pipeline_error:
        raise RuntimeError(f"Pipeline execution failed: {str(pipeline_error)}")


def htr_text(
    image_path: str,
    document_type: FormatChoices = "letter_swedish",
    custom_settings: Optional[str] = None,
) -> str:
    """Extract text from handwritten documents using HTR.

    returns:
        str: Extracted text from the image.
    """
    try:
        processed_collection = _process_htr_pipeline(
            image_path, document_type, custom_settings
        )
        extracted_text = extract_text_from_collection(processed_collection)
        return extracted_text

    except Exception as e:
        return f"HTR text extraction failed: {str(e)}"


def htrflow_file(
    image_path: str,
    document_type: FormatChoices = "letter_swedish",
    output_format: FileChoices = DEFAULT_OUTPUT,
    custom_settings: Optional[str] = None,
    server_name: str = "https://gabriel-htrflow-mcp.hf.space",
) -> str:
    """
    Process HTR and return a formatted file for download.

    Returns:
        str: File path for direct download via gr.File (server_name/gradio_api/file=/tmp/gradio/{temp_folder}/{file_name})
    """
    try:
        original_filename = Path(image_path).stem or "output"

        processed_collection = _process_htr_pipeline(
            image_path, document_type, custom_settings
        )

        temp_dir = Path(tempfile.mkdtemp())
        export_dir = temp_dir / output_format
        processed_collection.save(directory=str(export_dir), serializer=output_format)

        output_file_path = None
        for root, _, files in os.walk(export_dir):
            for file in files:
                old_path = os.path.join(root, file)
                file_ext = Path(file).suffix
                new_filename = (
                    f"{original_filename}.{output_format}"
                    if not file_ext
                    else f"{original_filename}{file_ext}"
                )
                new_path = os.path.join(root, new_filename)
                os.rename(old_path, new_path)
                output_file_path = new_path
                break

        if output_file_path and os.path.exists(output_file_path):
            return output_file_path
        else:
            return None

    except Exception as e:
        return None


def extract_text_from_collection(collection: Collection) -> str:
    text_lines = []
    for page in collection.pages:
        for node in page.traverse():
            if hasattr(node, "text") and node.text:
                text_lines.append(node.text)
    return "\n".join(text_lines)


def create_htrflow_mcp_server():
    htr_text_interface = gr.Interface(
        fn=htr_text,
        inputs=[
            gr.Image(type="filepath", label="Upload Image or Enter URL"),
            gr.Dropdown(
                choices=FORMAT_CHOICES, value="letter_swedish", label="Document Type"
            ),
            gr.Textbox(
                label="Custom Settings (JSON)",
                placeholder="Optional custom pipeline settings",
                value="",
            ),
        ],
        outputs=[gr.Textbox(label="Extracted Text", lines=10)],
        description="Extract plain text from handwritten documents using HTR",
        api_name="htr_text",
    )

    htrflow_file_interface = gr.Interface(
        fn=htrflow_file,
        inputs=[
            gr.Image(type="filepath", label="Upload Image or Enter URL"),
            gr.Dropdown(
                choices=FORMAT_CHOICES, value="letter_swedish", label="Document Type"
            ),
            gr.Dropdown(
                choices=FILE_CHOICES, value=DEFAULT_OUTPUT, label="Output Format"
            ),
            gr.Textbox(
                label="Custom Settings (JSON)",
                placeholder="Optional custom pipeline settings",
                value="",
            ),
            gr.Textbox(
                label="Server Name",
                value="https://gabriel-htrflow-mcp.hf.space",
                placeholder="Server URL for download links",
            ),
        ],
        outputs=[gr.File(label="Download HTR Output File")],
        description="Process handwritten text and get formatted file (ALTO XML, PAGE XML, JSON, or TXT)",
        api_name="htrflow_file",
    )

    htrflow_viz = gr.Interface(
        fn=htrflow_visualizer,
        inputs=[
            gr.Image(type="filepath", label="Upload Original Image"),
            gr.File(label="Upload ALTO/PAGE XML File"),
            gr.Textbox(
                label="Server Name",
                value="https://gabriel-htrflow-mcp.hf.space",
                placeholder="Server URL for download links",
            ),
        ],
        outputs=gr.File(label="Download Visualization Image"),
        description="Visualize HTR results by overlaying text regions and polygons on the original image",
        api_name="htrflow_visualizer",
    )

    demo = gr.TabbedInterface(
        [htr_text_interface, htrflow_file_interface, htrflow_viz],
        ["HTR Text", "HTR File", "HTR Visualizer"],
        title="HTRflow Handwritten Text Recognition",
    )

    return demo


if __name__ == "__main__":
    demo = create_htrflow_mcp_server()
    demo.launch(mcp_server=True, share=False, debug=False)