Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
-
import base64
|
4 |
import tempfile
|
5 |
import os
|
6 |
-
from typing import
|
7 |
-
from
|
8 |
-
from PIL import Image, ImageDraw, ImageFont
|
9 |
-
import io
|
10 |
import spaces
|
11 |
-
import shutil
|
12 |
from pathlib import Path
|
13 |
from htrflow.volume.volume import Collection
|
14 |
from htrflow.pipeline.pipeline import Pipeline
|
15 |
|
|
|
|
|
|
|
16 |
PIPELINE_CONFIGS = {
|
17 |
"letter_english": {
|
18 |
"steps": [
|
@@ -117,10 +116,10 @@ PIPELINE_CONFIGS = {
|
|
117 |
}
|
118 |
|
119 |
@spaces.GPU
|
120 |
-
def process_htr(image: Image.Image, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "letter_english",
|
121 |
-
"""Process handwritten text recognition
|
122 |
if image is None:
|
123 |
-
return
|
124 |
|
125 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
126 |
image.save(temp_file.name, "PNG")
|
@@ -131,7 +130,7 @@ def process_htr(image: Image.Image, document_type: Literal["letter_english", "le
|
|
131 |
try:
|
132 |
config = json.loads(custom_settings)
|
133 |
except json.JSONDecodeError:
|
134 |
-
return
|
135 |
else:
|
136 |
config = PIPELINE_CONFIGS[document_type]
|
137 |
|
@@ -141,236 +140,53 @@ def process_htr(image: Image.Image, document_type: Literal["letter_english", "le
|
|
141 |
try:
|
142 |
processed_collection = pipeline.run(collection)
|
143 |
except Exception as pipeline_error:
|
144 |
-
return
|
145 |
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
|
150 |
-
"collection_data": collection_data,
|
151 |
-
"document_type": document_type,
|
152 |
-
"confidence_threshold": confidence_threshold,
|
153 |
-
"timestamp": datetime.now().isoformat(),
|
154 |
-
}
|
155 |
|
156 |
-
return
|
157 |
-
|
158 |
-
"results": results,
|
159 |
-
"processing_state": json.dumps(processing_state),
|
160 |
-
"metadata": {
|
161 |
-
"total_lines": len(results.get("text_lines", [])),
|
162 |
-
"average_confidence": results.get("average_confidence", 0),
|
163 |
-
"document_type": document_type,
|
164 |
-
"image_dimensions": image.size,
|
165 |
-
},
|
166 |
-
}
|
167 |
except Exception as e:
|
168 |
-
return
|
169 |
finally:
|
170 |
if os.path.exists(temp_image_path):
|
171 |
os.unlink(temp_image_path)
|
172 |
|
173 |
-
def
|
174 |
-
"""
|
175 |
-
|
176 |
-
if image is None:
|
177 |
-
return {"success": False, "error": "Image is required for visualization", "visualization": None}
|
178 |
-
|
179 |
-
state = json.loads(processing_state)
|
180 |
-
collection_data = state["collection_data"]
|
181 |
-
|
182 |
-
viz_image = create_visualization(image, collection_data, visualization_type, show_confidence, highlight_low_confidence)
|
183 |
-
|
184 |
-
img_buffer = io.BytesIO()
|
185 |
-
viz_image.save(img_buffer, format="PNG")
|
186 |
-
img_base64 = base64.b64encode(img_buffer.getvalue()).decode("utf-8")
|
187 |
-
|
188 |
-
return {
|
189 |
-
"success": True,
|
190 |
-
"visualization": {
|
191 |
-
"image_base64": img_base64,
|
192 |
-
"image_format": "PNG",
|
193 |
-
"visualization_type": visualization_type,
|
194 |
-
"dimensions": viz_image.size,
|
195 |
-
},
|
196 |
-
"metadata": {"total_elements": len(collection_data.get("text_elements", []))},
|
197 |
-
}
|
198 |
-
|
199 |
-
except Exception as e:
|
200 |
-
return {"success": False, "error": f"Visualization generation failed: {str(e)}", "visualization": None}
|
201 |
-
|
202 |
-
def export_results(processing_state: str, image: Image.Image, output_formats: List[Literal["txt", "json", "alto", "page"]] = ["txt"], confidence_filter: float = 0.0) -> Dict:
|
203 |
-
"""Export HTR results to multiple formats using HTRflow's native export functionality."""
|
204 |
-
try:
|
205 |
-
if image is None:
|
206 |
-
return {"success": False, "error": "Image is required for export", "exports": None}
|
207 |
-
|
208 |
-
state = json.loads(processing_state)
|
209 |
-
|
210 |
-
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
211 |
-
image.save(temp_file.name, "PNG")
|
212 |
-
temp_image_path = temp_file.name
|
213 |
-
|
214 |
-
try:
|
215 |
-
collection = Collection([temp_image_path])
|
216 |
-
pipeline = Pipeline.from_config(PIPELINE_CONFIGS[state["document_type"]])
|
217 |
-
processed_collection = pipeline.run(collection)
|
218 |
-
|
219 |
-
temp_dir = Path(tempfile.mkdtemp())
|
220 |
-
exports = {}
|
221 |
-
|
222 |
-
for fmt in output_formats:
|
223 |
-
export_dir = temp_dir / fmt
|
224 |
-
processed_collection.save(directory=str(export_dir), serializer=fmt)
|
225 |
-
|
226 |
-
export_files = []
|
227 |
-
for root, _, files in os.walk(export_dir):
|
228 |
-
for file in files:
|
229 |
-
file_path = os.path.join(root, file)
|
230 |
-
try:
|
231 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
232 |
-
content = f.read()
|
233 |
-
export_files.append({"filename": file, "content": content})
|
234 |
-
except UnicodeDecodeError:
|
235 |
-
with open(file_path, 'rb') as f:
|
236 |
-
content = base64.b64encode(f.read()).decode('utf-8')
|
237 |
-
export_files.append({"filename": file, "content": content, "encoding": "base64"})
|
238 |
-
|
239 |
-
exports[fmt] = export_files
|
240 |
-
|
241 |
-
shutil.rmtree(temp_dir)
|
242 |
-
|
243 |
-
return {
|
244 |
-
"success": True,
|
245 |
-
"exports": exports,
|
246 |
-
"export_metadata": {
|
247 |
-
"formats_generated": output_formats,
|
248 |
-
"confidence_filter": confidence_filter,
|
249 |
-
"timestamp": datetime.now().isoformat(),
|
250 |
-
},
|
251 |
-
}
|
252 |
-
finally:
|
253 |
-
if os.path.exists(temp_image_path):
|
254 |
-
os.unlink(temp_image_path)
|
255 |
-
|
256 |
-
except Exception as e:
|
257 |
-
return {"success": False, "error": f"Export generation failed: {str(e)}", "exports": None}
|
258 |
-
|
259 |
-
def extract_text_results(collection: Collection, confidence_threshold: float) -> Dict:
|
260 |
-
results = {"extracted_text": "", "text_lines": [], "confidence_scores": []}
|
261 |
for page in collection.pages:
|
262 |
for node in page.traverse():
|
263 |
if hasattr(node, "text") and node.text:
|
264 |
-
|
265 |
-
|
266 |
-
results["text_lines"].append({
|
267 |
-
"text": node.text,
|
268 |
-
"confidence": confidence,
|
269 |
-
"bbox": getattr(node, "bbox", None),
|
270 |
-
})
|
271 |
-
results["extracted_text"] += node.text + "\n"
|
272 |
-
results["confidence_scores"].append(confidence)
|
273 |
-
|
274 |
-
results["average_confidence"] = sum(results["confidence_scores"]) / len(results["confidence_scores"]) if results["confidence_scores"] else 0
|
275 |
-
return results
|
276 |
-
|
277 |
-
def serialize_collection_data(collection: Collection) -> Dict:
|
278 |
-
text_elements = []
|
279 |
-
for page in collection.pages:
|
280 |
-
for node in page.traverse():
|
281 |
-
if hasattr(node, "text") and node.text:
|
282 |
-
text_elements.append({
|
283 |
-
"text": node.text,
|
284 |
-
"confidence": getattr(node, "confidence", 1.0),
|
285 |
-
"bbox": getattr(node, "bbox", None),
|
286 |
-
})
|
287 |
-
return {"text_elements": text_elements}
|
288 |
-
|
289 |
-
def create_visualization(image, collection_data, visualization_type, show_confidence, highlight_low_confidence):
|
290 |
-
viz_image = image.copy()
|
291 |
-
draw = ImageDraw.Draw(viz_image)
|
292 |
-
|
293 |
-
try:
|
294 |
-
font = ImageFont.truetype("arial.ttf", 12)
|
295 |
-
except:
|
296 |
-
font = ImageFont.load_default()
|
297 |
-
|
298 |
-
for element in collection_data.get("text_elements", []):
|
299 |
-
if element.get("bbox"):
|
300 |
-
bbox = element["bbox"]
|
301 |
-
confidence = element.get("confidence", 1.0)
|
302 |
-
|
303 |
-
if visualization_type == "overlay":
|
304 |
-
color = (255, 165, 0) if highlight_low_confidence and confidence < 0.7 else (0, 255, 0)
|
305 |
-
draw.rectangle(bbox, outline=color, width=2)
|
306 |
-
if show_confidence:
|
307 |
-
draw.text((bbox[0], bbox[1] - 15), f"{confidence:.2f}", fill=color, font=font)
|
308 |
-
|
309 |
-
elif visualization_type == "confidence_heatmap":
|
310 |
-
if confidence < 0.5:
|
311 |
-
color = (255, 0, 0, 100)
|
312 |
-
elif confidence < 0.8:
|
313 |
-
color = (255, 255, 0, 100)
|
314 |
-
else:
|
315 |
-
color = (0, 255, 0, 100)
|
316 |
-
overlay = Image.new("RGBA", viz_image.size, (0, 0, 0, 0))
|
317 |
-
overlay_draw = ImageDraw.Draw(overlay)
|
318 |
-
overlay_draw.rectangle(bbox, fill=color)
|
319 |
-
viz_image = Image.alpha_composite(viz_image.convert("RGBA"), overlay)
|
320 |
-
|
321 |
-
elif visualization_type == "text_regions":
|
322 |
-
colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0)]
|
323 |
-
color = colors[hash(str(bbox)) % len(colors)]
|
324 |
-
draw.rectangle(bbox, outline=color, width=3)
|
325 |
-
|
326 |
-
return viz_image.convert("RGB") if visualization_type == "confidence_heatmap" else viz_image
|
327 |
|
328 |
def create_htrflow_mcp_server():
|
329 |
-
demo = gr.
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
title="HTR Processing Tool",
|
341 |
-
description="Process handwritten text using configurable HTRflow pipelines",
|
342 |
-
api_name="process_htr",
|
343 |
-
),
|
344 |
-
gr.Interface(
|
345 |
-
fn=visualize_results,
|
346 |
-
inputs=[
|
347 |
-
gr.Textbox(label="Processing State (JSON)", placeholder="Paste processing results from HTR tool"),
|
348 |
-
gr.Image(type="pil", label="Image"),
|
349 |
-
gr.Dropdown(choices=["overlay", "confidence_heatmap", "text_regions"], value="overlay", label="Visualization Type"),
|
350 |
-
gr.Checkbox(value=True, label="Show Confidence Scores"),
|
351 |
-
gr.Checkbox(value=True, label="Highlight Low Confidence"),
|
352 |
-
],
|
353 |
-
outputs=gr.JSON(label="Visualization Results"),
|
354 |
-
title="Results Visualization Tool",
|
355 |
-
description="Generate interactive visualizations of HTR results",
|
356 |
-
api_name="visualize_results",
|
357 |
-
),
|
358 |
-
gr.Interface(
|
359 |
-
fn=export_results,
|
360 |
-
inputs=[
|
361 |
-
gr.Textbox(label="Processing State (JSON)", placeholder="Paste processing results from HTR tool"),
|
362 |
-
gr.Image(type="pil", label="Image"),
|
363 |
-
gr.CheckboxGroup(choices=["txt", "json", "alto", "page"], value=["txt"], label="Output Formats"),
|
364 |
-
gr.Slider(0.0, 1.0, value=0.0, label="Confidence Filter"),
|
365 |
-
],
|
366 |
-
outputs=gr.JSON(label="Export Results"),
|
367 |
-
title="Export Tool",
|
368 |
-
description="Export HTR results to multiple formats",
|
369 |
-
api_name="export_results",
|
370 |
-
),
|
371 |
],
|
372 |
-
["HTR Processing", "Results Visualization", "Export Results"],
|
373 |
title="HTRflow MCP Server",
|
|
|
|
|
374 |
)
|
375 |
return demo
|
376 |
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
|
|
3 |
import tempfile
|
4 |
import os
|
5 |
+
from typing import List, Optional, Literal
|
6 |
+
from PIL import Image
|
|
|
|
|
7 |
import spaces
|
|
|
8 |
from pathlib import Path
|
9 |
from htrflow.volume.volume import Collection
|
10 |
from htrflow.pipeline.pipeline import Pipeline
|
11 |
|
12 |
+
DEFAULT_OUTPUT = "alto"
|
13 |
+
CHOICES = ["txt", "alto", "page", "json"]
|
14 |
+
|
15 |
PIPELINE_CONFIGS = {
|
16 |
"letter_english": {
|
17 |
"steps": [
|
|
|
116 |
}
|
117 |
|
118 |
@spaces.GPU
|
119 |
+
def process_htr(image: Image.Image, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "letter_english", output_format: Literal["txt", "alto", "page", "json"] = DEFAULT_OUTPUT, custom_settings: Optional[str] = None):
|
120 |
+
"""Process handwritten text recognition and return extracted text with specified format file."""
|
121 |
if image is None:
|
122 |
+
return "Error: No image provided", None
|
123 |
|
124 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
125 |
image.save(temp_file.name, "PNG")
|
|
|
130 |
try:
|
131 |
config = json.loads(custom_settings)
|
132 |
except json.JSONDecodeError:
|
133 |
+
return "Error: Invalid JSON in custom_settings parameter", None
|
134 |
else:
|
135 |
config = PIPELINE_CONFIGS[document_type]
|
136 |
|
|
|
140 |
try:
|
141 |
processed_collection = pipeline.run(collection)
|
142 |
except Exception as pipeline_error:
|
143 |
+
return f"Error: Pipeline execution failed: {str(pipeline_error)}", None
|
144 |
|
145 |
+
temp_dir = Path(tempfile.mkdtemp())
|
146 |
+
export_dir = temp_dir / output_format
|
147 |
+
processed_collection.save(directory=str(export_dir), serializer=output_format)
|
148 |
+
|
149 |
+
output_file_path = None
|
150 |
+
for root, _, files in os.walk(export_dir):
|
151 |
+
for file in files:
|
152 |
+
output_file_path = os.path.join(root, file)
|
153 |
+
break
|
154 |
|
155 |
+
extracted_text = extract_text_from_collection(processed_collection)
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
return extracted_text, output_file_path
|
158 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
except Exception as e:
|
160 |
+
return f"Error: HTR processing failed: {str(e)}", None
|
161 |
finally:
|
162 |
if os.path.exists(temp_image_path):
|
163 |
os.unlink(temp_image_path)
|
164 |
|
165 |
+
def extract_text_from_collection(collection: Collection) -> str:
|
166 |
+
"""Extract plain text from processed collection."""
|
167 |
+
text_lines = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
for page in collection.pages:
|
169 |
for node in page.traverse():
|
170 |
if hasattr(node, "text") and node.text:
|
171 |
+
text_lines.append(node.text)
|
172 |
+
return "\n".join(text_lines)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
def create_htrflow_mcp_server():
|
175 |
+
demo = gr.Interface(
|
176 |
+
fn=process_htr,
|
177 |
+
inputs=[
|
178 |
+
gr.Image(type="pil", label="Upload Image"),
|
179 |
+
gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_english", label="Document Type"),
|
180 |
+
gr.Dropdown(choices=CHOICES, value=DEFAULT_OUTPUT, label="Output Format"),
|
181 |
+
gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings"),
|
182 |
+
],
|
183 |
+
outputs=[
|
184 |
+
gr.Textbox(label="Extracted Text", lines=10),
|
185 |
+
gr.File(label="Download Output File")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
],
|
|
|
187 |
title="HTRflow MCP Server",
|
188 |
+
description="Process handwritten text and get extracted text with output file in specified format",
|
189 |
+
api_name="process_htr",
|
190 |
)
|
191 |
return demo
|
192 |
|