test
Browse files- .python-version +1 -0
- app.py +858 -4
- pyproject.toml +12 -0
- requirements.txt +4 -0
- uv.lock +0 -0
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.10
|
app.py
CHANGED
@@ -1,7 +1,861 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import yaml
|
3 |
+
import json
|
4 |
+
import base64
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
+
from typing import Dict, List, Optional, Literal
|
8 |
+
from datetime import datetime
|
9 |
+
from PIL import Image, ImageDraw, ImageFont
|
10 |
+
import io
|
11 |
|
12 |
+
from htrflow.volume.volume import Collection
|
13 |
+
from htrflow.pipeline.pipeline import Pipeline
|
14 |
|
15 |
+
PIPELINE_CONFIGS = {
|
16 |
+
"letter_english": {
|
17 |
+
"steps": [
|
18 |
+
{
|
19 |
+
"step": "Segmentation",
|
20 |
+
"settings": {
|
21 |
+
"model": "yolo",
|
22 |
+
"model_settings": {
|
23 |
+
"model": "Riksarkivet/yolov9-lines-within-regions-1"
|
24 |
+
},
|
25 |
+
"generation_settings": {"batch_size": 8},
|
26 |
+
},
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"step": "TextRecognition",
|
30 |
+
"settings": {
|
31 |
+
"model": "TrOCR",
|
32 |
+
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
|
33 |
+
"generation_settings": {"batch_size": 16},
|
34 |
+
},
|
35 |
+
},
|
36 |
+
{"step": "OrderLines"},
|
37 |
+
]
|
38 |
+
},
|
39 |
+
"letter_swedish": {
|
40 |
+
"steps": [
|
41 |
+
{
|
42 |
+
"step": "Segmentation",
|
43 |
+
"settings": {
|
44 |
+
"model": "yolo",
|
45 |
+
"model_settings": {
|
46 |
+
"model": "Riksarkivet/yolov9-lines-within-regions-1"
|
47 |
+
},
|
48 |
+
"generation_settings": {"batch_size": 8},
|
49 |
+
},
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"step": "TextRecognition",
|
53 |
+
"settings": {
|
54 |
+
"model": "TrOCR",
|
55 |
+
"model_settings": {
|
56 |
+
"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"
|
57 |
+
},
|
58 |
+
"generation_settings": {"batch_size": 16},
|
59 |
+
},
|
60 |
+
},
|
61 |
+
{"step": "OrderLines"},
|
62 |
+
]
|
63 |
+
},
|
64 |
+
"spread_english": {
|
65 |
+
"steps": [
|
66 |
+
{
|
67 |
+
"step": "Segmentation",
|
68 |
+
"settings": {
|
69 |
+
"model": "yolo",
|
70 |
+
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
|
71 |
+
"generation_settings": {"batch_size": 4},
|
72 |
+
},
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"step": "Segmentation",
|
76 |
+
"settings": {
|
77 |
+
"model": "yolo",
|
78 |
+
"model_settings": {
|
79 |
+
"model": "Riksarkivet/yolov9-lines-within-regions-1"
|
80 |
+
},
|
81 |
+
"generation_settings": {"batch_size": 8},
|
82 |
+
},
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"step": "TextRecognition",
|
86 |
+
"settings": {
|
87 |
+
"model": "TrOCR",
|
88 |
+
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
|
89 |
+
"generation_settings": {"batch_size": 16},
|
90 |
+
},
|
91 |
+
},
|
92 |
+
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"spread_swedish": {
|
96 |
+
"steps": [
|
97 |
+
{
|
98 |
+
"step": "Segmentation",
|
99 |
+
"settings": {
|
100 |
+
"model": "yolo",
|
101 |
+
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
|
102 |
+
"generation_settings": {"batch_size": 4},
|
103 |
+
},
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"step": "Segmentation",
|
107 |
+
"settings": {
|
108 |
+
"model": "yolo",
|
109 |
+
"model_settings": {
|
110 |
+
"model": "Riksarkivet/yolov9-lines-within-regions-1"
|
111 |
+
},
|
112 |
+
"generation_settings": {"batch_size": 8},
|
113 |
+
},
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"step": "TextRecognition",
|
117 |
+
"settings": {
|
118 |
+
"model": "TrOCR",
|
119 |
+
"model_settings": {
|
120 |
+
"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"
|
121 |
+
},
|
122 |
+
"generation_settings": {"batch_size": 16},
|
123 |
+
},
|
124 |
+
},
|
125 |
+
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
|
126 |
+
]
|
127 |
+
},
|
128 |
+
}
|
129 |
+
|
130 |
+
@spaces.GPU
|
131 |
+
def process_htr(
|
132 |
+
image: Image.Image,
|
133 |
+
document_type: Literal[
|
134 |
+
"letter_english", "letter_swedish", "spread_english", "spread_swedish"
|
135 |
+
] = "spread_swedish",
|
136 |
+
confidence_threshold: float = 0.8,
|
137 |
+
custom_settings: Optional[str] = None,
|
138 |
+
) -> Dict:
|
139 |
+
"""
|
140 |
+
Process handwritten text recognition on uploaded images using HTRflow pipelines.
|
141 |
+
|
142 |
+
Supports templates for different document types (letters vs spreads) and
|
143 |
+
languages (English vs Swedish). Uses HTRflow's modular pipeline system with
|
144 |
+
configurable segmentation and text recognition models.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
image (Image.Image): PIL Image object to process
|
148 |
+
document_type (str): Type of document processing template to use
|
149 |
+
confidence_threshold (float): Minimum confidence threshold for text recognition
|
150 |
+
custom_settings (str, optional): JSON string with custom pipeline settings
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
dict: Processing results including extracted text, metadata, and processing state
|
154 |
+
"""
|
155 |
+
try:
|
156 |
+
if image is None:
|
157 |
+
return {"success": False, "error": "No image provided", "results": None}
|
158 |
+
|
159 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
160 |
+
image.save(temp_file.name, "PNG")
|
161 |
+
temp_image_path = temp_file.name
|
162 |
+
|
163 |
+
try:
|
164 |
+
if custom_settings:
|
165 |
+
try:
|
166 |
+
config = json.loads(custom_settings)
|
167 |
+
except json.JSONDecodeError:
|
168 |
+
return {
|
169 |
+
"success": False,
|
170 |
+
"error": "Invalid JSON in custom_settings parameter",
|
171 |
+
"results": None,
|
172 |
+
}
|
173 |
+
else:
|
174 |
+
config = PIPELINE_CONFIGS[document_type]
|
175 |
+
|
176 |
+
collection = Collection([temp_image_path])
|
177 |
+
|
178 |
+
pipeline = Pipeline.from_config(config)
|
179 |
+
processed_collection = pipeline.run(collection)
|
180 |
+
|
181 |
+
results = extract_processing_results(
|
182 |
+
processed_collection, confidence_threshold
|
183 |
+
)
|
184 |
+
|
185 |
+
img_buffer = io.BytesIO()
|
186 |
+
image.save(img_buffer, format="PNG")
|
187 |
+
image_base64 = base64.b64encode(img_buffer.getvalue()).decode("utf-8")
|
188 |
+
|
189 |
+
processing_state = {
|
190 |
+
"collection": serialize_collection(processed_collection),
|
191 |
+
"config": config,
|
192 |
+
"image_base64": image_base64,
|
193 |
+
"image_size": image.size,
|
194 |
+
"document_type": document_type,
|
195 |
+
"confidence_threshold": confidence_threshold,
|
196 |
+
"timestamp": datetime.now().isoformat(),
|
197 |
+
}
|
198 |
+
|
199 |
+
return {
|
200 |
+
"success": True,
|
201 |
+
"results": results,
|
202 |
+
"processing_state": json.dumps(processing_state),
|
203 |
+
"metadata": {
|
204 |
+
"total_lines": len(results.get("text_lines", [])),
|
205 |
+
"average_confidence": calculate_average_confidence(results),
|
206 |
+
"document_type": document_type,
|
207 |
+
"image_dimensions": image.size,
|
208 |
+
},
|
209 |
+
}
|
210 |
+
|
211 |
+
finally:
|
212 |
+
if os.path.exists(temp_image_path):
|
213 |
+
os.unlink(temp_image_path)
|
214 |
+
|
215 |
+
except Exception as e:
|
216 |
+
return {
|
217 |
+
"success": False,
|
218 |
+
"error": f"HTR processing failed: {str(e)}",
|
219 |
+
"results": None,
|
220 |
+
}
|
221 |
+
|
222 |
+
|
223 |
+
def visualize_results(
|
224 |
+
processing_state: str,
|
225 |
+
visualization_type: Literal[
|
226 |
+
"overlay", "confidence_heatmap", "text_regions"
|
227 |
+
] = "overlay",
|
228 |
+
show_confidence: bool = True,
|
229 |
+
highlight_low_confidence: bool = True,
|
230 |
+
image: Optional[Image.Image] = None,
|
231 |
+
) -> Dict:
|
232 |
+
"""
|
233 |
+
Generate interactive visualizations of HTR processing results.
|
234 |
+
|
235 |
+
Creates visual representations of text recognition results including bounding box
|
236 |
+
overlays, confidence heatmaps, and region segmentation displays. Supports multiple
|
237 |
+
visualization modes for different analysis needs.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
processing_state (str): JSON string containing HTR processing results and metadata
|
241 |
+
visualization_type (str): Type of visualization to generate
|
242 |
+
show_confidence (bool): Whether to display confidence scores on visualization
|
243 |
+
highlight_low_confidence (bool): Whether to highlight low-confidence regions
|
244 |
+
image (Image.Image, optional): PIL Image object to use instead of state image
|
245 |
+
|
246 |
+
Returns:
|
247 |
+
dict: Visualization data including base64-encoded images and metadata
|
248 |
+
"""
|
249 |
+
try:
|
250 |
+
state = json.loads(processing_state)
|
251 |
+
collection = deserialize_collection(state["collection"])
|
252 |
+
confidence_threshold = state["confidence_threshold"]
|
253 |
+
|
254 |
+
if image is not None:
|
255 |
+
original_image = image
|
256 |
+
else:
|
257 |
+
image_data = base64.b64decode(state["image_base64"])
|
258 |
+
original_image = Image.open(io.BytesIO(image_data))
|
259 |
+
|
260 |
+
if visualization_type == "overlay":
|
261 |
+
viz_image = create_text_overlay_visualization(
|
262 |
+
original_image, collection, show_confidence, highlight_low_confidence
|
263 |
+
)
|
264 |
+
elif visualization_type == "confidence_heatmap":
|
265 |
+
viz_image = create_confidence_heatmap(
|
266 |
+
original_image, collection, confidence_threshold
|
267 |
+
)
|
268 |
+
elif visualization_type == "text_regions":
|
269 |
+
viz_image = create_region_visualization(original_image, collection)
|
270 |
+
|
271 |
+
img_buffer = io.BytesIO()
|
272 |
+
viz_image.save(img_buffer, format="PNG")
|
273 |
+
img_base64 = base64.b64encode(img_buffer.getvalue()).decode("utf-8")
|
274 |
+
|
275 |
+
viz_metadata = generate_visualization_metadata(collection, visualization_type)
|
276 |
+
|
277 |
+
return {
|
278 |
+
"success": True,
|
279 |
+
"visualization": {
|
280 |
+
"image_base64": img_base64,
|
281 |
+
"image_format": "PNG",
|
282 |
+
"visualization_type": visualization_type,
|
283 |
+
"dimensions": viz_image.size,
|
284 |
+
},
|
285 |
+
"metadata": viz_metadata,
|
286 |
+
"interactive_elements": extract_interactive_elements(collection),
|
287 |
+
}
|
288 |
+
|
289 |
+
except Exception as e:
|
290 |
+
return {
|
291 |
+
"success": False,
|
292 |
+
"error": f"Visualization generation failed: {str(e)}",
|
293 |
+
"visualization": None,
|
294 |
+
}
|
295 |
+
|
296 |
+
|
297 |
+
def export_results(
|
298 |
+
processing_state: str,
|
299 |
+
output_formats: List[Literal["txt", "json", "alto", "page"]] = ["txt"],
|
300 |
+
include_metadata: bool = True,
|
301 |
+
confidence_filter: float = 0.0,
|
302 |
+
) -> Dict:
|
303 |
+
"""
|
304 |
+
Export HTR results to multiple formats including plain text, structured JSON, ALTO XML, and PAGE XML.
|
305 |
+
|
306 |
+
Supports HTRflow's native export functionality with configurable output formats and
|
307 |
+
filtering options. Maintains document structure and metadata across all export formats.
|
308 |
+
|
309 |
+
Args:
|
310 |
+
processing_state (str): JSON string containing HTR processing results
|
311 |
+
output_formats (List[str]): List of output formats to generate
|
312 |
+
include_metadata (bool): Whether to include processing metadata in exports
|
313 |
+
confidence_filter (float): Minimum confidence threshold for included text
|
314 |
+
|
315 |
+
Returns:
|
316 |
+
dict: Export results with content for each requested format
|
317 |
+
"""
|
318 |
+
try:
|
319 |
+
# Parse processing state
|
320 |
+
state = json.loads(processing_state)
|
321 |
+
collection = deserialize_collection(state["collection"])
|
322 |
+
config = state["config"]
|
323 |
+
|
324 |
+
# Generate exports for each requested format
|
325 |
+
exports = {}
|
326 |
+
|
327 |
+
for format_type in output_formats:
|
328 |
+
if format_type == "txt":
|
329 |
+
exports["txt"] = export_plain_text(
|
330 |
+
collection, confidence_filter, include_metadata
|
331 |
+
)
|
332 |
+
elif format_type == "json":
|
333 |
+
exports["json"] = export_structured_json(
|
334 |
+
collection, confidence_filter, include_metadata
|
335 |
+
)
|
336 |
+
elif format_type == "alto":
|
337 |
+
exports["alto"] = export_alto_xml(
|
338 |
+
collection, confidence_filter, include_metadata
|
339 |
+
)
|
340 |
+
elif format_type == "page":
|
341 |
+
exports["page"] = export_page_xml(
|
342 |
+
collection, confidence_filter, include_metadata
|
343 |
+
)
|
344 |
+
|
345 |
+
# Calculate export statistics
|
346 |
+
export_stats = calculate_export_statistics(collection, confidence_filter)
|
347 |
+
|
348 |
+
return {
|
349 |
+
"success": True,
|
350 |
+
"exports": exports,
|
351 |
+
"statistics": export_stats,
|
352 |
+
"export_metadata": {
|
353 |
+
"formats_generated": output_formats,
|
354 |
+
"confidence_filter": confidence_filter,
|
355 |
+
"include_metadata": include_metadata,
|
356 |
+
"timestamp": datetime.now().isoformat(),
|
357 |
+
},
|
358 |
+
}
|
359 |
+
|
360 |
+
except Exception as e:
|
361 |
+
return {
|
362 |
+
"success": False,
|
363 |
+
"error": f"Export generation failed: {str(e)}",
|
364 |
+
"exports": None,
|
365 |
+
}
|
366 |
+
|
367 |
+
|
368 |
+
# Helper Functions
|
369 |
+
def extract_processing_results(
|
370 |
+
collection: Collection, confidence_threshold: float
|
371 |
+
) -> Dict:
|
372 |
+
"""Extract structured results from processed HTRflow Collection."""
|
373 |
+
results = {
|
374 |
+
"extracted_text": "",
|
375 |
+
"text_lines": [],
|
376 |
+
"regions": [],
|
377 |
+
"confidence_scores": [],
|
378 |
+
}
|
379 |
+
|
380 |
+
# Traverse collection hierarchy to extract text and metadata
|
381 |
+
for page in collection.pages:
|
382 |
+
for node in page.traverse():
|
383 |
+
if hasattr(node, "text") and node.text:
|
384 |
+
if (
|
385 |
+
hasattr(node, "confidence")
|
386 |
+
and node.confidence >= confidence_threshold
|
387 |
+
):
|
388 |
+
results["text_lines"].append(
|
389 |
+
{
|
390 |
+
"text": node.text,
|
391 |
+
"confidence": node.confidence,
|
392 |
+
"bbox": getattr(node, "bbox", None),
|
393 |
+
"node_id": getattr(node, "id", None),
|
394 |
+
}
|
395 |
+
)
|
396 |
+
results["extracted_text"] += node.text + "\n"
|
397 |
+
results["confidence_scores"].append(node.confidence)
|
398 |
+
|
399 |
+
return results
|
400 |
+
|
401 |
+
|
402 |
+
def serialize_collection(collection: Collection) -> str:
|
403 |
+
"""Serialize HTRflow Collection to JSON string for state storage."""
|
404 |
+
serialized_data = {"pages": [], "metadata": getattr(collection, "metadata", {})}
|
405 |
+
|
406 |
+
for page in collection.pages:
|
407 |
+
page_data = {
|
408 |
+
"nodes": [],
|
409 |
+
"image_path": getattr(page, "image_path", None),
|
410 |
+
"dimensions": getattr(page, "dimensions", None),
|
411 |
+
}
|
412 |
+
|
413 |
+
for node in page.traverse():
|
414 |
+
node_data = {
|
415 |
+
"text": getattr(node, "text", ""),
|
416 |
+
"confidence": getattr(node, "confidence", 1.0),
|
417 |
+
"bbox": getattr(node, "bbox", None),
|
418 |
+
"node_id": getattr(node, "id", None),
|
419 |
+
"node_type": type(node).__name__,
|
420 |
+
}
|
421 |
+
page_data["nodes"].append(node_data)
|
422 |
+
|
423 |
+
serialized_data["pages"].append(page_data)
|
424 |
+
|
425 |
+
return json.dumps(serialized_data)
|
426 |
+
|
427 |
+
|
428 |
+
def deserialize_collection(serialized_data: str):
|
429 |
+
"""Deserialize JSON string back to HTRflow Collection."""
|
430 |
+
data = json.loads(serialized_data)
|
431 |
+
|
432 |
+
# Mock collection classes for state reconstruction
|
433 |
+
class MockCollection:
|
434 |
+
def __init__(self, data):
|
435 |
+
self.pages = []
|
436 |
+
for page_data in data.get("pages", []):
|
437 |
+
page = MockPage(page_data)
|
438 |
+
self.pages.append(page)
|
439 |
+
|
440 |
+
class MockPage:
|
441 |
+
def __init__(self, page_data):
|
442 |
+
self.nodes = []
|
443 |
+
for node_data in page_data.get("nodes", []):
|
444 |
+
node = MockNode(node_data)
|
445 |
+
self.nodes.append(node)
|
446 |
+
|
447 |
+
def traverse(self):
|
448 |
+
return self.nodes
|
449 |
+
|
450 |
+
class MockNode:
|
451 |
+
def __init__(self, node_data):
|
452 |
+
self.text = node_data.get("text", "")
|
453 |
+
self.confidence = node_data.get("confidence", 1.0)
|
454 |
+
self.bbox = node_data.get("bbox")
|
455 |
+
self.id = node_data.get("node_id")
|
456 |
+
|
457 |
+
return MockCollection(data)
|
458 |
+
|
459 |
+
|
460 |
+
def calculate_average_confidence(results: Dict) -> float:
|
461 |
+
"""Calculate average confidence score from processing results."""
|
462 |
+
confidence_scores = results.get("confidence_scores", [])
|
463 |
+
if not confidence_scores:
|
464 |
+
return 0.0
|
465 |
+
return sum(confidence_scores) / len(confidence_scores)
|
466 |
+
|
467 |
+
|
468 |
+
def create_text_overlay_visualization(
|
469 |
+
image, collection, show_confidence, highlight_low_confidence
|
470 |
+
):
|
471 |
+
"""Create image with text bounding boxes and recognition results overlaid."""
|
472 |
+
viz_image = image.copy()
|
473 |
+
draw = ImageDraw.Draw(viz_image)
|
474 |
+
|
475 |
+
# Define visualization styles
|
476 |
+
bbox_color = (0, 255, 0) # Green for normal confidence
|
477 |
+
low_conf_color = (255, 165, 0) # Orange for low confidence
|
478 |
+
text_color = (255, 255, 255) # White text
|
479 |
+
|
480 |
+
try:
|
481 |
+
font = ImageFont.truetype("arial.ttf", 12)
|
482 |
+
except:
|
483 |
+
font = ImageFont.load_default()
|
484 |
+
|
485 |
+
# Draw bounding boxes and text for each recognized element
|
486 |
+
for page in collection.pages:
|
487 |
+
for node in page.traverse():
|
488 |
+
if (
|
489 |
+
hasattr(node, "bbox")
|
490 |
+
and hasattr(node, "text")
|
491 |
+
and node.bbox
|
492 |
+
and node.text
|
493 |
+
):
|
494 |
+
bbox = node.bbox
|
495 |
+
confidence = getattr(node, "confidence", 1.0)
|
496 |
+
|
497 |
+
# Choose color based on confidence
|
498 |
+
if highlight_low_confidence and confidence < 0.7:
|
499 |
+
color = low_conf_color
|
500 |
+
else:
|
501 |
+
color = bbox_color
|
502 |
+
|
503 |
+
# Draw bounding box
|
504 |
+
draw.rectangle(bbox, outline=color, width=2)
|
505 |
+
|
506 |
+
# Add confidence score if requested
|
507 |
+
if show_confidence:
|
508 |
+
conf_text = f"{confidence:.2f}"
|
509 |
+
draw.text((bbox[0], bbox[1] - 15), conf_text, fill=color, font=font)
|
510 |
+
|
511 |
+
return viz_image
|
512 |
+
|
513 |
+
|
514 |
+
def create_confidence_heatmap(image, collection, confidence_threshold):
|
515 |
+
"""Create confidence heatmap visualization."""
|
516 |
+
viz_image = image.copy()
|
517 |
+
|
518 |
+
# Create heatmap overlay based on confidence scores
|
519 |
+
for page in collection.pages:
|
520 |
+
for node in page.traverse():
|
521 |
+
if hasattr(node, "bbox") and hasattr(node, "confidence") and node.bbox:
|
522 |
+
confidence = node.confidence
|
523 |
+
# Color mapping: red (low) -> yellow (medium) -> green (high)
|
524 |
+
if confidence < 0.5:
|
525 |
+
color = (255, 0, 0, 100) # Red with transparency
|
526 |
+
elif confidence < 0.8:
|
527 |
+
color = (255, 255, 0, 100) # Yellow with transparency
|
528 |
+
else:
|
529 |
+
color = (0, 255, 0, 100) # Green with transparency
|
530 |
+
|
531 |
+
# Create overlay image for transparency
|
532 |
+
overlay = Image.new("RGBA", viz_image.size, (0, 0, 0, 0))
|
533 |
+
overlay_draw = ImageDraw.Draw(overlay)
|
534 |
+
overlay_draw.rectangle(node.bbox, fill=color)
|
535 |
+
viz_image = Image.alpha_composite(viz_image.convert("RGBA"), overlay)
|
536 |
+
|
537 |
+
return viz_image.convert("RGB")
|
538 |
+
|
539 |
+
|
540 |
+
def create_region_visualization(image, collection):
|
541 |
+
"""Create region segmentation visualization."""
|
542 |
+
viz_image = image.copy()
|
543 |
+
draw = ImageDraw.Draw(viz_image)
|
544 |
+
|
545 |
+
# Draw different colors for different region types
|
546 |
+
region_colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0)]
|
547 |
+
region_count = 0
|
548 |
+
|
549 |
+
for page in collection.pages:
|
550 |
+
for node in page.traverse():
|
551 |
+
if hasattr(node, "bbox") and node.bbox:
|
552 |
+
color = region_colors[region_count % len(region_colors)]
|
553 |
+
draw.rectangle(node.bbox, outline=color, width=3)
|
554 |
+
region_count += 1
|
555 |
+
|
556 |
+
return viz_image
|
557 |
+
|
558 |
+
|
559 |
+
def generate_visualization_metadata(collection, visualization_type):
|
560 |
+
"""Generate metadata for visualization results."""
|
561 |
+
total_elements = 0
|
562 |
+
confidence_stats = []
|
563 |
+
|
564 |
+
for page in collection.pages:
|
565 |
+
for node in page.traverse():
|
566 |
+
if hasattr(node, "text") and node.text:
|
567 |
+
total_elements += 1
|
568 |
+
if hasattr(node, "confidence"):
|
569 |
+
confidence_stats.append(node.confidence)
|
570 |
+
|
571 |
+
return {
|
572 |
+
"total_elements": total_elements,
|
573 |
+
"visualization_type": visualization_type,
|
574 |
+
"confidence_stats": {
|
575 |
+
"min": min(confidence_stats) if confidence_stats else 0,
|
576 |
+
"max": max(confidence_stats) if confidence_stats else 0,
|
577 |
+
"avg": sum(confidence_stats) / len(confidence_stats)
|
578 |
+
if confidence_stats
|
579 |
+
else 0,
|
580 |
+
},
|
581 |
+
}
|
582 |
+
|
583 |
+
|
584 |
+
def extract_interactive_elements(collection):
|
585 |
+
"""Extract interactive elements for visualization."""
|
586 |
+
elements = []
|
587 |
+
|
588 |
+
for page in collection.pages:
|
589 |
+
for node in page.traverse():
|
590 |
+
if (
|
591 |
+
hasattr(node, "bbox")
|
592 |
+
and hasattr(node, "text")
|
593 |
+
and node.bbox
|
594 |
+
and node.text
|
595 |
+
):
|
596 |
+
elements.append(
|
597 |
+
{
|
598 |
+
"bbox": node.bbox,
|
599 |
+
"text": node.text,
|
600 |
+
"confidence": getattr(node, "confidence", 1.0),
|
601 |
+
"node_id": getattr(node, "id", None),
|
602 |
+
}
|
603 |
+
)
|
604 |
+
|
605 |
+
return elements
|
606 |
+
|
607 |
+
|
608 |
+
def export_plain_text(
|
609 |
+
collection, confidence_filter: float, include_metadata: bool
|
610 |
+
) -> str:
|
611 |
+
"""Export recognition results as plain text."""
|
612 |
+
text_lines = []
|
613 |
+
|
614 |
+
if include_metadata:
|
615 |
+
text_lines.append(f"# HTR Export Results")
|
616 |
+
text_lines.append(f"# Confidence Filter: {confidence_filter}")
|
617 |
+
text_lines.append(f"# Export Time: {datetime.now().isoformat()}")
|
618 |
+
text_lines.append("")
|
619 |
+
|
620 |
+
# Extract text from collection hierarchy
|
621 |
+
for page in collection.pages:
|
622 |
+
for node in page.traverse():
|
623 |
+
if hasattr(node, "text") and node.text:
|
624 |
+
confidence = getattr(node, "confidence", 1.0)
|
625 |
+
if confidence >= confidence_filter:
|
626 |
+
text_lines.append(node.text)
|
627 |
+
|
628 |
+
return "\n".join(text_lines)
|
629 |
+
|
630 |
+
|
631 |
+
def export_structured_json(
|
632 |
+
collection, confidence_filter: float, include_metadata: bool
|
633 |
+
) -> str:
|
634 |
+
"""Export results as structured JSON with full hierarchy."""
|
635 |
+
result = {"document": {"pages": []}}
|
636 |
+
|
637 |
+
if include_metadata:
|
638 |
+
result["metadata"] = {
|
639 |
+
"confidence_filter": confidence_filter,
|
640 |
+
"export_time": datetime.now().isoformat(),
|
641 |
+
"total_pages": len(collection.pages),
|
642 |
+
}
|
643 |
+
|
644 |
+
# Build hierarchical structure
|
645 |
+
for page_idx, page in enumerate(collection.pages):
|
646 |
+
page_data = {"page_id": page_idx, "regions": []}
|
647 |
+
|
648 |
+
for node in page.traverse():
|
649 |
+
if hasattr(node, "text") and node.text:
|
650 |
+
confidence = getattr(node, "confidence", 1.0)
|
651 |
+
if confidence >= confidence_filter:
|
652 |
+
node_data = {
|
653 |
+
"text": node.text,
|
654 |
+
"confidence": confidence,
|
655 |
+
"bbox": getattr(node, "bbox", None),
|
656 |
+
"node_id": getattr(node, "id", None),
|
657 |
+
}
|
658 |
+
page_data["regions"].append(node_data)
|
659 |
+
|
660 |
+
result["document"]["pages"].append(page_data)
|
661 |
+
|
662 |
+
return json.dumps(result, indent=2, ensure_ascii=False)
|
663 |
+
|
664 |
+
|
665 |
+
def export_alto_xml(
|
666 |
+
collection, confidence_filter: float, include_metadata: bool
|
667 |
+
) -> str:
|
668 |
+
"""Export results as ALTO XML format."""
|
669 |
+
# Simplified ALTO XML generation
|
670 |
+
xml_lines = ['<?xml version="1.0" encoding="UTF-8"?>']
|
671 |
+
xml_lines.append('<alto xmlns="http://www.loc.gov/standards/alto/ns-v4#">')
|
672 |
+
xml_lines.append(" <Description>")
|
673 |
+
if include_metadata:
|
674 |
+
xml_lines.append(f" <sourceImageInformation>")
|
675 |
+
xml_lines.append(f" <fileName>htr_processed_image</fileName>")
|
676 |
+
xml_lines.append(f" </sourceImageInformation>")
|
677 |
+
xml_lines.append(" </Description>")
|
678 |
+
xml_lines.append(" <Layout>")
|
679 |
+
xml_lines.append(" <Page>")
|
680 |
+
|
681 |
+
for page in collection.pages:
|
682 |
+
for node in page.traverse():
|
683 |
+
if hasattr(node, "text") and node.text:
|
684 |
+
confidence = getattr(node, "confidence", 1.0)
|
685 |
+
if confidence >= confidence_filter:
|
686 |
+
bbox = getattr(node, "bbox", [0, 0, 100, 20])
|
687 |
+
xml_lines.append(
|
688 |
+
f' <TextLine HPOS="{bbox[0]}" VPOS="{bbox[1]}" WIDTH="{bbox[2] - bbox[0]}" HEIGHT="{bbox[3] - bbox[1]}">'
|
689 |
+
)
|
690 |
+
xml_lines.append(
|
691 |
+
f' <String CONTENT="{node.text}" WC="{confidence:.3f}"/>'
|
692 |
+
)
|
693 |
+
xml_lines.append(" </TextLine>")
|
694 |
+
|
695 |
+
xml_lines.append(" </Page>")
|
696 |
+
xml_lines.append(" </Layout>")
|
697 |
+
xml_lines.append("</alto>")
|
698 |
+
|
699 |
+
return "\n".join(xml_lines)
|
700 |
+
|
701 |
+
|
702 |
+
def export_page_xml(
|
703 |
+
collection, confidence_filter: float, include_metadata: bool
|
704 |
+
) -> str:
|
705 |
+
"""Export results as PAGE XML format."""
|
706 |
+
# Simplified PAGE XML generation
|
707 |
+
xml_lines = ['<?xml version="1.0" encoding="UTF-8"?>']
|
708 |
+
xml_lines.append(
|
709 |
+
'<PcGts xmlns="http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15">'
|
710 |
+
)
|
711 |
+
if include_metadata:
|
712 |
+
xml_lines.append(" <Metadata>")
|
713 |
+
xml_lines.append(f" <Created>{datetime.now().isoformat()}</Created>")
|
714 |
+
xml_lines.append(" </Metadata>")
|
715 |
+
xml_lines.append(" <Page>")
|
716 |
+
|
717 |
+
for page in collection.pages:
|
718 |
+
for node in page.traverse():
|
719 |
+
if hasattr(node, "text") and node.text:
|
720 |
+
confidence = getattr(node, "confidence", 1.0)
|
721 |
+
if confidence >= confidence_filter:
|
722 |
+
bbox = getattr(node, "bbox", [0, 0, 100, 20])
|
723 |
+
xml_lines.append(f" <TextRegion>")
|
724 |
+
xml_lines.append(
|
725 |
+
f' <Coords points="{bbox[0]},{bbox[1]} {bbox[2]},{bbox[1]} {bbox[2]},{bbox[3]} {bbox[0]},{bbox[3]}"/>'
|
726 |
+
)
|
727 |
+
xml_lines.append(f" <TextLine>")
|
728 |
+
xml_lines.append(f' <TextEquiv conf="{confidence:.3f}">')
|
729 |
+
xml_lines.append(f" <Unicode>{node.text}</Unicode>")
|
730 |
+
xml_lines.append(" </TextEquiv>")
|
731 |
+
xml_lines.append(" </TextLine>")
|
732 |
+
xml_lines.append(" </TextRegion>")
|
733 |
+
|
734 |
+
xml_lines.append(" </Page>")
|
735 |
+
xml_lines.append("</PcGts>")
|
736 |
+
|
737 |
+
return "\n".join(xml_lines)
|
738 |
+
|
739 |
+
|
740 |
+
def calculate_export_statistics(collection, confidence_filter: float) -> Dict:
|
741 |
+
"""Calculate statistics for export results."""
|
742 |
+
total_text_elements = 0
|
743 |
+
filtered_text_elements = 0
|
744 |
+
confidence_scores = []
|
745 |
+
total_characters = 0
|
746 |
+
|
747 |
+
for page in collection.pages:
|
748 |
+
for node in page.traverse():
|
749 |
+
if hasattr(node, "text") and node.text:
|
750 |
+
total_text_elements += 1
|
751 |
+
confidence = getattr(node, "confidence", 1.0)
|
752 |
+
confidence_scores.append(confidence)
|
753 |
+
|
754 |
+
if confidence >= confidence_filter:
|
755 |
+
filtered_text_elements += 1
|
756 |
+
total_characters += len(node.text)
|
757 |
+
|
758 |
+
return {
|
759 |
+
"total_text_elements": total_text_elements,
|
760 |
+
"filtered_text_elements": filtered_text_elements,
|
761 |
+
"filter_retention_rate": filtered_text_elements / total_text_elements
|
762 |
+
if total_text_elements > 0
|
763 |
+
else 0,
|
764 |
+
"total_characters": total_characters,
|
765 |
+
"average_confidence": sum(confidence_scores) / len(confidence_scores)
|
766 |
+
if confidence_scores
|
767 |
+
else 0,
|
768 |
+
"confidence_range": {
|
769 |
+
"min": min(confidence_scores) if confidence_scores else 0,
|
770 |
+
"max": max(confidence_scores) if confidence_scores else 0,
|
771 |
+
},
|
772 |
+
}
|
773 |
+
|
774 |
+
|
775 |
+
# Main Gradio Application with MCP Server
|
776 |
+
def create_htrflow_mcp_server():
|
777 |
+
"""Create the complete HTRflow MCP server with all three tools."""
|
778 |
+
|
779 |
+
demo = gr.TabbedInterface(
|
780 |
+
[
|
781 |
+
gr.Interface(
|
782 |
+
fn=process_htr,
|
783 |
+
inputs=[
|
784 |
+
gr.Image(type="pil", label="Upload Image"),
|
785 |
+
gr.Dropdown(
|
786 |
+
choices=[
|
787 |
+
"letter_english",
|
788 |
+
"letter_swedish",
|
789 |
+
"spread_english",
|
790 |
+
"spread_swedish",
|
791 |
+
],
|
792 |
+
value="letter_english",
|
793 |
+
label="Document Type",
|
794 |
+
),
|
795 |
+
gr.Slider(0.0, 1.0, value=0.8, label="Confidence Threshold"),
|
796 |
+
gr.Textbox(
|
797 |
+
label="Custom Settings (JSON)",
|
798 |
+
placeholder="Optional custom pipeline settings",
|
799 |
+
),
|
800 |
+
],
|
801 |
+
outputs=gr.JSON(label="Processing Results"),
|
802 |
+
title="HTR Processing Tool",
|
803 |
+
description="Process handwritten text using configurable HTRflow pipelines",
|
804 |
+
api_name="process_htr",
|
805 |
+
),
|
806 |
+
gr.Interface(
|
807 |
+
fn=visualize_results,
|
808 |
+
inputs=[
|
809 |
+
gr.Textbox(
|
810 |
+
label="Processing State (JSON)",
|
811 |
+
placeholder="Paste processing results from HTR tool",
|
812 |
+
),
|
813 |
+
gr.Dropdown(
|
814 |
+
choices=["overlay", "confidence_heatmap", "text_regions"],
|
815 |
+
value="overlay",
|
816 |
+
label="Visualization Type",
|
817 |
+
),
|
818 |
+
gr.Checkbox(value=True, label="Show Confidence Scores"),
|
819 |
+
gr.Checkbox(value=True, label="Highlight Low Confidence"),
|
820 |
+
gr.Image(
|
821 |
+
type="pil",
|
822 |
+
label="Image (optional - will use image from processing state if not provided)",
|
823 |
+
),
|
824 |
+
],
|
825 |
+
outputs=gr.JSON(label="Visualization Results"),
|
826 |
+
title="Results Visualization Tool",
|
827 |
+
description="Generate interactive visualizations of HTR results",
|
828 |
+
api_name="visualize_results",
|
829 |
+
),
|
830 |
+
gr.Interface(
|
831 |
+
fn=export_results,
|
832 |
+
inputs=[
|
833 |
+
gr.Textbox(
|
834 |
+
label="Processing State (JSON)",
|
835 |
+
placeholder="Paste processing results from HTR tool",
|
836 |
+
),
|
837 |
+
gr.CheckboxGroup(
|
838 |
+
choices=["txt", "json", "alto", "page"],
|
839 |
+
value=["txt"],
|
840 |
+
label="Output Formats",
|
841 |
+
),
|
842 |
+
gr.Checkbox(value=True, label="Include Metadata"),
|
843 |
+
gr.Slider(0.0, 1.0, value=0.0, label="Confidence Filter"),
|
844 |
+
],
|
845 |
+
outputs=gr.JSON(label="Export Results"),
|
846 |
+
title="Export Tool",
|
847 |
+
description="Export HTR results to multiple formats",
|
848 |
+
api_name="export_results",
|
849 |
+
),
|
850 |
+
],
|
851 |
+
["HTR Processing", "Results Visualization", "Export Results"],
|
852 |
+
title="HTRflow MCP Server",
|
853 |
+
)
|
854 |
+
|
855 |
+
return demo
|
856 |
+
|
857 |
+
|
858 |
+
# Launch MCP Server
|
859 |
+
if __name__ == "__main__":
|
860 |
+
demo = create_htrflow_mcp_server()
|
861 |
+
demo.launch(mcp_server=True, share=False, server_name="0.0.0.0", server_port=7860)
|
pyproject.toml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "app"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.10"
|
7 |
+
dependencies = [
|
8 |
+
"gradio>=5.33.0",
|
9 |
+
"htrflow==0.2.5",
|
10 |
+
"pillow>=11.2.1",
|
11 |
+
"ruff>=0.11.13",
|
12 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
htrflow==0.2.5
|
2 |
+
ruff
|
3 |
+
gradio>=5.33.0
|
4 |
+
pillow
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|