File size: 10,515 Bytes
cfb37bf fb3185e 133333c c662fe8 c79571d 1ec4316 f094617 c79571d fb3185e cfb37bf c79571d c662fe8 c79571d 490767e c79571d 490767e c662fe8 fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d 0dfe1bf c79571d 91e2f1d 0dfe1bf fb3185e 0dfe1bf c79571d d6e55c9 0dfe1bf fb3185e c79571d 466f0d3 0dfe1bf c79571d 0dfe1bf c79571d 0dfe1bf 133333c c79571d 0dfe1bf c79571d 0dfe1bf c79571d fb3185e c662fe8 c79571d c662fe8 f31f6ca c79571d f31f6ca c662fe8 c79571d 91e2f1d 0dfe1bf 91e2f1d 0dfe1bf c79571d fb3185e 0dfe1bf 133333c fb3185e c662fe8 fb3185e a987d91 c662fe8 fb3185e c79571d fb3185e 0dfe1bf c79571d 0dfe1bf c79571d 0dfe1bf c662fe8 f31f6ca c79571d 133333c c79571d 0dfe1bf c6b50f6 c79571d 466f0d3 c6b50f6 c79571d fb3185e c6b50f6 0dfe1bf c6b50f6 fb3185e c79571d fb3185e 466f0d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import gradio as gr
import json
import tempfile
import os
from typing import List, Optional, Literal, Tuple
from PIL import Image
import spaces
from pathlib import Path
from visualizer import htrflow_visualizer
from htrflow.volume.volume import Collection
from htrflow.pipeline.pipeline import Pipeline
DEFAULT_OUTPUT = "alto"
FORMAT_CHOICES = [
"letter_english",
"letter_swedish",
"spread_english",
"spread_swedish",
]
FILE_CHOICES = ["txt", "alto", "page", "json"]
FormatChoices = Literal[
"letter_english", "letter_swedish", "spread_english", "spread_swedish"
]
FileChoices = Literal["txt", "alto", "page", "json"]
PIPELINE_CONFIGS = {
"letter_english": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "OrderLines"},
]
},
"letter_swedish": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {
"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"
},
"generation_settings": {"batch_size": 16},
},
},
{"step": "OrderLines"},
]
},
"spread_english": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
"generation_settings": {"batch_size": 4},
},
},
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
]
},
"spread_swedish": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
"generation_settings": {"batch_size": 4},
},
},
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {
"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"
},
"generation_settings": {"batch_size": 16},
},
},
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
]
},
}
@spaces.GPU
def _process_htr_pipeline(
image_path: str, document_type: FormatChoices, custom_settings: Optional[str] = None
) -> Collection:
"""Process HTR pipeline and return the processed collection."""
if not image_path:
raise ValueError("No image provided")
if custom_settings:
try:
config = json.loads(custom_settings)
except json.JSONDecodeError:
raise ValueError("Invalid JSON in custom_settings parameter")
else:
config = PIPELINE_CONFIGS[document_type]
collection = Collection([image_path])
pipeline = Pipeline.from_config(config)
try:
processed_collection = pipeline.run(collection)
return processed_collection
except Exception as pipeline_error:
raise RuntimeError(f"Pipeline execution failed: {str(pipeline_error)}")
def htr_text(
image_path: str,
document_type: FormatChoices = "letter_swedish",
custom_settings: Optional[str] = None,
) -> str:
"""Extract text from handwritten documents using HTR.
returns:
str: Extracted text from the image.
"""
try:
processed_collection = _process_htr_pipeline(
image_path, document_type, custom_settings
)
extracted_text = extract_text_from_collection(processed_collection)
return extracted_text
except Exception as e:
return f"HTR text extraction failed: {str(e)}"
def htrflow_file(
image_path: str,
document_type: FormatChoices = "letter_swedish",
output_format: FileChoices = DEFAULT_OUTPUT,
custom_settings: Optional[str] = None,
server_name: str = "https://gabriel-htrflow-mcp.hf.space",
) -> str:
"""
Process HTR and return a formatted file for download.
Returns:
str: File path for direct download via gr.File (server_name/gradio_api/file=/tmp/gradio/{temp_folder}/{file_name})
"""
try:
original_filename = Path(image_path).stem or "output"
processed_collection = _process_htr_pipeline(
image_path, document_type, custom_settings
)
temp_dir = Path(tempfile.mkdtemp())
export_dir = temp_dir / output_format
processed_collection.save(directory=str(export_dir), serializer=output_format)
output_file_path = None
for root, _, files in os.walk(export_dir):
for file in files:
old_path = os.path.join(root, file)
file_ext = Path(file).suffix
new_filename = (
f"{original_filename}.{output_format}"
if not file_ext
else f"{original_filename}{file_ext}"
)
new_path = os.path.join(root, new_filename)
os.rename(old_path, new_path)
output_file_path = new_path
break
if output_file_path and os.path.exists(output_file_path):
return output_file_path
else:
return None
except Exception as e:
return None
def extract_text_from_collection(collection: Collection) -> str:
text_lines = []
for page in collection.pages:
for node in page.traverse():
if hasattr(node, "text") and node.text:
text_lines.append(node.text)
return "\n".join(text_lines)
def create_htrflow_mcp_server():
htr_text_interface = gr.Interface(
fn=htr_text,
inputs=[
gr.Image(type="filepath", label="Upload Image or Enter URL"),
gr.Dropdown(
choices=FORMAT_CHOICES, value="letter_swedish", label="Document Type"
),
gr.Textbox(
label="Custom Settings (JSON)",
placeholder="Optional custom pipeline settings",
value="",
),
],
outputs=[gr.Textbox(label="Extracted Text", lines=10)],
description="Extract plain text from handwritten documents using HTR",
api_name="htr_text",
)
htrflow_file_interface = gr.Interface(
fn=htrflow_file,
inputs=[
gr.Image(type="filepath", label="Upload Image or Enter URL"),
gr.Dropdown(
choices=FORMAT_CHOICES, value="letter_swedish", label="Document Type"
),
gr.Dropdown(
choices=FILE_CHOICES, value=DEFAULT_OUTPUT, label="Output Format"
),
gr.Textbox(
label="Custom Settings (JSON)",
placeholder="Optional custom pipeline settings",
value="",
),
gr.Textbox(
label="Server Name",
value="https://gabriel-htrflow-mcp.hf.space",
placeholder="Server URL for download links",
),
],
outputs=[gr.File(label="Download HTR Output File")],
description="Process handwritten text and get formatted file (ALTO XML, PAGE XML, JSON, or TXT)",
api_name="htrflow_file",
)
htrflow_viz = gr.Interface(
fn=htrflow_visualizer,
inputs=[
gr.Image(type="filepath", label="Upload Original Image"),
gr.File(label="Upload ALTO/PAGE XML File"),
gr.Textbox(
label="Server Name",
value="https://gabriel-htrflow-mcp.hf.space",
placeholder="Server URL for download links",
),
],
outputs=gr.File(label="Download Visualization Image"),
description="Visualize HTR results by overlaying text regions and polygons on the original image",
api_name="htrflow_visualizer",
)
demo = gr.TabbedInterface(
[htr_text_interface, htrflow_file_interface, htrflow_viz],
["HTR Text", "HTR File", "HTR Visualizer"],
title="HTRflow Handwritten Text Recognition",
)
return demo
if __name__ == "__main__":
demo = create_htrflow_mcp_server()
demo.launch(mcp_server=True, share=False, debug=False)
|