File size: 11,305 Bytes
cfb37bf fb3185e 133333c c662fe8 1ec4316 f094617 fb3185e cfb37bf c662fe8 490767e c662fe8 fb3185e f094617 fb3185e f094617 fb3185e f094617 fb3185e f094617 fb3185e f094617 fb3185e f094617 fb3185e 133333c 91e2f1d c6b50f6 6d382b7 91e2f1d 6d382b7 133333c 6d382b7 c6b50f6 6d382b7 133333c 6d382b7 c6b50f6 6d382b7 91e2f1d 133333c 9ebc9b2 91e2f1d 133333c fb3185e d6e55c9 f31f6ca d6e55c9 133333c d6e55c9 fb3185e f31f6ca d6e55c9 fb3185e d6e55c9 133333c fb3185e c662fe8 f31f6ca c662fe8 d6e55c9 91e2f1d 753cdf9 c6b50f6 133333c c6b50f6 133333c 91e2f1d 133333c c662fe8 fb3185e 133333c c6b50f6 fb3185e c662fe8 fb3185e a987d91 c662fe8 fb3185e c6b50f6 c662fe8 f31f6ca 490767e 91e2f1d fb3185e 133333c 9ebc9b2 c6b50f6 91e2f1d c6b50f6 fb3185e c6b50f6 fb3185e 6d382b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import gradio as gr
import json
import tempfile
import os
from typing import List, Optional, Literal, Tuple
from PIL import Image
import spaces
from pathlib import Path
from htrflow.volume.volume import Collection
from htrflow.pipeline.pipeline import Pipeline
DEFAULT_OUTPUT = "alto"
FORMAT_CHOICES = ["letter_english", "letter_swedish", "spread_english", "spread_swedish"]
FILE_CHOICES = ["txt", "alto", "page", "json"]
FormatChoices = Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"]
FileChoices = Literal["txt", "alto", "page", "json"]
PIPELINE_CONFIGS = {
"letter_english": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "OrderLines"},
]
},
"letter_swedish": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "OrderLines"},
]
},
"spread_english": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
"generation_settings": {"batch_size": 4},
},
},
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
]
},
"spread_swedish": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
"generation_settings": {"batch_size": 4},
},
},
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
]
},
}
@spaces.GPU
def htrflow_htr_url(image_path: str, document_type: FormatChoices = "letter_swedish", output_format: FileChoices = DEFAULT_OUTPUT, custom_settings: Optional[str] = None, server_name: str = "https://gabriel-htrflow-mcp.hf.space") -> Tuple[str, str]:
"""
Process handwritten text recognition (HTR) on uploaded images and return both file content and download link.
This function uses machine learning models to automatically detect, segment, and transcribe handwritten text
from historical documents. It supports different document types and languages, with specialized models
trained on historical handwriting from the Swedish National Archives (Riksarkivet).
Args:
image_path (str): The file path or URL to the image containing handwritten text to be processed.
Supports common image formats like JPG, PNG, TIFF.
document_type (FormatChoices): The type of document and language processing template to use.
Available options:
- "letter_english": Single-page English handwritten letters
- "letter_swedish": Single-page Swedish handwritten letters (default)
- "spread_english": Two-page spread English documents with marginalia
- "spread_swedish": Two-page spread Swedish documents with marginalia
Default: "letter_swedish"
output_format (FileChoices): The format for the output file containing the transcribed text.
Available options:
- "txt": Plain text format with line breaks
- "alto": ALTO XML format with detailed layout and coordinate information
- "page": PAGE XML format with structural markup and positioning data
- "json": JSON format with structured text, layout information and metadata
Default: "alto"
custom_settings (Optional[str]): Advanced users can provide custom pipeline configuration as a
JSON string to override the default processing steps.
Default: None (uses predefined configuration for document_type)
server_name (str): The base URL of the server for constructing download links.
Default: "https://gabriel-htrflow-mcp.hf.space"
Returns:
Tuple[str, str]: A tuple containing:
- JSON string with extracted text, file content
- File path for direct download via gr.File (server_name/gradio_api/file=/tmp/gradio/{temp_folder}/{file_name})
"""
if not image_path:
error_json = json.dumps({"error": "No image provided"})
return error_json, None
try:
original_filename = Path(image_path).stem or "output"
if custom_settings:
try:
config = json.loads(custom_settings)
except json.JSONDecodeError:
error_json = json.dumps({"error": "Invalid JSON in custom_settings parameter"})
return error_json, None
else:
config = PIPELINE_CONFIGS[document_type]
collection = Collection([image_path])
pipeline = Pipeline.from_config(config)
try:
processed_collection = pipeline.run(collection)
except Exception as pipeline_error:
error_json = json.dumps({"error": f"Pipeline execution failed: {str(pipeline_error)}"})
return error_json, None
extracted_text = extract_text_from_collection(processed_collection)
temp_dir = Path(tempfile.mkdtemp())
export_dir = temp_dir / output_format
processed_collection.save(directory=str(export_dir), serializer=output_format)
output_file_path = None
for root, _, files in os.walk(export_dir):
for file in files:
old_path = os.path.join(root, file)
file_ext = Path(file).suffix
new_filename = f"{original_filename}.{output_format}" if not file_ext else f"{original_filename}{file_ext}"
new_path = os.path.join(root, new_filename)
os.rename(old_path, new_path)
output_file_path = new_path
break
if output_file_path and os.path.exists(output_file_path):
with open(output_file_path, 'r', encoding='utf-8') as f:
file_content = f.read()
result = {
"text": extracted_text,
"content": file_content,
}
json_result = json.dumps(result, ensure_ascii=False, indent=2)
return json_result, output_file_path
else:
error_json = json.dumps({"error": "Failed to generate output file"})
return error_json, None
except Exception as e:
error_json = json.dumps({"error": f"HTR processing failed: {str(e)}"})
return error_json, None
def htrflow_visualizer(image: str, htr_document: str) -> str:
pass
def extract_text_from_collection(collection: Collection) -> str:
text_lines = []
for page in collection.pages:
for node in page.traverse():
if hasattr(node, "text") and node.text:
text_lines.append(node.text)
return "\n".join(text_lines)
def create_htrflow_mcp_server():
htrflow_url = gr.Interface(
fn=htrflow_htr_url,
inputs=[
gr.Image(type="filepath", label="Upload Image or Enter URL"),
gr.Dropdown(choices=FORMAT_CHOICES, value="letter_swedish", label="Document Type"),
gr.Dropdown(choices=FILE_CHOICES, value=DEFAULT_OUTPUT, label="Output Format"),
gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings", value=""),
],
outputs=[
gr.Textbox(label="HTR Result (JSON)", lines=10),
gr.File(label="Download HTR Output File")
],
description="Process handwritten text from uploaded file or URL and get both content and download link for file",
api_name="htrflow_htr_url",
)
htrflow_viz = gr.Interface(
fn=htrflow_visualizer,
inputs=[
gr.Image(type="filepath", label="Upload Image or Enter URL"),
gr.Textbox(label="HTR Document content", placeholder="Path to the HTR document file", value=""),
],
outputs=gr.File(label="Download Output File"),
description="Visualize document",
api_name="htrflow_visualizer"
)
demo = gr.TabbedInterface(
[htrflow_url, htrflow_viz],
["HTR URL", "HTR Visualizer"],
title="HTRflow Handwritten Text Recognition",
)
return demo
if __name__ == "__main__":
demo = create_htrflow_mcp_server()
demo.launch(mcp_server=True, share=False, debug=False) |