Abid Ali Awan
Refine portfolio data extraction in financial agent: Enhance JSON response to include total investment field, improve markdown handling, and validate JSON structure for better accuracy. Update error messages in tools.py to include debug information for input received.
92d263d
import json | |
import operator | |
import re | |
from typing import Annotated, List, Tuple, TypedDict, Union | |
from langchain.agents import AgentExecutor, create_openai_tools_agent | |
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain.schema import AIMessage, HumanMessage, SystemMessage | |
from langchain.tools import Tool | |
from langchain_openai import ChatOpenAI | |
class AgentState(TypedDict): | |
messages: Annotated[List[Union[HumanMessage, AIMessage]], operator.add] | |
context: dict | |
class FinancialAdvisorAgent: | |
def __init__(self, tools: List[Tool], openai_api_key: str): | |
self.tools = tools | |
self.llm = ChatOpenAI( | |
api_key=openai_api_key, model="gpt-4.1-mini-2025-04-14", temperature=0.7 | |
) | |
self.tools_by_name = {tool.name: tool for tool in tools} | |
# Create agent with tools | |
self.system_prompt = """You are a professional financial advisor AI assistant with access to specialized tools. | |
Available tools: | |
- budget_planner: Use when users ask about budgeting, income allocation, or expense planning. Input should be JSON with 'income' and 'expenses' keys. | |
- investment_analyzer: Use when users ask about specific stocks or investments. Input should be a stock symbol (e.g., AAPL). | |
- market_trends: Use when users ask about market trends or financial news. Input should be a search query. | |
- portfolio_analyzer: Use when users want to analyze their portfolio. Input should be JSON with 'holdings' array. | |
IMPORTANT: You MUST use these tools when answering financial questions. Do not provide generic advice without using the appropriate tool first. | |
When a user asks a question: | |
1. Identify which tool is most appropriate | |
2. Extract or request the necessary information | |
3. Use the tool to get specific data | |
4. Provide advice based on the tool's output""" | |
self.prompt = ChatPromptTemplate.from_messages( | |
[ | |
("system", self.system_prompt), | |
MessagesPlaceholder(variable_name="messages"), | |
("human", "{input}"), | |
MessagesPlaceholder(variable_name="agent_scratchpad"), | |
] | |
) | |
self.agent = create_openai_tools_agent(self.llm, self.tools, self.prompt) | |
self.agent_executor = AgentExecutor( | |
agent=self.agent, | |
tools=self.tools, | |
verbose=True, | |
return_intermediate_steps=True, | |
) | |
def _extract_tool_usage(self, intermediate_steps): | |
"""Extract tool usage from intermediate steps""" | |
tools_used = [] | |
tool_results = [] | |
for action, result in intermediate_steps: | |
if hasattr(action, "tool"): | |
tools_used.append(action.tool) | |
tool_results.append(result) | |
# Return the last tool used and its result for backward compatibility | |
# But also return all tools and results for multi-tool scenarios | |
if tools_used: | |
return tools_used[-1], tool_results[-1], tools_used, tool_results | |
return None, None, [], [] | |
def _prepare_tool_input(self, message: str, tool_name: str) -> str: | |
"""Prepare input for specific tools based on the message""" | |
if tool_name == "investment_analyzer": | |
# Use OpenAI to extract stock symbol from natural language | |
extraction_prompt = f"""Extract the stock symbol from this message: "{message}" | |
If the user mentions a company name, return the corresponding stock ticker symbol. | |
If they mention a ticker symbol directly, return that symbol. | |
If no stock or company is mentioned, return "UNKNOWN". | |
Examples: | |
- "Tell me about NVIDIA" -> "NVDA" | |
- "Analyze AAPL stock" -> "AAPL" | |
- "How is Tesla doing?" -> "TSLA" | |
- "What about Microsoft stock?" -> "MSFT" | |
Return only the stock symbol, nothing else.""" | |
try: | |
response = self.llm.invoke([ | |
SystemMessage(content="You are a stock symbol extraction assistant. Return only the ticker symbol."), | |
HumanMessage(content=extraction_prompt) | |
]) | |
extracted_symbol = response.content.strip().upper() | |
if extracted_symbol and extracted_symbol != "UNKNOWN": | |
return extracted_symbol | |
except Exception: | |
pass | |
# Fallback to regex if LLM fails | |
symbols = re.findall(r"\b[A-Z]{2,5}\b", message) | |
return symbols[0] if symbols else "" | |
elif tool_name == "budget_planner": | |
# Use OpenAI to extract budget information from natural language | |
extraction_prompt = f"""Extract budget information from this message: "{message}" | |
Extract: | |
1. Monthly income (if mentioned) | |
2. Expenses by category (rent, food, utilities, transportation, etc.) | |
Return as JSON format: | |
{{"income": 5000, "expenses": {{"rent": 1500, "food": 500, "utilities": 200}}}} | |
If income is not mentioned, use 5000 as default. | |
If no expenses are mentioned, return empty expenses object. | |
Examples: | |
- "I make $6000 monthly, rent is $1800, food $600" -> {{"income": 6000, "expenses": {{"rent": 1800, "food": 600}}}} | |
- "Help with budget, income 4500, utilities 150" -> {{"income": 4500, "expenses": {{"utilities": 150}}}} | |
Return only valid JSON, nothing else.""" | |
try: | |
response = self.llm.invoke([ | |
SystemMessage(content="You are a budget data extraction assistant. Return only valid JSON."), | |
HumanMessage(content=extraction_prompt) | |
]) | |
# Try to parse the JSON response | |
extracted_data = response.content.strip() | |
# Remove any markdown formatting | |
if extracted_data.startswith("```"): | |
extracted_data = extracted_data.split("\n")[1:-1] | |
extracted_data = "\n".join(extracted_data) | |
# Validate JSON | |
json.loads(extracted_data) | |
return extracted_data | |
except Exception: | |
pass | |
# Fallback to regex extraction | |
income_match = re.search(r"\$?(\d+(?:,\d{3})*(?:\.\d{2})?)\s*(?:monthly\s*)?income", message, re.I) | |
income = float(income_match.group(1).replace(",", "")) if income_match else 5000 | |
expenses = {} | |
expense_patterns = [ | |
(r"rent:?\s*\$?(\d+(?:,\d{3})*(?:\.\d{2})?)", "rent"), | |
(r"food:?\s*\$?(\d+(?:,\d{3})*(?:\.\d{2})?)", "food"), | |
(r"utilities:?\s*\$?(\d+(?:,\d{3})*(?:\.\d{2})?)", "utilities"), | |
(r"transportation:?\s*\$?(\d+(?:,\d{3})*(?:\.\d{2})?)", "transportation"), | |
] | |
for pattern, category in expense_patterns: | |
match = re.search(pattern, message, re.I) | |
if match: | |
expenses[category] = float(match.group(1).replace(",", "")) | |
return json.dumps({"income": income, "expenses": expenses}) | |
elif tool_name == "portfolio_analyzer": | |
# Use OpenAI to extract portfolio information from natural language | |
extraction_prompt = f"""Extract portfolio holdings and total investment from this message: "{message}" | |
Convert the portfolio information to JSON format with holdings array and total investment amount. | |
Each holding should have symbol and either shares or percentage. | |
Return format: | |
{{"holdings": [{{"symbol": "AAPL", "shares": 100}}, {{"symbol": "GOOGL", "percentage": 30}}], "total_investment": 100000}} | |
Examples: | |
- "My portfolio: AAPL 100 shares, GOOGL 50 shares" -> {{"holdings": [{{"symbol": "AAPL", "shares": 100}}, {{"symbol": "GOOGL", "shares": 50}}], "total_investment": 0}} | |
- "I have 40% AAPL, 30% MSFT, 30% TSLA. I have invested total of 100K USD" -> {{"holdings": [{{"symbol": "AAPL", "percentage": 40}}, {{"symbol": "MSFT", "percentage": 30}}, {{"symbol": "TSLA", "percentage": 30}}], "total_investment": 100000}} | |
- "Portfolio with Apple 200 shares and Microsoft 25%, total investment $50,000" -> {{"holdings": [{{"symbol": "AAPL", "shares": 200}}, {{"symbol": "MSFT", "percentage": 25}}], "total_investment": 50000}} | |
Important: | |
- Extract total investment amount if mentioned (convert K=1000, M=1000000) | |
- If total investment not mentioned, set to 0 | |
- Convert company names to stock symbols (Apple->AAPL, Microsoft->MSFT, Tesla->TSLA, etc.) | |
If no clear portfolio data is found, return: {{"holdings": [], "total_investment": 0}} | |
Return only valid JSON, nothing else.""" | |
try: | |
response = self.llm.invoke([ | |
SystemMessage(content="You are a portfolio data extraction assistant. Return only valid JSON with holdings array and total_investment field."), | |
HumanMessage(content=extraction_prompt) | |
]) | |
# Try to parse the JSON response | |
extracted_data = response.content.strip() | |
# Remove any markdown formatting | |
if extracted_data.startswith("```"): | |
lines = extracted_data.split("\n") | |
# Find the start and end of JSON content | |
start_idx = 1 if lines[0].startswith("```") else 0 | |
end_idx = -1 if lines[-1].startswith("```") or lines[-1] == "```" else len(lines) | |
extracted_data = "\n".join(lines[start_idx:end_idx]) | |
# Validate JSON | |
parsed_json = json.loads(extracted_data) | |
# Ensure it has the required structure | |
if isinstance(parsed_json, dict) and "holdings" in parsed_json: | |
return extracted_data | |
else: | |
# If structure is wrong, fall back to regex | |
pass | |
except Exception: | |
pass | |
# Fallback to returning the original message | |
return message | |
elif tool_name == "market_trends": | |
# Use OpenAI to extract and refine market research query | |
extraction_prompt = f"""Convert this user message into an optimized market research query: "{message}" | |
Create a focused search query that will get the best market trends and financial news results. | |
Examples: | |
- "What's happening in tech stocks?" -> "technology stocks market trends latest news 2025" | |
- "Tell me about the market today" -> "stock market trends today financial news latest" | |
- "How is the crypto market?" -> "cryptocurrency market trends bitcoin ethereum latest news" | |
- "What about NVIDIA trends?" -> "NVIDIA NVDA stock market trends analysis latest news" | |
Return only the optimized search query, nothing else.""" | |
try: | |
response = self.llm.invoke([ | |
SystemMessage(content="You are a search query optimization assistant. Return only the optimized search query."), | |
HumanMessage(content=extraction_prompt) | |
]) | |
optimized_query = response.content.strip() | |
return optimized_query if optimized_query else message | |
except Exception: | |
pass | |
# Fallback to returning the original message | |
return message | |
return message | |
def process_message_with_details( | |
self, message: str, history: List[dict] = None | |
) -> Tuple[str, str, str, List[str], List[str]]: | |
"""Process a message and return response, tool used, tool result, and all tools/results""" | |
if history is None: | |
history = [] | |
# Check if this is a multi-tool query (contains keywords for multiple tools) | |
message_lower = message.lower() | |
tool_keywords = { | |
"budget_planner": ["budget", "income", "expense", "spending", "allocat", "track", "categoriz"], | |
"investment_analyzer": ["stock", "invest", "buy", "sell", "analyze"], | |
"portfolio_analyzer": ["portfolio", "holdings", "allocation", "diversif"], | |
"market_trends": ["market", "trend", "news", "sector", "economic"] | |
} | |
detected_tools = [] | |
for tool_name, keywords in tool_keywords.items(): | |
if any(word in message_lower for word in keywords): | |
# Special check for investment analyzer - needs stock symbols | |
if tool_name == "investment_analyzer": | |
if re.search(r"\b[A-Z]{2,5}\b", message) or any(word in message_lower for word in ["stock", "invest", "recommend"]): | |
detected_tools.append(tool_name) | |
else: | |
detected_tools.append(tool_name) | |
# If multiple tools detected or complex query, use agent executor | |
if len(detected_tools) > 1 or len(message.split()) > 15: | |
try: | |
result = self.agent_executor.invoke({"input": message, "messages": []}) | |
tool_used, tool_result, all_tools, all_results = self._extract_tool_usage( | |
result.get("intermediate_steps", []) | |
) | |
return result["output"], tool_used, tool_result, all_tools, all_results | |
except Exception as e: | |
return ( | |
f"I encountered an error processing your request: {str(e)}", | |
None, | |
None, | |
[], | |
[] | |
) | |
# Single tool execution for simple queries | |
elif len(detected_tools) == 1: | |
selected_tool = detected_tools[0] | |
try: | |
tool = self.tools_by_name[selected_tool] | |
tool_input = self._prepare_tool_input(message, selected_tool) | |
# Execute the tool | |
tool_result = tool.func(tool_input) | |
# Generate response based on tool result - optimized for speed | |
response_prompt = f"""Based on this {selected_tool.replace('_', ' ')} analysis, provide a concise financial summary for: {message} | |
Data: {tool_result} | |
Keep response under 200 words with key insights and 2-3 actionable recommendations.""" | |
response = self.llm.invoke( | |
[ | |
SystemMessage(content="Financial advisor. Be concise and actionable."), | |
HumanMessage(content=response_prompt), | |
] | |
) | |
return response.content, selected_tool, tool_result, [selected_tool], [tool_result] | |
except Exception as e: | |
return f"Error using {selected_tool}: {str(e)}", selected_tool, None, [], [] | |
# Fallback to agent executor for unclear queries | |
else: | |
try: | |
result = self.agent_executor.invoke({"input": message, "messages": []}) | |
tool_used, tool_result, all_tools, all_results = self._extract_tool_usage( | |
result.get("intermediate_steps", []) | |
) | |
return result["output"], tool_used, tool_result, all_tools, all_results | |
except Exception as e: | |
return ( | |
f"I encountered an error processing your request: {str(e)}", | |
None, | |
None, | |
[], | |
[] | |
) | |
def process_message(self, message: str, history: List[dict] = None): | |
"""Process a user message and return response""" | |
response, _, _, _, _ = self.process_message_with_details(message, history) | |
return response | |
def stream_response(self, message: str, tool_result: str, selected_tool: str, response_type: str = "short"): | |
"""Stream the LLM response in real-time""" | |
if response_type == "detailed": | |
response_prompt = f"""Based on the following comprehensive analysis from the {selected_tool.replace('_', ' ').title()}: | |
{tool_result} | |
Provide detailed financial advice to the user addressing their question: {message} | |
Guidelines: | |
- Be thorough and comprehensive | |
- Reference specific data points from the analysis | |
- Provide clear, actionable recommendations with explanations | |
- Include multiple scenarios or considerations where relevant | |
- Use a professional but friendly tone | |
- Structure your response with clear sections | |
- Provide context for your recommendations""" | |
system_message = "You are a professional financial advisor. Provide comprehensive, detailed advice based on the analysis results. Be thorough and educational." | |
else: | |
response_prompt = f"""Based on this {selected_tool.replace('_', ' ')} analysis, provide a concise financial summary for: {message} | |
Data: {tool_result} | |
Keep response under 200 words with key insights and 2-3 actionable recommendations.""" | |
system_message = "Financial advisor. Be concise and actionable." | |
messages = [ | |
SystemMessage(content=system_message), | |
HumanMessage(content=response_prompt), | |
] | |
# Stream the response token by token | |
for chunk in self.llm.stream(messages): | |
if chunk.content: | |
yield chunk.content | |