File size: 17,387 Bytes
5ad2796 d9e6f5f 5ad2796 d9e6f5f 5ad2796 d9e6f5f 5ad2796 d9e6f5f 5ad2796 d9e6f5f 5ad2796 d9e6f5f 5ad2796 d9e6f5f 3a614b5 d9e6f5f 3a614b5 d9e6f5f 3a614b5 d9e6f5f 3a614b5 d9e6f5f 3a614b5 d9e6f5f 92d263d d9e6f5f 92d263d d9e6f5f 92d263d d9e6f5f 27965d3 5ad2796 d9e6f5f 5ad2796 563fd53 5ad2796 563fd53 5ad2796 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import json
import operator
import re
from typing import Annotated, List, Tuple, TypedDict, Union
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from langchain.tools import Tool
from langchain_openai import ChatOpenAI
class AgentState(TypedDict):
messages: Annotated[List[Union[HumanMessage, AIMessage]], operator.add]
context: dict
class FinancialAdvisorAgent:
def __init__(self, tools: List[Tool], openai_api_key: str):
self.tools = tools
self.llm = ChatOpenAI(
api_key=openai_api_key, model="gpt-4.1-mini-2025-04-14", temperature=0.7
)
self.tools_by_name = {tool.name: tool for tool in tools}
# Create agent with tools
self.system_prompt = """You are a professional financial advisor AI assistant with access to specialized tools.
Available tools:
- budget_planner: Use when users ask about budgeting, income allocation, or expense planning. Input should be JSON with 'income' and 'expenses' keys.
- investment_analyzer: Use when users ask about specific stocks or investments. Input should be a stock symbol (e.g., AAPL).
- market_trends: Use when users ask about market trends or financial news. Input should be a search query.
- portfolio_analyzer: Use when users want to analyze their portfolio. Input should be JSON with 'holdings' array.
IMPORTANT: You MUST use these tools when answering financial questions. Do not provide generic advice without using the appropriate tool first.
When a user asks a question:
1. Identify which tool is most appropriate
2. Extract or request the necessary information
3. Use the tool to get specific data
4. Provide advice based on the tool's output"""
self.prompt = ChatPromptTemplate.from_messages(
[
("system", self.system_prompt),
MessagesPlaceholder(variable_name="messages"),
("human", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
self.agent = create_openai_tools_agent(self.llm, self.tools, self.prompt)
self.agent_executor = AgentExecutor(
agent=self.agent,
tools=self.tools,
verbose=True,
return_intermediate_steps=True,
)
def _extract_tool_usage(self, intermediate_steps):
"""Extract tool usage from intermediate steps"""
tools_used = []
tool_results = []
for action, result in intermediate_steps:
if hasattr(action, "tool"):
tools_used.append(action.tool)
tool_results.append(result)
# Return the last tool used and its result for backward compatibility
# But also return all tools and results for multi-tool scenarios
if tools_used:
return tools_used[-1], tool_results[-1], tools_used, tool_results
return None, None, [], []
def _prepare_tool_input(self, message: str, tool_name: str) -> str:
"""Prepare input for specific tools based on the message"""
if tool_name == "investment_analyzer":
# Use OpenAI to extract stock symbol from natural language
extraction_prompt = f"""Extract the stock symbol from this message: "{message}"
If the user mentions a company name, return the corresponding stock ticker symbol.
If they mention a ticker symbol directly, return that symbol.
If no stock or company is mentioned, return "UNKNOWN".
Examples:
- "Tell me about NVIDIA" -> "NVDA"
- "Analyze AAPL stock" -> "AAPL"
- "How is Tesla doing?" -> "TSLA"
- "What about Microsoft stock?" -> "MSFT"
Return only the stock symbol, nothing else."""
try:
response = self.llm.invoke([
SystemMessage(content="You are a stock symbol extraction assistant. Return only the ticker symbol."),
HumanMessage(content=extraction_prompt)
])
extracted_symbol = response.content.strip().upper()
if extracted_symbol and extracted_symbol != "UNKNOWN":
return extracted_symbol
except Exception:
pass
# Fallback to regex if LLM fails
symbols = re.findall(r"\b[A-Z]{2,5}\b", message)
return symbols[0] if symbols else ""
elif tool_name == "budget_planner":
# Use OpenAI to extract budget information from natural language
extraction_prompt = f"""Extract budget information from this message: "{message}"
Extract:
1. Monthly income (if mentioned)
2. Expenses by category (rent, food, utilities, transportation, etc.)
Return as JSON format:
{{"income": 5000, "expenses": {{"rent": 1500, "food": 500, "utilities": 200}}}}
If income is not mentioned, use 5000 as default.
If no expenses are mentioned, return empty expenses object.
Examples:
- "I make $6000 monthly, rent is $1800, food $600" -> {{"income": 6000, "expenses": {{"rent": 1800, "food": 600}}}}
- "Help with budget, income 4500, utilities 150" -> {{"income": 4500, "expenses": {{"utilities": 150}}}}
Return only valid JSON, nothing else."""
try:
response = self.llm.invoke([
SystemMessage(content="You are a budget data extraction assistant. Return only valid JSON."),
HumanMessage(content=extraction_prompt)
])
# Try to parse the JSON response
extracted_data = response.content.strip()
# Remove any markdown formatting
if extracted_data.startswith("```"):
extracted_data = extracted_data.split("\n")[1:-1]
extracted_data = "\n".join(extracted_data)
# Validate JSON
json.loads(extracted_data)
return extracted_data
except Exception:
pass
# Fallback to regex extraction
income_match = re.search(r"\$?(\d+(?:,\d{3})*(?:\.\d{2})?)\s*(?:monthly\s*)?income", message, re.I)
income = float(income_match.group(1).replace(",", "")) if income_match else 5000
expenses = {}
expense_patterns = [
(r"rent:?\s*\$?(\d+(?:,\d{3})*(?:\.\d{2})?)", "rent"),
(r"food:?\s*\$?(\d+(?:,\d{3})*(?:\.\d{2})?)", "food"),
(r"utilities:?\s*\$?(\d+(?:,\d{3})*(?:\.\d{2})?)", "utilities"),
(r"transportation:?\s*\$?(\d+(?:,\d{3})*(?:\.\d{2})?)", "transportation"),
]
for pattern, category in expense_patterns:
match = re.search(pattern, message, re.I)
if match:
expenses[category] = float(match.group(1).replace(",", ""))
return json.dumps({"income": income, "expenses": expenses})
elif tool_name == "portfolio_analyzer":
# Use OpenAI to extract portfolio information from natural language
extraction_prompt = f"""Extract portfolio holdings and total investment from this message: "{message}"
Convert the portfolio information to JSON format with holdings array and total investment amount.
Each holding should have symbol and either shares or percentage.
Return format:
{{"holdings": [{{"symbol": "AAPL", "shares": 100}}, {{"symbol": "GOOGL", "percentage": 30}}], "total_investment": 100000}}
Examples:
- "My portfolio: AAPL 100 shares, GOOGL 50 shares" -> {{"holdings": [{{"symbol": "AAPL", "shares": 100}}, {{"symbol": "GOOGL", "shares": 50}}], "total_investment": 0}}
- "I have 40% AAPL, 30% MSFT, 30% TSLA. I have invested total of 100K USD" -> {{"holdings": [{{"symbol": "AAPL", "percentage": 40}}, {{"symbol": "MSFT", "percentage": 30}}, {{"symbol": "TSLA", "percentage": 30}}], "total_investment": 100000}}
- "Portfolio with Apple 200 shares and Microsoft 25%, total investment $50,000" -> {{"holdings": [{{"symbol": "AAPL", "shares": 200}}, {{"symbol": "MSFT", "percentage": 25}}], "total_investment": 50000}}
Important:
- Extract total investment amount if mentioned (convert K=1000, M=1000000)
- If total investment not mentioned, set to 0
- Convert company names to stock symbols (Apple->AAPL, Microsoft->MSFT, Tesla->TSLA, etc.)
If no clear portfolio data is found, return: {{"holdings": [], "total_investment": 0}}
Return only valid JSON, nothing else."""
try:
response = self.llm.invoke([
SystemMessage(content="You are a portfolio data extraction assistant. Return only valid JSON with holdings array and total_investment field."),
HumanMessage(content=extraction_prompt)
])
# Try to parse the JSON response
extracted_data = response.content.strip()
# Remove any markdown formatting
if extracted_data.startswith("```"):
lines = extracted_data.split("\n")
# Find the start and end of JSON content
start_idx = 1 if lines[0].startswith("```") else 0
end_idx = -1 if lines[-1].startswith("```") or lines[-1] == "```" else len(lines)
extracted_data = "\n".join(lines[start_idx:end_idx])
# Validate JSON
parsed_json = json.loads(extracted_data)
# Ensure it has the required structure
if isinstance(parsed_json, dict) and "holdings" in parsed_json:
return extracted_data
else:
# If structure is wrong, fall back to regex
pass
except Exception:
pass
# Fallback to returning the original message
return message
elif tool_name == "market_trends":
# Use OpenAI to extract and refine market research query
extraction_prompt = f"""Convert this user message into an optimized market research query: "{message}"
Create a focused search query that will get the best market trends and financial news results.
Examples:
- "What's happening in tech stocks?" -> "technology stocks market trends latest news 2025"
- "Tell me about the market today" -> "stock market trends today financial news latest"
- "How is the crypto market?" -> "cryptocurrency market trends bitcoin ethereum latest news"
- "What about NVIDIA trends?" -> "NVIDIA NVDA stock market trends analysis latest news"
Return only the optimized search query, nothing else."""
try:
response = self.llm.invoke([
SystemMessage(content="You are a search query optimization assistant. Return only the optimized search query."),
HumanMessage(content=extraction_prompt)
])
optimized_query = response.content.strip()
return optimized_query if optimized_query else message
except Exception:
pass
# Fallback to returning the original message
return message
return message
def process_message_with_details(
self, message: str, history: List[dict] = None
) -> Tuple[str, str, str, List[str], List[str]]:
"""Process a message and return response, tool used, tool result, and all tools/results"""
if history is None:
history = []
# Check if this is a multi-tool query (contains keywords for multiple tools)
message_lower = message.lower()
tool_keywords = {
"budget_planner": ["budget", "income", "expense", "spending", "allocat", "track", "categoriz"],
"investment_analyzer": ["stock", "invest", "buy", "sell", "analyze"],
"portfolio_analyzer": ["portfolio", "holdings", "allocation", "diversif"],
"market_trends": ["market", "trend", "news", "sector", "economic"]
}
detected_tools = []
for tool_name, keywords in tool_keywords.items():
if any(word in message_lower for word in keywords):
# Special check for investment analyzer - needs stock symbols
if tool_name == "investment_analyzer":
if re.search(r"\b[A-Z]{2,5}\b", message) or any(word in message_lower for word in ["stock", "invest", "recommend"]):
detected_tools.append(tool_name)
else:
detected_tools.append(tool_name)
# If multiple tools detected or complex query, use agent executor
if len(detected_tools) > 1 or len(message.split()) > 15:
try:
result = self.agent_executor.invoke({"input": message, "messages": []})
tool_used, tool_result, all_tools, all_results = self._extract_tool_usage(
result.get("intermediate_steps", [])
)
return result["output"], tool_used, tool_result, all_tools, all_results
except Exception as e:
return (
f"I encountered an error processing your request: {str(e)}",
None,
None,
[],
[]
)
# Single tool execution for simple queries
elif len(detected_tools) == 1:
selected_tool = detected_tools[0]
try:
tool = self.tools_by_name[selected_tool]
tool_input = self._prepare_tool_input(message, selected_tool)
# Execute the tool
tool_result = tool.func(tool_input)
# Generate response based on tool result - optimized for speed
response_prompt = f"""Based on this {selected_tool.replace('_', ' ')} analysis, provide a concise financial summary for: {message}
Data: {tool_result}
Keep response under 200 words with key insights and 2-3 actionable recommendations."""
response = self.llm.invoke(
[
SystemMessage(content="Financial advisor. Be concise and actionable."),
HumanMessage(content=response_prompt),
]
)
return response.content, selected_tool, tool_result, [selected_tool], [tool_result]
except Exception as e:
return f"Error using {selected_tool}: {str(e)}", selected_tool, None, [], []
# Fallback to agent executor for unclear queries
else:
try:
result = self.agent_executor.invoke({"input": message, "messages": []})
tool_used, tool_result, all_tools, all_results = self._extract_tool_usage(
result.get("intermediate_steps", [])
)
return result["output"], tool_used, tool_result, all_tools, all_results
except Exception as e:
return (
f"I encountered an error processing your request: {str(e)}",
None,
None,
[],
[]
)
def process_message(self, message: str, history: List[dict] = None):
"""Process a user message and return response"""
response, _, _, _, _ = self.process_message_with_details(message, history)
return response
def stream_response(self, message: str, tool_result: str, selected_tool: str, response_type: str = "short"):
"""Stream the LLM response in real-time"""
if response_type == "detailed":
response_prompt = f"""Based on the following comprehensive analysis from the {selected_tool.replace('_', ' ').title()}:
{tool_result}
Provide detailed financial advice to the user addressing their question: {message}
Guidelines:
- Be thorough and comprehensive
- Reference specific data points from the analysis
- Provide clear, actionable recommendations with explanations
- Include multiple scenarios or considerations where relevant
- Use a professional but friendly tone
- Structure your response with clear sections
- Provide context for your recommendations"""
system_message = "You are a professional financial advisor. Provide comprehensive, detailed advice based on the analysis results. Be thorough and educational."
else:
response_prompt = f"""Based on this {selected_tool.replace('_', ' ')} analysis, provide a concise financial summary for: {message}
Data: {tool_result}
Keep response under 200 words with key insights and 2-3 actionable recommendations."""
system_message = "Financial advisor. Be concise and actionable."
messages = [
SystemMessage(content=system_message),
HumanMessage(content=response_prompt),
]
# Stream the response token by token
for chunk in self.llm.stream(messages):
if chunk.content:
yield chunk.content
|