|
--- |
|
library_name: transformers |
|
base_model: sandernotenbaert/okai-musiclang-content-t5-small |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: okai-musiclang-content-t5-small |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# okai-musiclang-content-t5-small |
|
|
|
This model is a fine-tuned version of [sandernotenbaert/okai-musiclang-content-t5-small](https://huggingface.co/sandernotenbaert/okai-musiclang-content-t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1968 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.4556 | 0.2226 | 500 | 1.3230 | |
|
| 1.4166 | 0.4452 | 1000 | 1.3003 | |
|
| 1.3956 | 0.6679 | 1500 | 1.2741 | |
|
| 1.3865 | 0.8905 | 2000 | 1.2605 | |
|
| 1.3589 | 1.1131 | 2500 | 1.2368 | |
|
| 1.3514 | 1.3357 | 3000 | 1.2370 | |
|
| 1.3349 | 1.5583 | 3500 | 1.2322 | |
|
| 1.3163 | 1.7809 | 4000 | 1.2099 | |
|
| 1.3183 | 2.0036 | 4500 | 1.2062 | |
|
| 1.3204 | 2.2262 | 5000 | 1.2014 | |
|
| 1.303 | 2.4488 | 5500 | 1.2008 | |
|
| 1.3205 | 2.6714 | 6000 | 1.1953 | |
|
| 1.3108 | 2.8940 | 6500 | 1.1968 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.54.1 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 4.0.0 |
|
- Tokenizers 0.21.2 |
|
|