File size: 2,297 Bytes
a934782 4392969 a934782 4392969 a934782 4392969 a934782 4392969 a934782 4392969 a934782 4392969 a934782 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: transformers
base_model: sandernotenbaert/okai-musiclang-content-t5-small
tags:
- generated_from_trainer
model-index:
- name: okai-musiclang-content-t5-small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# okai-musiclang-content-t5-small
This model is a fine-tuned version of [sandernotenbaert/okai-musiclang-content-t5-small](https://huggingface.co/sandernotenbaert/okai-musiclang-content-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1968
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.4556 | 0.2226 | 500 | 1.3230 |
| 1.4166 | 0.4452 | 1000 | 1.3003 |
| 1.3956 | 0.6679 | 1500 | 1.2741 |
| 1.3865 | 0.8905 | 2000 | 1.2605 |
| 1.3589 | 1.1131 | 2500 | 1.2368 |
| 1.3514 | 1.3357 | 3000 | 1.2370 |
| 1.3349 | 1.5583 | 3500 | 1.2322 |
| 1.3163 | 1.7809 | 4000 | 1.2099 |
| 1.3183 | 2.0036 | 4500 | 1.2062 |
| 1.3204 | 2.2262 | 5000 | 1.2014 |
| 1.303 | 2.4488 | 5500 | 1.2008 |
| 1.3205 | 2.6714 | 6000 | 1.1953 |
| 1.3108 | 2.8940 | 6500 | 1.1968 |
### Framework versions
- Transformers 4.54.1
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.2
|