okai-musiclang-content-t5-small
This model is a fine-tuned version of sandernotenbaert/okai-musiclang-content-t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1968
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4556 | 0.2226 | 500 | 1.3230 |
1.4166 | 0.4452 | 1000 | 1.3003 |
1.3956 | 0.6679 | 1500 | 1.2741 |
1.3865 | 0.8905 | 2000 | 1.2605 |
1.3589 | 1.1131 | 2500 | 1.2368 |
1.3514 | 1.3357 | 3000 | 1.2370 |
1.3349 | 1.5583 | 3500 | 1.2322 |
1.3163 | 1.7809 | 4000 | 1.2099 |
1.3183 | 2.0036 | 4500 | 1.2062 |
1.3204 | 2.2262 | 5000 | 1.2014 |
1.303 | 2.4488 | 5500 | 1.2008 |
1.3205 | 2.6714 | 6000 | 1.1953 |
1.3108 | 2.8940 | 6500 | 1.1968 |
Framework versions
- Transformers 4.54.1
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for sandernotenbaert/okai-musiclang-content-t5-small
Unable to build the model tree, the base model loops to the model itself. Learn more.