|
--- |
|
tags: |
|
- autotrain |
|
- image-classification |
|
- pytorch |
|
- transformers |
|
library_name: pytorch |
|
|
|
|
|
base_model: microsoft/resnet-50 |
|
widget: |
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg |
|
example_title: Tiger |
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg |
|
example_title: Teapot |
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg |
|
example_title: Palace |
|
datasets: |
|
- A2H0H0R1/plant-disease-new |
|
license: apache-2.0 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Image Classification |
|
|
|
## Validation Metrics |
|
No validation metrics available |
|
|
|
#Inference Pipeline |
|
- |
|
-Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: |
|
|
|
```python |
|
from transformers import AutoModelForImageClassification, AutoProcessor |
|
|
|
model = AutoModelForImageClassification.from_pretrained("ozair23/autotrain-w5nk2-rvmqx") |
|
processor = AutoProcessor.from_pretrained("ozair23/autotrain-w5nk2-rvmqx") |
|
|
|
def predict(image): |
|
inputs = processor(images=image, return_tensors="pt") |
|
outputs = model(**inputs) |
|
return outputs |
|
``` |