Update README.md
Browse files
README.md
CHANGED
@@ -19,8 +19,19 @@ datasets:
|
|
19 |
- A2H0H0R1/plant-disease-new
|
20 |
license: apache-2.0
|
21 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
#Inference Pipeline
|
23 |
-
|
|
|
|
|
|
|
24 |
from transformers import AutoModelForImageClassification, AutoProcessor
|
25 |
|
26 |
model = AutoModelForImageClassification.from_pretrained("ozair23/autotrain-w5nk2-rvmqx")
|
@@ -30,10 +41,4 @@ def predict(image):
|
|
30 |
inputs = processor(images=image, return_tensors="pt")
|
31 |
outputs = model(**inputs)
|
32 |
return outputs
|
33 |
-
|
34 |
-
# Model Trained Using AutoTrain
|
35 |
-
|
36 |
-
- Problem type: Image Classification
|
37 |
-
|
38 |
-
## Validation Metrics
|
39 |
-
No validation metrics available
|
|
|
19 |
- A2H0H0R1/plant-disease-new
|
20 |
license: apache-2.0
|
21 |
---
|
22 |
+
|
23 |
+
# Model Trained Using AutoTrain
|
24 |
+
|
25 |
+
- Problem type: Image Classification
|
26 |
+
|
27 |
+
## Validation Metrics
|
28 |
+
No validation metrics available
|
29 |
+
|
30 |
#Inference Pipeline
|
31 |
+
-
|
32 |
+
-Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
33 |
+
|
34 |
+
```python
|
35 |
from transformers import AutoModelForImageClassification, AutoProcessor
|
36 |
|
37 |
model = AutoModelForImageClassification.from_pretrained("ozair23/autotrain-w5nk2-rvmqx")
|
|
|
41 |
inputs = processor(images=image, return_tensors="pt")
|
42 |
outputs = model(**inputs)
|
43 |
return outputs
|
44 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|