--- tags: - autotrain - image-classification - pytorch - transformers library_name: pytorch base_model: microsoft/resnet-50 widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - A2H0H0R1/plant-disease-new license: apache-2.0 --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metrics No validation metrics available #Inference Pipeline - -Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoModelForImageClassification, AutoProcessor model = AutoModelForImageClassification.from_pretrained("ozair23/autotrain-w5nk2-rvmqx") processor = AutoProcessor.from_pretrained("ozair23/autotrain-w5nk2-rvmqx") def predict(image): inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) return outputs ```