|
--- |
|
license: other |
|
base_model: aubmindlab/aragpt2-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: res_nw_gulf_aragpt2-large |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# res_nw_gulf_aragpt2-large |
|
|
|
This model is a fine-tuned version of [aubmindlab/aragpt2-large](https://huggingface.co/aubmindlab/aragpt2-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0472 |
|
- Bleu: 0.0632 |
|
- Rouge1: 0.4039 |
|
- Rouge2: 0.1633 |
|
- Rougel: 0.4013 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 20.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:| |
|
| 0.2041 | 1.0 | 1672 | 0.0487 | 0.0445 | 0.3745 | 0.1302 | 0.3718 | |
|
| 0.0404 | 2.0 | 3344 | 0.0472 | 0.0632 | 0.4039 | 0.1633 | 0.4013 | |
|
| 0.0301 | 3.0 | 5016 | 0.0480 | 0.0763 | 0.4339 | 0.2002 | 0.4322 | |
|
| 0.0232 | 4.0 | 6688 | 0.0515 | 0.0843 | 0.4535 | 0.2192 | 0.4517 | |
|
| 0.0189 | 5.0 | 8360 | 0.0538 | 0.0876 | 0.4654 | 0.2299 | 0.4638 | |
|
| 0.0164 | 6.0 | 10032 | 0.0572 | 0.0930 | 0.4675 | 0.2370 | 0.4653 | |
|
| 0.0148 | 7.0 | 11704 | 0.0583 | 0.0918 | 0.4656 | 0.2308 | 0.4636 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|