File size: 2,086 Bytes
e660ffd f4e3add e660ffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: other
base_model: aubmindlab/aragpt2-large
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: res_nw_gulf_aragpt2-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# res_nw_gulf_aragpt2-large
This model is a fine-tuned version of [aubmindlab/aragpt2-large](https://huggingface.co/aubmindlab/aragpt2-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0472
- Bleu: 0.0632
- Rouge1: 0.4039
- Rouge2: 0.1633
- Rougel: 0.4013
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|
| 0.2041 | 1.0 | 1672 | 0.0487 | 0.0445 | 0.3745 | 0.1302 | 0.3718 |
| 0.0404 | 2.0 | 3344 | 0.0472 | 0.0632 | 0.4039 | 0.1633 | 0.4013 |
| 0.0301 | 3.0 | 5016 | 0.0480 | 0.0763 | 0.4339 | 0.2002 | 0.4322 |
| 0.0232 | 4.0 | 6688 | 0.0515 | 0.0843 | 0.4535 | 0.2192 | 0.4517 |
| 0.0189 | 5.0 | 8360 | 0.0538 | 0.0876 | 0.4654 | 0.2299 | 0.4638 |
| 0.0164 | 6.0 | 10032 | 0.0572 | 0.0930 | 0.4675 | 0.2370 | 0.4653 |
| 0.0148 | 7.0 | 11704 | 0.0583 | 0.0918 | 0.4656 | 0.2308 | 0.4636 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|