hosmankarabulut's picture
Update README.md
5c7ace9 verified
---
base_model: unsloth/SmolLM2-1.7B
library_name: peft
license: apache-2.0
language:
- tr
metrics:
- name: ROUGE-1
type: rouge
value: 0.2439
- name: ROUGE-2
type: rouge
value: 0.1303
- name: ROUGE-L
type: rouge
value: 0.2147
- name: BLEU
type: bleu
value: 0.0406
- name: METEOR
type: meteor
value: 0.2262
- name: BERTScore Precision
type: bertscore
value: 0.5286
- name: BERTScore Recall
type: bertscore
value: 0.5834
- name: BERTScore F1
type: bertscore
value: 0.553
---
+---------------------+--------+
| Metrik | Değer |
+---------------------+--------+
| ROUGE-1 | 0.2439 |
| ROUGE-2 | 0.1303 |
| ROUGE-L | 0.2147 |
| BLEU | 0.0406 |
| METEOR | 0.2262 |
| BERTScore Precision | 0.5286 |
| BERTScore Recall | 0.5834 |
| BERTScore F1 | 0.553 |
+---------------------+--------+
✅ Model evaluation is complete and all results are logged to `wandb`.
---
# Model Card for SmolLM2-Ziraat-Turkish-v1
<!-- Türkçe versiyonu aşağıda yer almaktadır. -->
## 🧠 Model Summary
**SmolLM2-Ziraat-Turkish-v1** is a fine-tuned version of the [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) model, trained using [Unsloth](https://github.com/unslothai/unsloth) and PEFT (Parameter-Efficient Fine-Tuning). This model has been tailored for Turkish language tasks with a focus on agriculture, finance, and general-purpose conversation.
## 🇹🇷 Model Özeti
**SmolLM2-Ziraat-Turkish-v1**, [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) tabanlı bir model olup, [Unsloth](https://github.com/unslothai/unsloth) ve PEFT (Parameter-Efficient Fine-Tuning) yöntemleriyle Türkçe diline yönelik olarak eğitilmiştir. Tarım, finans ve genel sohbet amaçlı kullanım senaryoları için optimize edilmiştir.
---
## 🔍 Model Details / Model Detayları
- **Developed by / Geliştiren:** [hosmankarabulut](https://huggingface.co/hosmankarabulut)
- **Model type / Model türü:** Causal Language Model (AutoRegressive)
- **Language / Dil:** Turkish (Türkçe)
- **License / Lisans:** apache-2.0
- **Fine-tuned with / Eğitim Aracı:** [Unsloth](https://github.com/unslothai/unsloth) + PEFT
- **Base model / Taban model:** [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B)
---
## 🔗 Sources / Kaynaklar
- **Model Repository / Model Deposu:** [https://huggingface.co/hosmankarabulut/SmolLM2-Ziraat-Turkish-v1](https://huggingface.co/hosmankarabulut/SmolLM2-Ziraat-Turkish-v1)
- **Base model / Taban model:** [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B)
---
## ✅ Intended Uses / Amaçlanan Kullanım
- Turkish chatbots, Q&A systems
- Agricultural and financial assistants
- General-purpose Turkish LLMs
---
## 🚫 Out-of-Scope Use / Uygun Olmayan Kullanım
- Medical, legal, or high-risk decision-making
- Misinformation or unethical applications
---
## ⚠️ Bias, Risks and Limitations / Önyargılar, Riskler ve Sınırlamalar
Model may still contain biases inherited from the base model. Performance is best within Turkish language and domain-specific contexts (agriculture, finance).
---
## 🧪 Training & Evaluation / Eğitim ve Değerlendirme
- **Training Library / Eğitim Kütüphanesi:** [Unsloth](https://github.com/unslothai/unsloth)
- **Hardware Used / Kullanılan Donanım:** RTX 3090
- **Precision:** bf16 (mixed precision)
- **Dataset:** Özel Türkçe veriseti (tarım odaklı)
- **Evaluation Tool:** `wandb` (Weights & Biases)
### 📊 Evaluation Results / Değerlendirme Sonuçları
| Metric | Value |
|----------------------|--------|
| ROUGE-1 | 0.2439 |
| ROUGE-2 | 0.1303 |
| ROUGE-L | 0.2147 |
| BLEU | 0.0406 |
| METEOR | 0.2262 |
| BERTScore Precision | 0.5286 |
| BERTScore Recall | 0.5834 |
| BERTScore F1 | 0.553 |
✅ Tüm metrikler başarıyla hesaplandı ve `wandb` üzerinde kaydedildi.
---
## 💡 Quickstart / Hızlı Başlangıç
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained("hosmankarabulut/SmolLM2-Ziraat-Turkish-v1", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("hosmankarabulut/SmolLM2-Ziraat-Turkish-v1")
inputs = tokenizer("Türkiye'de tarım politikaları hakkında ne düşünüyorsun?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))