+---------------------+--------+ | Metrik | Değer | +---------------------+--------+ | ROUGE-1 | 0.2439 | | ROUGE-2 | 0.1303 | | ROUGE-L | 0.2147 | | BLEU | 0.0406 | | METEOR | 0.2262 | | BERTScore Precision | 0.5286 | | BERTScore Recall | 0.5834 | | BERTScore F1 | 0.553 | +---------------------+--------+

✅ Model evaluation is complete and all results are logged to wandb.


Model Card for SmolLM2-Ziraat-Turkish-v1

🧠 Model Summary

SmolLM2-Ziraat-Turkish-v1 is a fine-tuned version of the unsloth/SmolLM2-1.7B model, trained using Unsloth and PEFT (Parameter-Efficient Fine-Tuning). This model has been tailored for Turkish language tasks with a focus on agriculture, finance, and general-purpose conversation.

🇹🇷 Model Özeti

SmolLM2-Ziraat-Turkish-v1, unsloth/SmolLM2-1.7B tabanlı bir model olup, Unsloth ve PEFT (Parameter-Efficient Fine-Tuning) yöntemleriyle Türkçe diline yönelik olarak eğitilmiştir. Tarım, finans ve genel sohbet amaçlı kullanım senaryoları için optimize edilmiştir.


🔍 Model Details / Model Detayları

  • Developed by / Geliştiren: hosmankarabulut
  • Model type / Model türü: Causal Language Model (AutoRegressive)
  • Language / Dil: Turkish (Türkçe)
  • License / Lisans: apache-2.0
  • Fine-tuned with / Eğitim Aracı: Unsloth + PEFT
  • Base model / Taban model: unsloth/SmolLM2-1.7B

🔗 Sources / Kaynaklar


✅ Intended Uses / Amaçlanan Kullanım

  • Turkish chatbots, Q&A systems
  • Agricultural and financial assistants
  • General-purpose Turkish LLMs

🚫 Out-of-Scope Use / Uygun Olmayan Kullanım

  • Medical, legal, or high-risk decision-making
  • Misinformation or unethical applications

⚠️ Bias, Risks and Limitations / Önyargılar, Riskler ve Sınırlamalar

Model may still contain biases inherited from the base model. Performance is best within Turkish language and domain-specific contexts (agriculture, finance).


🧪 Training & Evaluation / Eğitim ve Değerlendirme

  • Training Library / Eğitim Kütüphanesi: Unsloth
  • Hardware Used / Kullanılan Donanım: RTX 3090
  • Precision: bf16 (mixed precision)
  • Dataset: Özel Türkçe veriseti (tarım odaklı)
  • Evaluation Tool: wandb (Weights & Biases)

📊 Evaluation Results / Değerlendirme Sonuçları

Metric Value
ROUGE-1 0.2439
ROUGE-2 0.1303
ROUGE-L 0.2147
BLEU 0.0406
METEOR 0.2262
BERTScore Precision 0.5286
BERTScore Recall 0.5834
BERTScore F1 0.553

✅ Tüm metrikler başarıyla hesaplandı ve wandb üzerinde kaydedildi.


💡 Quickstart / Hızlı Başlangıç

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model = AutoModelForCausalLM.from_pretrained("hosmankarabulut/SmolLM2-Ziraat-Turkish-v1", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("hosmankarabulut/SmolLM2-Ziraat-Turkish-v1")

inputs = tokenizer("Türkiye'de tarım politikaları hakkında ne düşünüyorsun?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
65
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hosmankarabulut/SmolLM2-Ziraat-Turkish-v1

Adapter
(284)
this model