File size: 4,665 Bytes
20b63ef
 
 
6c56080
 
 
 
5c7ace9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20b63ef
6c56080
 
 
 
 
 
 
 
 
 
 
 
 
 
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
 
 
 
 
 
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
 
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
 
 
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
 
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
5c7ace9
6c56080
5c7ace9
6c56080
20b63ef
6c56080
20b63ef
6c56080
 
 
 
 
 
 
 
 
 
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
20b63ef
6c56080
 
 
20b63ef
6c56080
 
20b63ef
6c56080
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
base_model: unsloth/SmolLM2-1.7B
library_name: peft
license: apache-2.0
language:
- tr
metrics:
  - name: ROUGE-1
    type: rouge
    value: 0.2439
  - name: ROUGE-2
    type: rouge
    value: 0.1303
  - name: ROUGE-L
    type: rouge
    value: 0.2147
  - name: BLEU
    type: bleu
    value: 0.0406
  - name: METEOR
    type: meteor
    value: 0.2262
  - name: BERTScore Precision
    type: bertscore
    value: 0.5286
  - name: BERTScore Recall
    type: bertscore
    value: 0.5834
  - name: BERTScore F1
    type: bertscore
    value: 0.553
---
+---------------------+--------+
|        Metrik       | Değer  |
+---------------------+--------+
|       ROUGE-1       | 0.2439 |
|       ROUGE-2       | 0.1303 |
|       ROUGE-L       | 0.2147 |
|         BLEU        | 0.0406 |
|        METEOR       | 0.2262 |
| BERTScore Precision | 0.5286 |
|   BERTScore Recall  | 0.5834 |
|     BERTScore F1    | 0.553  |
+---------------------+--------+

✅ Model evaluation is complete and all results are logged to `wandb`.

---

# Model Card for SmolLM2-Ziraat-Turkish-v1

<!-- Türkçe versiyonu aşağıda yer almaktadır. -->

## 🧠 Model Summary

**SmolLM2-Ziraat-Turkish-v1** is a fine-tuned version of the [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) model, trained using [Unsloth](https://github.com/unslothai/unsloth) and PEFT (Parameter-Efficient Fine-Tuning). This model has been tailored for Turkish language tasks with a focus on agriculture, finance, and general-purpose conversation.

## 🇹🇷 Model Özeti

**SmolLM2-Ziraat-Turkish-v1**, [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B) tabanlı bir model olup, [Unsloth](https://github.com/unslothai/unsloth) ve PEFT (Parameter-Efficient Fine-Tuning) yöntemleriyle Türkçe diline yönelik olarak eğitilmiştir. Tarım, finans ve genel sohbet amaçlı kullanım senaryoları için optimize edilmiştir.

---

## 🔍 Model Details / Model Detayları

- **Developed by / Geliştiren:** [hosmankarabulut](https://huggingface.co/hosmankarabulut)
- **Model type / Model türü:** Causal Language Model (AutoRegressive)
- **Language / Dil:** Turkish (Türkçe)
- **License / Lisans:** apache-2.0
- **Fine-tuned with / Eğitim Aracı:** [Unsloth](https://github.com/unslothai/unsloth) + PEFT
- **Base model / Taban model:** [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B)

---

## 🔗 Sources / Kaynaklar

- **Model Repository / Model Deposu:** [https://huggingface.co/hosmankarabulut/SmolLM2-Ziraat-Turkish-v1](https://huggingface.co/hosmankarabulut/SmolLM2-Ziraat-Turkish-v1)
- **Base model / Taban model:** [unsloth/SmolLM2-1.7B](https://huggingface.co/unsloth/SmolLM2-1.7B)

---

## ✅ Intended Uses / Amaçlanan Kullanım

- Turkish chatbots, Q&A systems  
- Agricultural and financial assistants  
- General-purpose Turkish LLMs  

---

## 🚫 Out-of-Scope Use / Uygun Olmayan Kullanım

- Medical, legal, or high-risk decision-making  
- Misinformation or unethical applications  

---

## ⚠️ Bias, Risks and Limitations / Önyargılar, Riskler ve Sınırlamalar

Model may still contain biases inherited from the base model. Performance is best within Turkish language and domain-specific contexts (agriculture, finance).

---

## 🧪 Training & Evaluation / Eğitim ve Değerlendirme

- **Training Library / Eğitim Kütüphanesi:** [Unsloth](https://github.com/unslothai/unsloth)
- **Hardware Used / Kullanılan Donanım:** RTX 3090
- **Precision:** bf16 (mixed precision)
- **Dataset:** Özel Türkçe veriseti (tarım odaklı)
- **Evaluation Tool:** `wandb` (Weights & Biases)

### 📊 Evaluation Results / Değerlendirme Sonuçları

| Metric               | Value  |
|----------------------|--------|
| ROUGE-1              | 0.2439 |
| ROUGE-2              | 0.1303 |
| ROUGE-L              | 0.2147 |
| BLEU                 | 0.0406 |
| METEOR               | 0.2262 |
| BERTScore Precision  | 0.5286 |
| BERTScore Recall     | 0.5834 |
| BERTScore F1         | 0.553  |

✅ Tüm metrikler başarıyla hesaplandı ve `wandb` üzerinde kaydedildi.

---

## 💡 Quickstart / Hızlı Başlangıç

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model = AutoModelForCausalLM.from_pretrained("hosmankarabulut/SmolLM2-Ziraat-Turkish-v1", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("hosmankarabulut/SmolLM2-Ziraat-Turkish-v1")

inputs = tokenizer("Türkiye'de tarım politikaları hakkında ne düşünüyorsun?", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))