gokulsrinivasagan's picture
End of training
22f8f1f verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: google/bert_uncased_L-2_H-128_A-2
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: bert_uncased_L-2_H-128_A-2_mrpc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE MRPC
          type: glue
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7328431372549019
          - name: F1
            type: f1
            value: 0.8233387358184764

bert_uncased_L-2_H-128_A-2_mrpc

This model is a fine-tuned version of google/bert_uncased_L-2_H-128_A-2 on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5352
  • Accuracy: 0.7328
  • F1: 0.8233
  • Combined Score: 0.7781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.6493 1.0 15 0.6227 0.6838 0.8122 0.7480
0.6257 2.0 30 0.6134 0.6838 0.8122 0.7480
0.6126 3.0 45 0.6052 0.6838 0.8122 0.7480
0.6036 4.0 60 0.5954 0.6961 0.8176 0.7569
0.5897 5.0 75 0.5879 0.6985 0.8167 0.7576
0.5781 6.0 90 0.5741 0.7034 0.8158 0.7596
0.5635 7.0 105 0.5711 0.7108 0.8201 0.7655
0.5429 8.0 120 0.5674 0.7132 0.8208 0.7670
0.5228 9.0 135 0.5685 0.7206 0.8252 0.7729
0.5057 10.0 150 0.5497 0.7304 0.8281 0.7793
0.4856 11.0 165 0.5438 0.7377 0.8293 0.7835
0.4657 12.0 180 0.5352 0.7328 0.8233 0.7781
0.4447 13.0 195 0.5435 0.7402 0.8323 0.7862
0.4175 14.0 210 0.5562 0.7402 0.8328 0.7865
0.4039 15.0 225 0.5759 0.7426 0.8357 0.7892
0.3964 16.0 240 0.5610 0.7377 0.8299 0.7838
0.3735 17.0 255 0.5587 0.7377 0.8283 0.7830

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3