bert_uncased_L-2_H-128_A-2_mrpc

This model is a fine-tuned version of google/bert_uncased_L-2_H-128_A-2 on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5352
  • Accuracy: 0.7328
  • F1: 0.8233
  • Combined Score: 0.7781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.6493 1.0 15 0.6227 0.6838 0.8122 0.7480
0.6257 2.0 30 0.6134 0.6838 0.8122 0.7480
0.6126 3.0 45 0.6052 0.6838 0.8122 0.7480
0.6036 4.0 60 0.5954 0.6961 0.8176 0.7569
0.5897 5.0 75 0.5879 0.6985 0.8167 0.7576
0.5781 6.0 90 0.5741 0.7034 0.8158 0.7596
0.5635 7.0 105 0.5711 0.7108 0.8201 0.7655
0.5429 8.0 120 0.5674 0.7132 0.8208 0.7670
0.5228 9.0 135 0.5685 0.7206 0.8252 0.7729
0.5057 10.0 150 0.5497 0.7304 0.8281 0.7793
0.4856 11.0 165 0.5438 0.7377 0.8293 0.7835
0.4657 12.0 180 0.5352 0.7328 0.8233 0.7781
0.4447 13.0 195 0.5435 0.7402 0.8323 0.7862
0.4175 14.0 210 0.5562 0.7402 0.8328 0.7865
0.4039 15.0 225 0.5759 0.7426 0.8357 0.7892
0.3964 16.0 240 0.5610 0.7377 0.8299 0.7838
0.3735 17.0 255 0.5587 0.7377 0.8283 0.7830

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3
Downloads last month
103
Safetensors
Model size
4.39M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for gokulsrinivasagan/bert_uncased_L-2_H-128_A-2_mrpc

Finetuned
(50)
this model

Dataset used to train gokulsrinivasagan/bert_uncased_L-2_H-128_A-2_mrpc

Evaluation results