--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-2_H-128_A-2 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_uncased_L-2_H-128_A-2_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7328431372549019 - name: F1 type: f1 value: 0.8233387358184764 --- # bert_uncased_L-2_H-128_A-2_mrpc This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5352 - Accuracy: 0.7328 - F1: 0.8233 - Combined Score: 0.7781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6493 | 1.0 | 15 | 0.6227 | 0.6838 | 0.8122 | 0.7480 | | 0.6257 | 2.0 | 30 | 0.6134 | 0.6838 | 0.8122 | 0.7480 | | 0.6126 | 3.0 | 45 | 0.6052 | 0.6838 | 0.8122 | 0.7480 | | 0.6036 | 4.0 | 60 | 0.5954 | 0.6961 | 0.8176 | 0.7569 | | 0.5897 | 5.0 | 75 | 0.5879 | 0.6985 | 0.8167 | 0.7576 | | 0.5781 | 6.0 | 90 | 0.5741 | 0.7034 | 0.8158 | 0.7596 | | 0.5635 | 7.0 | 105 | 0.5711 | 0.7108 | 0.8201 | 0.7655 | | 0.5429 | 8.0 | 120 | 0.5674 | 0.7132 | 0.8208 | 0.7670 | | 0.5228 | 9.0 | 135 | 0.5685 | 0.7206 | 0.8252 | 0.7729 | | 0.5057 | 10.0 | 150 | 0.5497 | 0.7304 | 0.8281 | 0.7793 | | 0.4856 | 11.0 | 165 | 0.5438 | 0.7377 | 0.8293 | 0.7835 | | 0.4657 | 12.0 | 180 | 0.5352 | 0.7328 | 0.8233 | 0.7781 | | 0.4447 | 13.0 | 195 | 0.5435 | 0.7402 | 0.8323 | 0.7862 | | 0.4175 | 14.0 | 210 | 0.5562 | 0.7402 | 0.8328 | 0.7865 | | 0.4039 | 15.0 | 225 | 0.5759 | 0.7426 | 0.8357 | 0.7892 | | 0.3964 | 16.0 | 240 | 0.5610 | 0.7377 | 0.8299 | 0.7838 | | 0.3735 | 17.0 | 255 | 0.5587 | 0.7377 | 0.8283 | 0.7830 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3