Search is not available for this dataset
text
stringlengths
0
3.2M
lang
stringclasses
14 values
২০১৫ সালে ওন্দা ব্লকের অঙ্গদপুর জুনিয়ার স্কুলের পথচলা শুরু হয়েছিল, কিন্তু কোভিড পরিস্থিতির পর আর খুলল না স্কুলের তালা আবদুল হাই,বাঁকুড়াঃ স্কুল আছে, আছে ছাত্র ছাত্রী কিন্তু শিক্ষকের অভাবে বন্ধ স্কুল, বন্ধ পঠন পাঠন ২০১৫ সালে ওন্দা ব্লকের অঙ্গদপুর জুনিয়ার স্কুলের পথচলা শুরু হয়েছিল কিন্তু কোভিড পরিস্থিতির পর আর খুলল না স্কুলের তালা শিক্ষকের অভাবে বন্ধ হয়ে গেল প্রত্যন্ত গ্রামের জুনিয়ার স্কুল আপাতত পার্শ্ববর্তী দুরের স্কুল ভরসা ছাত্রছাত্রীদের এখনও অপেক্ষায় গ্রামের ছাত্রছাত্রী ও অভিভাবকরা কখন খুলবে স্কুল, চালু হবে স্কুলের পঠন পাঠন গেস্ট টিচার না পাওয়ার জন্য খোলা যাচ্ছে না স্কুল সাফাই স্কুল শিক্ষা দফতরের ওন্দা ব্লকের অঙ্গদপুর গ্রামে ২০১৫ সালে গড়ে উঠেছিল জুনিয়ার হাই স্কুল তিন জন গেস্ট টিচার ও প্রায় ৭০ জন ছাত্র ছাত্রী নিয়ে শুরু হয় স্কুলের পঠন পাঠন প্রত্যন্ত গ্রামের ছাত্রছাত্রীদের কথা ভেবে দূরের স্কুলে যাতে পড়তে যেতে না হয় এবং গ্রামে শিক্ষার উন্নয়ন ঘটাতে এই জুনিয়ার স্কুলের পরিকাঠামো তৈরি করে শুরু হয় পঠন পাঠন কিন্তু কোভিড পরিস্থিতির পর একেবারেই হোঁচট খেল প্রত্যন্ত গ্রামের এই স্কুল গেস্ট টিচারদের অবসরের পর তালা পড়ে গেল স্কুলের দরজায় শিক্ষকের অভাবে বন্ধ হয়ে গেল স্কুলের পঠন পাঠন স্কুলের ছাত্রছাত্রীরাও এই স্কুল ছেড়ে ভর্তি হল গ্রামে থেকে প্রায় তিন কিমি দূরে অন্য স্কুলে তবুও গ্রামের স্কুল খোলার অপেক্ষায় রয়েছে গ্রামের ছাত্রছাত্রী থেকে অভিভাবকরা বাইট মনসারাম ঘোষ গ্রামবাসীবাইট রঞ্জিত রায় প্রধান শিক্ষক, অঙ্গদপুর প্রাথমিক বিদ্যালয়বাইট রুদ্রনাথ দাস ছাত্র গেস্ট টিচারদের অবসর নেওয়ার পর নতুন করে গেস্ট টিচার পাওয়া যায়নি সেই কারনে স্কুলটি বন্ধ হয়ে রয়েছে গেস্ট টিচার পাওয়া গেলে চালু করা যাবে স্কুল রাজ্য শিক্ষা দফতরকে জানানো হয়েছে দাবি বাঁকুড়া জেলা উচ্চ শিক্ষা দফতরের
bengali
# Encoding: utf-8 name 'dmg' maintainer 'Opscode, Inc' maintainer_email '[email protected]' license 'Apache 2.0' description 'LWRP to install OS X applications from dmgs' long_description IO.read(File.join(File.dirname(__FILE__), 'README.md')) version '2.0.9' supports 'mac_os_x'
code
കിടിലന് ഡാന്സുമായി ശ്രുതി ഹസന്: ലാഭത്തിലെ ആദ്യ വീഡിയോ ഗാനം പുറത്തിറങ്ങി എസ് പി ജനനാഥന് വിജയ് സേതുപതിയെ നായകനാക്കി സംവിധാനം ചെയ്യുന്ന ഏറ്റവും പുതിയ ചിത്രമാണ് ലാഭം. ചിത്രത്തിലെ ആദ്യ വീഡിയോ ഗാനം പുറത്തിറങ്ങി. വിജയ്നീ സേതുപതി ചിത്രത്തില് തിക്കു വേണ്ടി പോരാടുകയും കര്ഷക യൂണിയന്റെ നേതാവുമാണെന്ന് സംവിധായകന് പറഞ്ഞു. ജഗപതി ബാബുവാണ് സിനിമയില് വില്ലന് വേഷത്തില് എത്തുന്നത്. ശ്രുതി ഹാസനാണ് ചിത്രത്തിലെ നായിക. ശ്രീ രഞ്ജനി എന്നാണ് ശ്രുതിയുടെ കഥാപാത്രത്തിന്റെ പേര്. വിജയ് സേതുപതി പ്രൊഡക്ഷന്സ് നിര്മ്മിക്കുന്ന ചിത്രത്തില് കലയരാസന്, ജഗപതി ബാബു എന്നിവരും അഭിനയിക്കുന്നു. ഡി. ഇമ്മാന് സംഗീതം നിര്വഹിക്കുന്ന ചിത്രത്തിന്റെ ക്യാമറ രാംജി നിര്വഹിക്കുന്നു. The post കിടിലന് ഡാന്സുമായി ശ്രുതി ഹസന്: ലാഭത്തിലെ ആദ്യ വീഡിയോ ഗാനം പുറത്തിറങ്ങി first appeared on MalayalamExpressOnline.
malyali
Circle.us is an eCommerce shipping and fulfillment platform that caters mainly to small and medium-sized online retailers. The software is an ideal shipping and fulfillment solutions for organizations that look for compatibility and support for all popular and widely-used carriers and services. With Circle.us, users are able to gather, administer, and ship sales orders as well as consolidate carrier bills and take a look at orders within a unified platform. With just a single account, you are able to bring together all your carriers into a unified platform. Circle.us lets you create your very own shipping circle so all your orders and other related processes are streamlined, resulting in significant savings in terms of time, money, and frustration. Circle.us allows eCommerce businesses and online merchants to smoothly link core services to make order shipping and fulfillment processes faster, streamlined, and more effective. You don’t need to have a carrier account to fully utilize and enjoy Circle.us. A single Circle.us account lets you enjoy a ton of perks, from big discounts on shipping fees and insurance to unhindered access to all top carriers and services. Comparing shipping plans and fees is easy, which means you can quickly decide which carrier offers the best rate compared to other providers. With Circle.us, you don’t have to exit the system and launch other applications to view carriers bills, compare shipping charges, and other details. The software consolidates all your billing, which unifies all carries. Shipping charges and other relevant information are instantly viewable. Simply put, Circle.us is one big “Super Carrier”. Printing labels was a challenging tasks but Circle.us transforms it into a fast and easy process. The system provides powerful capabilities, such as printing labels in batch for various carriers simultaneously. Users can select from various formats for labels and packing slips. The process becomes a breeze, saving you over 80% of the time it used to take you to finish printing labels. If you are interested in Circle.us it may also be beneficial to analyze other subcategories of Best eCommerce Software gathered in our base of B2B software reviews. Each business is different, and may require a specific eCommerce Software solution that will be designed for their business size, type of clients and employees and even specific niche they cater to. We advise you don't count on locating a perfect app that is going to work for every business regardless of their history is. It may be a good idea to read a few Circle.us reviews first and even then you should keep in mind what the service is intended to do for your company and your staff. Do you require a simple and intuitive app with only elementary functions? Will you really make use of the complex tools needed by experts and large enterprises? Are there any specific features that are especially practical for the industry you operate in? If you ask yourself these questions it will be much easier to locate a reliable solution that will match your budget. How Much Does Circle.us Cost? We realize that when you make a decision to buy eCommerce Software it’s important not only to see how experts evaluate it in their reviews, but also to find out if the real people and companies that buy it are actually satisfied with the product. That’s why we’ve created our behavior-based Customer Satisfaction Algorithm™ that gathers customer reviews, comments and Circle.us reviews across a wide range of social media sites. The data is then presented in an easy to digest form showing how many people had positive and negative experience with Circle.us. With that information at hand you should be equipped to make an informed buying decision that you won’t regret. What are Circle.us pricing details? What integrations are available for Circle.us? If you need more information about Circle.us or you simply have a question let us know what you need and we’ll forward your request directly to the vendor.
english
യുഐഡിഎഐ വെബ്സൈറ്റ് പ്രശ്നം പരിഹരിച്ചു പാന്, ഇപിഎഫ്ഒ എന്നിവയുമായി ആധാര് കാര്ഡ് ബന്ധിപ്പിക്കുന്നതിന് നിലവില് തടസ്സങ്ങളൊന്നും ഇല്ലെന്ന് യുഐഡിഎഐ. ഇതുമായി ബന്ധപ്പെട്ട എല്ലാ സേവനങ്ങളും നിലവില് പ്രവര്ത്തിക്കുന്നുണ്ടെന്നും തടസ്സങ്ങളൊന്നുമില്ലെന്നും യുഐഡിഎഐ വ്യക്തമാക്കി. പാന്, ഇപിഎഫ്ഒ എന്നിവയുമായി ആധാര് ബന്ധിപ്പിക്കുന്നതിന്റെ സമയപരിധി അവസാനിക്കാനിരിക്കെ പലര്ക്കും സൈറ്റില് പ്രശ്നങ്ങള് നേരിട്ടിരുന്നു. ഇതിന്റെ പശ്ചാത്തലത്തില് നിരവധി കോണില് നിന്ന് പരാതികള് ഉയര്ന്നിരുന്നു. എന്നാല് സുരക്ഷയുമായി ബന്ധപ്പെട്ട പ്രധാനമായ നവീകരണം കഴിഞ്ഞ ആഴ്ച സൈറ്റില് നടത്തിയിരുന്നു. ഇതിന്റെ ഭാഗമായാണ് സേവനങ്ങള് തടസ്സപ്പെട്ടത് എന്നാണ് യുഐഡിഎഐ വ്യക്തമാക്കിയത്. നവീകരണത്തിന് ശേഷം പ്രശ്നം പരിഹരിച്ചുവെന്ന് യുഐഡിഎഐ പുറത്തിറക്കിയ വാര്ത്താ കുറിപ്പില് വ്യക്തമാക്കി Story Highlight: uidai website issue fixed
malyali
There is still acres left to uncover and organize, but for now I am declaring victory on the table. Next up – the fabric collection. Aggravation is often the start of progress.
english
April gold US:GCJ8 surged $22.50, or 1.7%, to settle at $1,349.90 an ounce, ending at its highest levels since Feb. 16, according to FactSet data. Prices saw a weekly rise of about 2.9%. That “looming trade dispute” has caused “stock markets world-wide to fall, bond yields to decline, and the U.S. dollar to weaken—all of those being factors that are positive for gold,” said analysts at Commerzbank in a note to clients. The U.S. Dollar Index DXY, +0.10% fell 0.5%, set for a weekly loss of 0.9%. Gold and the dollar typically move inversely, as moves in the U.S. unit can influence the attractiveness of commodities to holders of other currencies. U.S. stocks, however, were mixed as gold prices settled, though key benchmarks were poised for weekly losses. Silver also moved higher, with the May contract US:SIK8 up 1.2%, to $16.582 an ounce, for a weekly rise of 1.9%. May copper US:HGK8 fell 0.9% to $2.993 a pound, settling down 3.7% on the week. April platinum US:PLJ8 shed less than 0.1% to $948.40 an ounce, with prices losing 0.2% for the week, while June palladium US:PAM8 fell 1% to $971.55 an ounce, for a weekly decline of 1.7%. Among exchange-traded funds, the iShares Silver Trust SLV, +0.14% was up 1.2% to build a weekly rise of 1.5%, while the SPDR Gold Shares GLD, +0.00% added 1.6% to trade 2.7% higher for the week. The VanEck Vectors Gold Miners ETF GDX, -1.69% was up 3.8%, setting the stage for a weekly climb of 4.1%.
english
સુરત : વીર નર્મદ યુનિના ડિગ્રી સર્ટિફિકેટની ફીમાં થયેલા વધારો પરત ખેંચવા માગ સુરતની વીર નર્મદ દક્ષિણ ગુજરાત યુનિવર્સિટી દ્વારા આગામી સમયની અંદર 53મો ખાસ પદવીદાન સમારોહ યોજવા જઈ રહ્યો છે. તેમાં જે ફી નિર્ધારિત કરવામાં આવી છે. તે ફી ગત વર્ષ કરતાં ઘણી વધુ છે. ગત વર્ષે જે પદવી 225 રૂપિયામાં વિદ્યાર્થીઓને મળતી હતી. તે પદવી આ વર્ષે ભાવ વધારીને 250 રૂપિયા કરવામાં આવ્યા છે.જેથી વિદ્યાર્થી સંગઠનો દ્વારા ફી વધારો પરત ખેંચવાની માગ સાથે વિરોધ કરવામાં આવ્યો છે. યુનિવર્સિટીની ફોલ્ડર વાળી પદવી 400 રૂપિયામાં મળતી હતી. તેના ભાવ વધારીને 600 રૂપિયા કરવામાં આવ્યા છે. વિદ્યાર્થીઓને જે પદવી ઘરે મોકલવામાં આવતી હતી. તેના 600 રૂપિયામાંથી વધારીને 750 રૂપિયા કરી દેવામાં આવ્યા છે.જેથી તમામ વિદ્યાર્થીઓને ફી વધારો મોઘવારીમાં આકરો પડી શકે તેમ હોવાથી વિરોધ પ્રદર્શન કરવામાં આવી રહ્યું છે. યુવા છાત્ર સંઘર્ષ સમિતિના મહામંત્રી વિવેક પાટોડીયાએ જણાવ્યું કે, ફી વધારો એ યોગ્ય નથી કારણ કે, આ ફી વધારો કરીને યુનિવર્સિટી વિદ્યાર્થીઓ પાસેથી કમાણી કરતી હોય એવું લાગે છે. આવા ખોટા કાર્યો થતાં અટકાવવા માટે અને પૈસાની દોટમાં અંધ બનેલા સતાધીશોને સાચા રસ્તે દોરી લાવવા માટે આજ રોજ છાત્ર યુવા સંઘર્ષ સમિતિ દ્વારા આ ફી વધારાનો નિર્ણય પરત લેવામાં આવે તે માટે આવેદન આપવામાં આવે છે. સાથે સાથે આ નિર્ણય પરત ખેંચવા માટે છાત્ર યુવા સંઘર્ષ સમિતિ દ્વારા વીર નર્મદ દક્ષિણ ગુજરાત યુનિવર્સિટીને 3 દિવસનો સમય આપવામાં આવે છે. જો આ સમયમાં યોગ્ય નિર્ણય નહીં આવે તો ઉગ્ર આંદોલન કરવામાં આવશે.
gujurati
ಇಂದಿನ ರಾಶಿಭವಿಷ್ಯ 14092020 ಸೋಮವಾರ ಶ್ರೀ ಮಂಜುನಾಥ ಸ್ವಾಮಿ ಕೃಪೆಯಿಂದ ಈ ರಾಶಿಗಳಿಗೆ ಇಂದು , ಇಂದಿನ ನಿಮ್ಮ ರಾಶಿ ಭವಿಷ್ಯ ನೋಡಿ. ಪಂಡಿತ್ ದಾಮೋದರ ಭಟ್ ದೈವಜ್ಞ ಕರೆ ಮಾಡಿ ಕೇರಳ 9008611444.ಶ್ರೀ ನಿಮ್ಮ ಪ್ರೀತಿ ಪ್ರೇಮ ಮದುವೆ ದಾಂಪತ್ಯ ಕಲಹ ಹಣಕಾಸು ವ್ಯವಹಾರಗಳು ಉದ್ಯೋಗ ಇತ್ಯಾದಿ ಸಮಸ್ಯೆಗಳಿಗೆ ಅಷ್ಟಮಂಗಳ ಪ್ರಶ್ನೆ, ತಾಂಬೂಲಪ್ರಶ್ನೆ ,ಜಾತಕ ವಿಶ್ಲೇಷಣೆ,ಪಂಚಪಕ್ಷಿ ಪ್ರಶ್ನೆಗಳ ಮುಖಾಂತರ ಸಂಪೂರ್ಣವಾಗಿ ಅವಲೋಕನೇ ಮಾಡಿ ಪರಿಹಾರ ಸೂಚಿಸುವರು ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ ಏಷ್ಟೇ ಕಠಿಣವಾಗಿರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ ಪರಿಹಾರದಲ್ಲಿ ಚಾಲೆಂಜ್ 9008611444 Call WhatsApp ಮೇಷ ರಾಶಿ: ಕಷ್ಟದಲ್ಲೇ ಕಾರ್ಯಸಾಧನೆಯಾಗಲಿದೆ. ಶಿಕ್ಷಣ ಕ್ಷೇತ್ರದಲ್ಲಿ ಹೆಚ್ಚಿನ ಗೊಂದಲಗಳು ಕಂಡುಬರಲಿವೆ. ವೃತ್ತಿರಂಗದಲ್ಲಿ ಸಾವಧಾನವಾಗಿ ಮುಂದುವರಿಯಿರಿ. ನ್ಯಾಯಾಲಯದ ಕೆಲಸದಲ್ಲಿ ಸಮಸ್ಯೆಗಳು ಕಂಡುಬರಬಹುದು. ನಿಮ್ಮ ಸಂಗಾತಿಯೊಂದಿಗೆ ಉತ್ತಮ ಸಮಯವನ್ನು ಕಳೆಯಿರಿ ಮತ್ತು ಅವರ ಭಾವನೆಗಳನ್ನು ಸಹ ಅರ್ಥಮಾಡಿಕೊಳ್ಳಿ.ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ 9008611444 ವೃಷಭ ರಾಶಿ: ಶುಭ ಕಾರ್ಯಗಳಿಗೆ ಇದು ಸಕಾಲ. ಹಿರಿಯರಿಗೆ ಪ್ರವಾಸದಲ್ಲಿ ಸಂತಸ ತರಲಿದೆ. ಸಕಾಲಿಕ ಯೋಜನೆಗಳು ಕಾರ್ಯಗತವಾಗಲಿವೆ. ಗೃಹಕಲಹಕ್ಕೆ ಕಾರಣರಾಗಬೇಡಿ. ಹೆಚ್ಚಿನ ತಾಳ್ಮೆ ಇರಲಿ. ನಿಮ್ಮ ಇಚ್ಚಾಶಕ್ತಿ ಮತ್ತು ದೃಢನಿಶ್ಚಯದ ಬಲದಿಂದ, ನೀವು ಎಲ್ಲಾ ಸವಾಲುಗಳನ್ನು ಯಶಸ್ವಿಯಾಗಿ ಎದುರಿಸುತ್ತೀರಿ. ವಿದ್ಯಾರ್ಥಿಗಳು ಕೆಲವು ಅಡೆತಡೆಗಳನ್ನು ಎದುರಿಸಬೇಕಾಗುತ್ತದೆ.ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ 9008611444 ಮಿಥುನ ರಾಶಿ: ಅನವಶ್ಯಕವಾಗಿ ವಾದ ವಿವಾದಗಳಿಗೆ ಕಾರಣರಾಗದಂತೆ ಜಾಗ್ರತೆ ವಹಿಸಿ. ಆಗಾಗ ಖರ್ಚುವೆಚ್ಚಗಳು ಅಧಿಕ ರೂಪದಲ್ಲಿ ಕಂಡುಬರಲಿವೆ. ಇಂದು ನಿಮಗೆ ವಿಶೇಷ ದಿನ. ಹಿರಿಯರು ಸಹ ಕಾರ್ಯಕ್ಷೇತ್ರದಲ್ಲಿ ನಿಮ್ಮ ಮಾತನ್ನು ಕೇಳುತ್ತಾರೆ, ಇದರಿಂದ ಅಗತ್ಯವಿರುವ ಎಲ್ಲಾ ಕಾರ್ಯಗಳು ಸುಲಭವಾಗಿ ನಡೆಯುತ್ತವೆ. ದಾನ ಕಾರ್ಯಗಳನ್ನು ಮಾಡುವುದರಿಂದ ಗೌರವ ಹೆಚ್ಚಾಗುತ್ತದೆ.ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ 9008611444 ಕಟಕ ರಾಶಿ: ಮಿತ್ರರ ಪ್ರೇರಣೆಯಿಂದ ಹೊಸ ಯೋಜನೆ ಚಾಲನೆಗೆ ಬರಲಿದೆ. ಆಗಾಗ ಕೌಟುಂಬಿಕ ಗೊಂದಲಗಳು ಕಂಡು ಬರದಂತೆ ಜಾಗ್ರತೆ ವಹಿಸಿ. ವಾಹನ ಖರೀದಿಗಾಗಿ, ರಿಪೇರಿಗಾಗಿ ಖರ್ಚು ಬರುತ್ತದೆ. ಬೆಳಿಗ್ಗೆಯಿಂದಲೇ ಅನೇಕ ಕಾರ್ಯಗಳಲ್ಲಿ ಅಡೆತಡೆಗಳು ಉಂಟಾಗುತ್ತವೆ, ಅದು ನಿಮ್ಮನ್ನು ಚಿಂತೆಗೀಡು ಮಾಡುತ್ತದೆ.ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ 9008611444 ಸಿಂಹ ರಾಶಿ : ವೃತ್ತಿರಂಗದಲ್ಲಿ ಉದ್ಯೋಗಿಗಳಿಗೆ ಸ್ವಾಭಿಮಾನಕ್ಕೆ ಧಕ್ಕೆ ಬರಬಹುದು. ಗೃಹದಲ್ಲಿ ಮನಸ್ತಾಪದಿಂದ ಅಸಮಧಾನಕರ ವಾತಾವರಣ ಕಂಡುಬರಲಿದೆ. ಉಷ್ಣಬಾಧೆ ಕಂಡುಬಂದು ಕಿರಿಕಿರಿಯೆನಿಸಲಿದೆ. ಅವಿವಾಹಿತರು ಮದುವೆಗೆ ಸಂಬಂಧಿಸಿದಂತೆ ಒಳ್ಳೆಯ ಸುದ್ದಿಯನ್ನು ಕೇಳಬಹುದು. ನಿಮ್ಮ ತಂದೆಯಿಂದ ನಿಮಗೆ ಮಾರ್ಗದರ್ಶನ ಮತ್ತು ಬೆಂಬಲ ಸಿಗುತ್ತದೆ.ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ 9008611444 ಕನ್ಯಾ ರಾಶಿ: ಅನಿರೀಕ್ಷಿತವಾಗಿ ಕಾರ್ಯಕ್ಷೇತ್ರದಲ್ಲಿ ಪರಿವರ್ತನೆ ಹಂತಹಂತವಾಗಿ ಗೋಚರಕ್ಕೆ ಬರಲಿದೆ. ಶಿಕ್ಷಣ ಕ್ಷೇತ್ರದಲ್ಲಿ ಆಗಾಗ ಗೊಂದಲಗಳು ಕಂಡುಬರಬಹುದು. ರಾಜಕೀಯದವರಿಗೆ ತಟಸ್ಥ ಧೋರಣೆ ಉತ್ತಮ. ನೀವು ಹೊಸ ಉದ್ಯೋಗವನ್ನು ಹುಡುಕುತ್ತಿದ್ದರೆ ನಿಮ್ಮ ಹುಡುಕಾಟ ಪೂರ್ಣಗೊಳ್ಳುತ್ತದೆ. ನಿಮ್ಮ ವ್ಯಾಪ್ತಿ ಮತ್ತು ಕಾರ್ಯವೈಖರಿಯಲ್ಲೂ ಬದಲಾವಣೆ ಇರುತ್ತದೆ. ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ 9008611444 ತುಲಾ ರಾಶಿ: ಸಂಸಾರದಲ್ಲಿ ಗೃಹಿಣಿಗೂ, ಮಕ್ಕಳಿಗೂ ಇಷ್ಟಾರ್ಥ ಸಿದ್ಧಿ ತೃಪ್ತಿತರಲಿದೆ. ಆರ್ಥಿಕ ಸ್ಥಿತಿಯು ಖರ್ಚುವೆಚ್ಚಗಳಿಗೆ ಕಾರಣವಾದರೂ ಧನಾದಾಯವು ಉತ್ತಮವಿರುತ್ತದೆ. ಹೊಸ ಮಿತ್ರರ ಸಹಕಾರ ಸಿಗಲಿದೆ. ನಿಮ್ಮ ಜ್ಞಾನದ ಅನುಭವವನ್ನು ಗೌರವಿಸಲಾಗುತ್ತದೆ. ಇದು ನಿಮ್ಮ ಆಲೋಚನೆಗಳ ಮೇಲೂ ಪರಿಣಾಮ ಬೀರುತ್ತದೆ. ಕುಟುಂಬ ಆಸ್ತಿ ಪಡೆಯುವ ಬಲವಾದ ಸಾಧ್ಯತೆ ಇದೆ. ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ 9008611444 ವೃಚಿಕ ರಾಶಿ: ಹೊಸ ವ್ಯಾಪಾರ, ವ್ಯವಹಾರಗಳು ನಿರೀಕ್ಷೆಯ ಮಟ್ಟದಲ್ಲಿ ಆದಾಯವನ್ನು ತರಲಿದೆ. ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ವಿದ್ಯಾಭ್ಯಾಸಕ್ಕಾಗಿ ತಲೆಬಿಸಿಯಾಗಬಹುದು. ಎಲ್ಲಾ ವಿಚಾರಗಳಲ್ಲಿ ಸಾಧನೆಗಳು ಹಂತಹಂತವಾಗಿ ನೆರವೇರಲಿವೆ. ನೀವು ಕಲೆಯ ಮೂಲಕ ಖ್ಯಾತಿಯನ್ನು ಪಡೆಯುತ್ತೀರಿ ಮತ್ತು ಜನರು ನಿಮ್ಮ ಕೆಲಸದ ಶೈಲಿಯನ್ನು ಹೊಗಳುತ್ತಾರೆ. ಸಂಜೆ ಕುಟುಂಬದೊಂದಿಗೆ ಸಮಯ ಕಳೆಯುವಿರಿ.ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ 9008611444 ಧನುಸ್ಸು ರಾಶಿ: ಉದ್ದಿಮೆಗಳಲ್ಲಿ ಸೋಲನ್ನು ಅರಿಯದ ಛಲವಾದಿಗಳಿಗೆ ಆತಂಕ ಉಂಟಾಗಲಿದೆ. ಆರೋಗ್ಯದ ಬಗ್ಗೆ ಹೆಚ್ಚಿನ ಗಮನ ಅಗತ್ಯ. ಸಂಚಾರದಲ್ಲಿ ಜಾಗ್ರತೆ ವಹಿಸಿ. ಸಾಮಾಜಿಕ ಮತ್ತು ರಾಜಕೀಯ ಕ್ಷೇತ್ರಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಜನರು ಪ್ರಯೋಜನ ಪಡೆಯುತ್ತಾರೆ ಮತ್ತು ಮನೆಯಲ್ಲಿ ಹಿತೈಷಿಗಳ ಆಗಮನವು ಸ್ಥೈರ್ಯವನ್ನು ಹೆಚ್ಚಿಸುತ್ತದೆ.ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ 9008611444 ಮಕರ ರಾಶಿ: ನಿರುದ್ಯೋಗಿಗಳಿಗೆ ತಾತ್ಕಾಲಿಕ ವೃತ್ತಿ ಸಿಗಲಿದೆ. ಆರೋಗ್ಯ ಸುಧಾರಿಸಲಿದೆ. ಮಂಗಳ ಕಾರ್ಯಗಳಿಗೆ ಅಡಚಣೆಯಾಗಬಹುದು. ಹಿರಿಯರ ಸಹಕಾರದಿಂದ ಕಾರ್ಯಸಿದ್ಧಿಯಾಗಲಿದೆ. ವ್ಯವಹಾರದಲ್ಲಿ ಪಾಲುದಾರರಿಂದ ಮಾನಸಿಕ ಒತ್ತಡವಿರಬಹುದು. ಭವಿಷ್ಯದ ಯೋಜನೆಗಳನ್ನು ಕುಟುಂಬದ ಹಿರಿಯ ಸದಸ್ಯರೊಂದಿಗೆ ಚರ್ಚಿಸಿ, ಸಮಸ್ಯೆಗಳಿಗೆ ಪರಿಹಾರವನ್ನು ಕಂಡುಕೊಳ್ಳಿ.ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ 9008611444 ಕುಂಭ ರಾಶಿ: ಹೊಸ ಸಾಮಗ್ರಿಗಳು ಮನೆಗೆ ಬರಬಹುದು. ಮಕ್ಕಳ ವಿದ್ಯಾಭ್ಯಾಸದ ಬಗ್ಗೆ ಅನಗತ್ಯ ಚಿಂತೆ ಬೇಡ. ಕೃಷಿಕರಿಗೆ ಅವರ ಪರಿಶ್ರಮಕ್ಕೆ ತಕ್ಕ ಬೆಲೆ ಸಿಗಲಿದೆ. ದಿನಾಂತ್ಯ ಕಿರು ಸಂಚಾರವಿದೆ. ಇಂದು, ಕಡಿಮೆ ವಿಶ್ರಾಂತಿ ಮತ್ತು ಕಠಿಣ ಪರಿಶ್ರಮ ಪಡಬೇಕಾಗುವುದು, ಅದು ನಿಮ್ಮ ಖ್ಯಾತಿಯನ್ನು ಹೆಚ್ಚಿಸುತ್ತದೆ.ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ 9008611444 ಮೀನ ರಾಶಿ: ನಿಮ್ಮಲ್ಲಿ ನಾಯಕತ್ವ ಮತ್ತು ಸಾಂಸ್ಥಿಕ ಸಾಮರ್ಥ್ಯವು ಅಭಿವೃದ್ಧಿಗೊಳ್ಳುತ್ತದೆ.ತಂದೆಯ ಕಡೆಯಿಂದ ಪೂರ್ಣ ಬೆಂಬಲವಿರುತ್ತದೆ. ತಾಯಿಯ ಆರೋಗ್ಯವನ್ನು ನೋಡಿಕೊಳ್ಳಿ.ವೃತ್ತಿರಂಗದಲ್ಲಿ ದುಡುಕಿನ ನಿರ್ಧಾರಗಳು ಸಮಸ್ಯೆಗಳಿಗೆ ಕಾರಣವಾಗಬಹುದು. ನಿಮ್ಮ ವ್ಯಕ್ತಿತ್ವವು ಆಕರ್ಷಣೆಯ ಅರ್ಥದಲ್ಲಿ ಹೆಚ್ಚಾಗುತ್ತದೆ, ಅದು ಕುಟುಂಬ ಸಂಬಂಧಗಳನ್ನು ಬಲಪಡಿಸುತ್ತದೆ.ಕರೆ ಮಾಡಿ ಸಮಸ್ಯೆ ಏನೇ ಇರಲಿ 5 ದಿನಗಳಲ್ಲಿ ಶಾಶ್ವತ ಪರಿಹಾರ 9008611444
kannad
करिश्मा तन्ना 5 फरवरी को वरुण बंगेरा संग करेंगी शादी टीवी एक्ट्रेस करिश्मा तन्ना 5 फरवरी को वरुण बंगेरा से शादी करने जा रही हैं। कपल की शादी के फंक्शन 3 फरवरी से शुरू हो गए हैं। बीते रोज उनकी हल्दी सेरेमनी रखी गई थी जिसकी फोटोज जमकर वायरल हुईं। अब करिश्मा की मेहंदी सेरेमनी की तस्वीर सामने आई है। इन फोटोज में कपल बेहद खूबसूरत लग रहे हैं। मेहंदी सेरेमनी के लिए इस अदाकारा ने इन दिनों ट्रेंड में चल रहे यैलो सिंपल लहंगे को चुना था। वहीं व्हाइट कुर्तापायजामा में उनके दूल्हे वरुण भी खूब फब रहे हैं। पोस्ट में शेयर की गई तस्वारों में दोनों साथ में काफी सुंदर लग रहे हैं। पहली तस्वीर में वरुण औऱ करिश्मा एकदूसरे की आंखों में आंखे डाल कर देख रहे हैं। वहीं दूसरी तस्वीर में दोनों चश्मा लगाकर हंस रहे हैं। करिश्मा ने इस पोस्ट को शेयर करते हुए लिखा,मेहंदी है।
hindi
This is rightfully one of the most popular tours in the Washington Pass area because it offers great skiing on a loop featuring several high cols with outstanding views both far and near. You can choose from among many variations along the way, including summitting Copper Mountain and/or steep skiing objectives. The tour has particular appeal because it uses the highway to ?nish at a lower elevation than the starting point for some “free” vertical. One of Washington's best trails, Washington Pass Birthday Tour is located near Winthrop, WA. Trails' printable online topo maps offer shaded and un-shaded reliefs, and aerial photos too. Use topographic maps to find elevation, print high resolution maps, save a PNG, or just learn the topography around Washington Pass Birthday Tour. You can also get free latitude and longitude coordinates from the topographical map and set your GPS. Premium members can download or print any topo and cover more terrain when you map your Washington Pass Birthday Tour route ahead of time.
english
True to her Swedish upbringing, Camilla Engstrom, now working from her Brooklyn, NY studio for almost two years, describes her personal aesthetic as minimal, strong, and comfortable. She discovered her creative interests through her grandfather, who was an artist and writer. Engstrom’s unique sense of humor shines through in the charming and relatable illustrations available at The Primary Essentials. If you weren't in your current occupation, what would you be doing? I would probably work with film. My proudest accomplishment is... Having the courage to start working for myself. The next goal on the horizon is... Solo show at Deli gallery in November. I want it to be my best show yet. When do you feel like you’re at your best? When I'm making decisions that scare the hell out of me.
english
ಧರ್ಮಸ್ಥಳಕ್ಕೆ ಹೊರಟ್ಟಿದ್ದ ಸ್ನೇಹಿತರ ಕಾರು ಮರಕ್ಕೆ ಡಿಕ್ಕಿ.. ಓರ್ವ ಸಾವು ನಾಲ್ವರಿಗೆ ಗಾಯ ಹಾಸನ: ಚಾಲಕನ ನಿಯಂತ್ರಣ ತಪ್ಪಿ ಕಾರು ಮರಕ್ಕೆ ಡಿಕ್ಕಿಯಾಗಿ ಕಾರಿನಲ್ಲಿದ್ದ ಓರ್ವ ಸ್ಥಳದಲ್ಲೇ ಮೃತಪಟ್ಟಿದ್ದು ನಾಲ್ವರಿಗೆ ಗಾಯಗಳಾಗಿರುವ ಘಟನೆ ಜಿಲ್ಲೆಯ ಚನ್ನರಾಯಪಟ್ಟಣ ತಾಲೂಕಿನ ಬರಗೂರು ಹ್ಯಾಂಡ್ಪೋಸ್ಟ್ ಬಳಿ ಸಂಭವಿಸಿದೆ. ತಡ ರಾತ್ರಿ KA 53 MD 4411 ಐಟ್ವೆಂಟಿ ಕಾರಿನಲ್ಲಿ ಧರ್ಮಸ್ಥಳಕ್ಕೆ ಐವರು ಸ್ನೇಹಿತರು ಹೊರಟಿದ್ದರು. ದಾರಿ ಮಧ್ಯೆ ಚಾಲಕನ ನಿಯಂತ್ರಣ ತಪ್ಪಿ ಕಾರು ತೆಂಗಿನ ಮರಕ್ಕೆ ಗುದ್ದಿದೆ. ಗುದ್ದಿದ ರಭಸಕ್ಕೆ ಕಾರಿನ ಗಾಜು ಪುಡಿ ಪುಡಿಯಾಗಿದ್ದು ಕಾರು ನಜ್ಜುಗುಜ್ಜಾಗಿದೆ. ಇನ್ನು ಕಾರಿನಲ್ಲಿದ್ದವರನ್ನು ಹೊರ ತೆಗೆಯಲು ಸ್ಥಳೀಯರು ಹರ ಸಾಹಸ ಪಡುವಂತಾಯ್ತು. ಘಟನೆಯಲ್ಲಿ ಬೆಂಗಳೂರು ಮೂಲದ ದೇವರಾಜು38 ಮೃತಪಟ್ಟಿದ್ದಾರೆ. ಮಧುಕಿರಣ್, ಶ್ರೀನಿಧಿ, ಕೇಶವಯ್ಯ, ನಾಗರಾಜು ಸೇರಿದಂತೆ ನಾಲ್ವರಿಗೆ ಗಂಭೀರ ಗಾಯಾಳುಗಳಾಗಿದ್ದು ಅವರನ್ನು ತಾಲೂಕು ಆಸ್ಪತ್ರೆಯಲ್ಲಿ ದಾಖಲಿಸಿ ಚಿಕಿತ್ಸೆ ಕೊಡಿಸಲಾಗುತ್ತಿದೆ. ಚನ್ನರಾಯಪಟ್ಟಣ ಸಂಚಾರಿ ಠಾಣಾ ವ್ಯಾಪ್ತಿಯಲ್ಲಿ ಘಟನೆ ನಡೆದಿದೆ. ಹುಬ್ಬಳ್ಳಿಧಾರವಾಡ ಬೈಪಾಸ್ ರಸ್ತೆಯಲ್ಲಿ ಅಪಘಾತ ತಪ್ಪಿಸಲು ಕಟ್ಟುನಿಟ್ಟಿನ ಕ್ರಮ: ಡಿಸಿ ನೇತೃತ್ವದಲ್ಲಿ ಸಭೆ The post ಧರ್ಮಸ್ಥಳಕ್ಕೆ ಹೊರಟ್ಟಿದ್ದ ಸ್ನೇಹಿತರ ಕಾರು ಮರಕ್ಕೆ ಡಿಕ್ಕಿ.. ಓರ್ವ ಸಾವು ನಾಲ್ವರಿಗೆ ಗಾಯ appeared first on TV9 Kannada.
kannad
مُنٲسب موقس پؠٹھ کوٚر شہزادِ سارِنٕے لوٗکَن پؠٹھ یہِ سٲلِم ظٲہر تہٕ تِمَن ووٚنُن زِ بادشاہی دِیِن تِم تسٕنٛدِس خانہٕ دارس یہِ زَن لوٗکَو تہِ مون
kashmiri
Two way communication is vital for relationship building between staff, students, and parents. All students shall receive frequent positive feedback on their social and academic efforts. Student misbehavior will be corrected calmly, consistently, and immediately by any staff member who observes it at the time of the occurrence. Students will be engaged, motivated, challenged and prepared to set goals and achieve; students will practice perseverance and integrity. Faculty and students will work to ensure that individual academic and social goals are met in order to reach the PEAK.
english
ವಿಡಿಯೋ ಗೇಮ್ ಸೋತಿದ್ದಕ್ಕೆ ಬಾಲಕ ಪ್ರತಿಸ್ಪರ್ಧಿಗೆ ಈ ರೀತಿ ಸೇಡು ತೀರಿಸಿಕೊಳ್ಳುವುದೇ?! ನವದೆಹಲಿ: ವಿಡಿಯೋ ಗೇಮ್ ಹುಚ್ಚು ಮಕ್ಕಳನ್ನು ಯಾವ ಮಟ್ಟಕ್ಕೆ ತಲುಪಿಸುತ್ತದೆ ಎನ್ನುವುದಕ್ಕೆ ಈ ಘಟನೆ ಒಂದು ನಿದರ್ಶನ. 11 ವರ್ಷದ ಬಾಲಕನೊಬ್ಬ ವಿಡಿಯೋ ಗೇಮ್ ನಲ್ಲಿ ಸೋತ ಹತಾಶೆಯಿಂದ ಪ್ರತಿಸ್ಪರ್ಧಿ 9 ಬಾಲಕಿಯ ಜೀವ ತೆಗೆದ ಘಟನೆ ಮಧ್ಯಪ್ರದೇಶದಲ್ಲಿ ನಡೆದಿದೆ. ಬಾಲಕಿಯನ್ನು ಕಲ್ಲಿನಿಂದ ಜಜ್ಜಿ ಹತ್ಯೆ ಮಾಡಿದ ಬಾಲಕ ಭಯಗೊಂಡ ಸ್ವಯಂ ಲಾಕ್ ಮಾಡಿಕೊಂಡು ಮನೆಯೊಳಗೆ ಬಂಧಿಯಾಗಿದ್ದ. ಲಾಕ್ ಡೌನ್ ಸಂದರ್ಭದಲ್ಲಿ ಆನ್ ಲೈನ್ ಆಡುವ ಈ ಆಟವನ್ನು ಇಬ್ಬರೂ ಪದೇ ಪದೇ ಆಡುತ್ತಿದ್ದರು. ಆದರೆ ಪ್ರತೀ ಬಾರಿಯೂ ಬಾಲಕಿ ಎದುರು ಸೋಲುತ್ತಿದ್ದರಿಂದ ಹತಾಶೆಗೊಂಡ ಬಾಲಕ ಈ ಕೃತ್ಯವೆಸಗಿದ್ದಾನೆ.
kannad
PSL 2022, लगातार चौथा मैच जीतकर टॉप पर पहुंची मुल्तान सुल्तान, इस्लामाबाद यूनाइटेड को 20 रनों से हराया पाकिस्तान सुपर लीग में मंगलवार 1 फरवरी को खेले गए मुकाबले में मुल्तान सुल्तान ने इस्लामाबाद यूनाइटेड को 20 रनों से हराया। ये मुल्तान सुल्तान टीम की सीजन में चौथी जीत थी, अभी तक कोई टीम मुल्तान सुल्तान को हरा नहीं सकी है। इस्लामाबाद यूनाइटेड ने टॉस जीतकर पहले गेंदबाजी का फैसला किया था. मुल्तान सुल्तान ने पहले बल्लेबाजी करते हुए 217 रनों का विशाल स्कोर खड़ा किया, जवाब में इस्लामाबाद यूनाइटेड 197 रनों पर ढेर हो गई। मोहम्मद रिजवान की कप्तानी वाली मुल्तान सुल्तान के ओपनर शान मसूद और मोहम्मद रिजवान ने पहले विकेट के लिए 30 रन जोड़े। रिजवान 12 रन बनाकर आउट हुए। टीम के लिए सर्वाधिक रन टिम डेविड ने बनाए. उन्होंने 29 गेंदों पर ताबड़तोड़ 71 रन बनाए। रैली रोसो ने 67 रनों की पारी खेली, इस बदौलत मुल्तान सुल्तान ने इस्लामाबाद यूनाइटेड के सामने जीत के लिए 218 रनों का स्कोर खड़ा किया। इस्लामाबाद यूनाइटेड की पूरी टीम 197 रनों पर सिमट गई, और मुल्तान सुल्तान ने मैच 20 रनों से जीत लिया। बल्लेबाजी में कमाल करने वाले टिम डेविड ने गेंदबाजी में भी शानदार प्रदर्शन किया। उन्होंने टीम के लिए 3 विकेट चटके। वहीं खुशदिल शाह ने टीम के लिए सर्वाधिक 4 विकेट चटकाए।
hindi
ಸಂಕಷ್ಟಕ್ಕೆ ಮಿಡಿಯುತ್ತಿಹುದು ಹಿರಿಜೀವ ಆಸರೆ ವೃದ್ಧಾಶ್ರಮದ ನಿತ್ಯ ಅನ್ನದಾಸೋಹ... ಬೆಂಗಳೂರು ಮೇ. 19: ಕೊರೋನಾ ಎರಡನೇ ಅಲೆಯಿಂದಾಗಿ ಅನೇಕ ಉದ್ಯೋಗಸ್ಥರು ಸಾಕಷ್ಟು ಕಷ್ಟಗಳಿಗೆ ಸಿಲುಕಿದ್ದಾರೆ. ಆರೋಗ್ಯ ಸಮಸ್ಯೆಯ ಆತಂಕ ಒಂದೆಡೆಯಾದರೆ ಆರ್ಥಿಕ ಹೊಡೆತದ ಆತಂಕ ಮತ್ತೊಂದೆಡೆ. ಈ ಕೊರೋನಾ ಲಾಕ್ಡೌನ್ನಿಂದಾಗಿ ಜನಸಾಮಾನ್ಯರು ಮಾತ್ರವಲ್ಲ ಹಲವು ಅನಾಥಾಶ್ರಮ ಹಾಗೂ ವೃದ್ಧಾಶ್ರಮಗಳಲ್ಲೂ ಹಲವು ಸಮಸ್ಯೆ ಉಂಟಾಗಿದೆ. ಇನ್ನು ಮತ್ತೊಬ್ಬರ ಆರ್ಥಿಕ ಸಹಕಾರದಿಂದಲೇ ಹೆಚ್ಚಾಗಿ ನಡೆಯುವ ವೃದ್ಧಾಶ್ರಮಗಳ ನಡುವೆ ಬೆಂಗಳೂರಿನಲ್ಲೊಂದು ಆಶ್ರಮ ಜನರ ಕಷ್ಟಗಳಿಗೂ ಮಿಡಿಯುತ್ತಿದೆ. ಆಶ್ರಮ ನಿವಾಸಿಗಳಿಗಷ್ಟೇ ಅಲ್ಲ ಹೊರಗಡೆ ಬಂದು ನೂರಾರು ಜನರಿಗೆ ಮೂರು ಹೊತ್ತಿನ ಊಟವನ್ನೂ ಹಾಕುತ್ತಿದೆ. ಹೌದು, ಲಗ್ಗರೆಯಲ್ಲಿರುವ ಆಸರೆ ವೃದ್ಧಾಶ್ರಮದ ವಿಶೇಷತೆಯೇ ಇದು. ಕಳೆದ ಏಳು ವರ್ಷಗಳಿಂದ ಹಲವಾರು ಹಿರಿಯ ಜೀವಗಳು, ನಿರ್ಗತಿಕರಿಗೆ ಆಸರೆಯಾಗಿದೆ ಈ ಆಶ್ರಮ.ಕೋವಿಡ್ ಕುರಿತ ಎಲ್ಲಾ ಲೇಟೆಸ್ಟ್ ಅಪ್ಡೇಟ್ಸ್ ಓದಿ ಈಗ ಕೊರೋನಾದಂತಹ ಕಷ್ಟ ಕಾಲದಲ್ಲಿ ಆಶ್ರಮದಲ್ಲಿರುವವರಿಗೆ ಮಾತ್ರವಲ್ಲ ನಗರದ ಹಲವೆಡೆ ಬಡ ಜನರಿಗೂ ಆಸರೆಯಾಗಿದೆ ಆಸರೆ ಆಶ್ರಮ. ಲಾಕ್ಡೌನ್ ಪ್ರಾರಂಭವಾದಾಗಿನಿಂದ ಪ್ರತಿದಿನ ಯಶವಂತಪುರ ರೈಲ್ವೆ ನಿಲ್ದಾಣ, ಲಗ್ಗೆರೆ ಸರ್ಕಲ್ ಹಾಗೂ ಆಶ್ರಮದ ಬಳಿಯೂ ಆಹಾರ ವಿತರಿಸಲಾಗುತ್ತಿದೆ. ಕಳೆದ ವರ್ಷದ ಲಾಕ್ಡೌನ್ನಲ್ಲಿ ಪ್ರಾರಂಭವಾದ ಆಶ್ರಮದ ಈ ಕೆಲಸ ಈ ವರ್ಷವೂ ಮುಂದುವರೆದಿದೆ. ಲಾಕ್ಡೌನ್ ಮುಗಿಯುವವರೆಗೂ ಈ ಕಾಯಕವನ್ನು ಮುಂದುವರೆಸಲಿದ್ದೇವೆ ಎಂದು ಹೇಳಿಕೊಳ್ಳುತ್ತಾರೆ ಆಸರೆ ವೃದ್ಧಾಶ್ರಮ ನಡೆಸುತ್ತಿರುವ ಜೈರಾಜ್ ನಾಯ್ಡು. ಲಗ್ಗೆರೆ ಪೀಣ್ಯ ಕೈಗಾರಿಕಾ ಪ್ರದೇಶಕ್ಕೆ ಹತ್ತಿರವಿರುವ ಕಾರಣ ಹೆಚ್ಚಿನ ಜನ ಗಾರ್ಮೆಂಟ್ಸ್ನಲ್ಲಿ ಕೆಲಸ ಮಾಡುವವರಿದ್ದಾರೆ. ಹಾಗೇ ಕೂಲಿ ಕಾರ್ಮಿಕರು, ಬಡವರ ಸಂಖ್ಯೆಯೂ ಹೆಚ್ಚು. ಹೀಗಾಗಿಯೇ ಆಶ್ರಮದ ಮುಂದೆಯೇ ಅಂತಹ ಜನರಿಗೆ ಊಟದ ವ್ಯವಸ್ಥೆ ಮಾಡಲಾಗಿದೆ. ಹಾಗೇ ಯಶವಂತಪುರ ರೈಲ್ವೆ ನಿಲ್ದಾಣದಲ್ಲಿ ಹಾಗೂ ಅದರ ಸುತ್ತಮುತ್ತ ನೂರಾರು ಮಂದಿ ಬಡವರು, ನಿರ್ಗತಿಕರು ಆಶ್ರಯ ಪಡೆದಿದ್ದು, ಅದೇ ಕಾರಣಕ್ಕಾಗಿ ಅಲ್ಲಿ ಒಂದು ಸಮಯದ ಊಟ ನೀಡಲಾಗುತ್ತಿದೆ. ಉಳಿದಂತೆ ಲಗ್ಗೆರೆ ಸರ್ಕಲ್ನ ಅರಳಿಮರದ ಸುತ್ತಮುತ್ತಲೂ ಸಹ ಹೆಚ್ಚಾಗಿ ಬಡ ಜನರೇ ವಾಸವಿದ್ದು, ಅಲ್ಲಿಯೂ ಒಂದು ಹೊತ್ತಿನ ಊಟ ಹಾಕಲಾಗುತ್ತಿದೆ. ಹೀಗೆ ಪ್ರತಿದಿನ ಆಸರೆ ವೃದ್ಧಾಶ್ರಮ ಸರಿಸುಮಾರು ಒಂದು ಸಾವಿರಕ್ಕೂ ಹೆಚ್ಚು ಜನರಿಗೆ ಊಟದ ವ್ಯವಸ್ಥೆ ಕಲ್ಪಿಸುತ್ತಿದೆ. ಇನ್ನು ಒಂದು ಆಶ್ರಮವಾಗಿದ್ದು ನಾವೇ ಹೀಗೆ ಜನರ ಸಹಾಯಕ್ಕೆ ನಿಂತಿರುವಾಗ ಸ್ಥಿತಿವಂತರಿಗೆ ಏನಾಗಿದೆ ಅನ್ನೋದು ಆಸರೆ ಆಶ್ರಮದ ಜೈರಾಜ್ ನಾಯ್ಡು ಮಾತು. ಹಾಗೇ ನಮ್ಮಿಂದ ಪ್ರೇರೇಪಿತರಾಗಿ ಕೆಲವರಾದರೂ ಬಡ ಜನರ ಕಷ್ಟಕ್ಕೆ ಸ್ಪಂದಿಸುವಂತಾದರೆ ಅದೇ ನಮಗೆ ಸಿಕ್ಕ ಜಯ ಎಂದೂ ಹೇಳುತ್ತಾರೆ ಅವರು.ವಿಶೇಷ ಅಂದರೆ ಎಲ್ಲರೂ ಊಟ ನೀಡುವ ಬಹುತೇಕ ಮಂದಿ ಪೊಟ್ಟಣಗಳಲ್ಲಿ, ಪಾರ್ಸೆಲ್ ರೀತಿಯಲ್ಲಿ ಊಟ ನೀಡುತ್ತಾರೆ. ಆದರೆ ಆಸರೆ ಆಶ್ರಮದ ಬಳಿ ಎಲ್ಲರೂ ಮನೆಯಿಂದಲೇ ಪಾತ್ರೆ, ತಟ್ಟೆ, ಬಾಕ್ಸ್ಗಳನ್ನು ತಂದು ತಮಗೆ ಮಾತ್ರವಲ್ಲ ತಮ್ಮ ಮನೆಯ ಕುಟುಂಬದ ಸದಸ್ಯರಿಗೂ ಬೇಕಾದಷ್ಟು ಊಟ ತೆಗೆದುಕೊಂಡು ಹೋಗುವ ವ್ಯವಸ್ಥೆಯನ್ನೂ ಮಾಡಲಾಗಿದೆ.ಊಟ ಮಾತ್ರವಲ್ಲ ಆಸರೆ ಆಶ್ರಮದ ಮುಂದೆ ಕ್ಯಾರೆಟ್, ಬೀನ್ಸ್, ಕುಂಬಳಕಾಯಿ, ಸೋರೆಕಾಯಿ, ಬೀಟ್ ರೂಟ್, ನುಗ್ಗೇಕಾಯಿ, ಹೂಕೋಸು, ಎಲೆಕೋಸು, ಟೊಮ್ಯಾಟೋ, ಈರುಳ್ಳಿ, ನವಿಲುಕೋಸು, ಸೌತೇಕಾಯಿ, ಆಲೂಗಡ್ಡೆ ಸೇರಿದಂತೆ ಹಲವು ಬಗೆಯ ನೂರಾರು ಕೆಜಿ ತರಕಾರಿಯನ್ನೂ ಜನರಿಗೆ ಉಚಿತವಾಗಿ ನೀಡಲಾಗುತ್ತಿದೆ. ಹೀಗೆ ಮತ್ತೊಬ್ಬರ ಸಹಾಯದಿಂದ ನಡೆಯಬೇಕಾದ ಆಶ್ರಮವೇ ಜನರ ಸಹಾಯಕ್ಕೆ ನಿಂತಿದೆ. ಆ ಮೂಲಕ ಲಗ್ಗೆರೆಯ ಆಸರೆ ವೃದ್ಧಾಶ್ರಮ ಎಲ್ಲರಿಗೂ ಮಾದರಿಯಾಗಿದೆ.
kannad
We know how nice it is to have options, particularly when you’re deciding who to rent your storage unit from. Our offices are open six days a week, so don’t hesitate to call, visit, or fill out our online form to receive quick assistance! Contact us about all your storage needs. Welcome to Guardian Self Storage. We offer storage solutions for your household and business needs, with locations in Phoenix, Glendale, and Yuma, AZ. All of our facilities provide the highest quality of customer service. Read on to learn more about the features we provide! With drive-up accessibility and aisles wide enough for even the largest of moving trucks, our properties are designed to make the moving process fast and easy. In preparation for your move, check out our storage calculator to choose your unit size before heading over to our storage tips page for advice on preparing and organizing your belongings. Don’t forget that our resident managers are always happy to answer any questions you may have about our facility or the moving process. With the large population of families, business owners, and students in need of more space, we simply couldn’t offer just one property. Because we provide multiple storage facilities in Arizona, we can serve residents from Phoenix, Glendale, El Mirage, Surprise, Scottsdale, Paradise Valley, Tempe, Fortuna Foothills, Tolleson, Encanto, Sun City, Litchfield Park, Mesa, and beyond! We’re near AZ-51, I-10, AZ-143, I-17, and much more, allowing you to quickly pop on and off the highway to access the space you need. As if our variety of unit sizes and central locations weren’t enough reason to rent with us, we’re constantly providing that extra push that makes all the difference in your storage experience. We offer services like online bill pay and storage insurance, as well as benefits like no long-term commitment and month-to-month leases. We’re a proud member of the Arizona Self Storage Association and we’ll do whatever it takes to make your stay with us easy, affordable and convenient. Contact our team today!
english
لاہور6 دسمبراردو پوائنٹ اخبارتازہ ترین اے پی پی 06 دسمبر2017ء پاکستان اولمپک ایسوسی ایشن کے صدر لیفٹیننٹ جنرلر سید عارف حسن نے کہا ہے کہ پاکستان فٹ بال فیڈریشن پر پابندی ختم کرنے کیلئے فیفا اور ائی او سی سے بات چیت چل رہی ہےایشین گیمز کے فن رن کے حوالے سے ہونے والی تقریب میں میڈیا سے بات کرتے ہوئے انہوں نے کہا کہ ائندہ سال جکارتہ میں ہونے والے میگا ایونٹ میں پاکستان 30 کھیلوں میں حصہ لے گا مقابلوں میں اچھے نتائج کی توقعات کیساتھ تیاری کی انہوں نے کہا کہ سپورٹس کے فروغ کیلئے فنڈز فراہم کرنا ہماری حکومت کی ترجیحات میں میں شامل ہونا چاہیےبھارت نے ٹوکیو اولمپکس کی تیاری کیلئے 1730 کروڑ روپے کے فنڈز مختص کئے ہیں دوسری جانب پاکستان میں کامن ویلتھ گیمز کی تیاری کیلئے بھی کیمپس کا اعلان تک نہیں ہو سکا میلبورن میں ہونے والے ان کھیلوں کی تیاری کیلئے فیڈریشن کو مدد کی ضرورت ہےعالمی سطح پر پاکستان کے ریسلرز اور ویٹ لفٹرز بھی اپنی محنت سے میڈلز جیت رہے ہیں ملکی سطح کے کھیلوں کا انعقاد کرنے میں بھی مسائل ہیں بین الصوبائی گیمز کا اج اعلان ہوا اور مقابلوں کا اغاز 25 دسمبر سے ہونا ہے اتنے کم وقت میں گیمز کس طرح منعقد کروائی جاسکتی ہیںایسی گیمز کروانے کا کوئی فائدہ نہیںکھیلوں کے ایونٹس کروانے میں تسلسل ہونا چاہیےمیں سمجھتا ہوں کہ صرف پیسہ ضائع کیا جا رہا ہے اس سے بہتر تھا کہ سپورٹس کا سامان خرید لیا جاتا انہوں نے بتایا کہ جکارتہ ایشین گیمز کے فن رن 28ملکوں میں ہونگےاس کا اغاز پاکستان سے ہونا بڑے اعزاز کی بات ہےاگلا مرحلہ بنگلہ دیش میں ہوگااس موقع پر ایشین گیمز کی نمائندے بھی لیفٹیننٹ جنرل سید عارف حسن کے ہمراہ موجود تھے
urdu
import { combineReducers } from "redux"; import { routerReducer } from "react-router-redux"; import search from "./searchReducer"; import auth from "./authReducer"; import drafts from "./drafts"; import published from "./published"; import users from "./users"; import dashboard from "./dashboard"; const rootReducer = combineReducers({ auth, users, drafts, dashboard, search, published, routing: routerReducer }); export default rootReducer;
code
Jharkhand Congress: झारखंड कांग्रेस के दो पूर्व अध्यक्ष प्रदीप बलमुचू और सुखदेव भगत ने की घर वापसी झारखंड Jharkhand कांग्रेस के पूर्व अध्यक्ष सुखदेव भगत Sukhdev Bhagat और प्रदीप बलमुचु Pradeep Balmuchu एक बार फिर से कांग्रेस में शामिल हो गये है. झारखंड के कांग्रेस प्रभारी अविनाश पांडे ने दोनों को पार्टी की सदस्यता दिलायी. सुखदेव भगत ने कहा कि उनके डीएनए में कांग्रेस है. पीढ़ी दर पीढ़ी उनका परिवार कांग्रेसी रहा है. उनका जब भी शव यात्रा निकलेगी, वह कांग्रेस के झंडे से निकलेगी. वहीं, प्रदीप बालमुचु ने कहा है कि उनसे गलती हुई थी. पार्टी छोड़ने के बाद भी उन्हें कांग्रेस की महत्व का पता चला. ऐसी गलती उनसे दोबारा नहीं होगी. बता दें कि विधानसभा चुनाव के ठीक पहले दोनों नेताओं ने कांग्रेस पार्टी छोड़ दी थी. साफ है कि आज से दोनों नेता फिर से कांग्रेसी हो गए है. दोनो नेताओं की वापसी कांग्रेस के नए प्रदेश प्रभारी अविनाश पांडे की पहल के बाद हुई है. कांग्रेस के दो पूर्व अध्यक्ष का स्वागत करने के लिए कांग्रेस ने बकायदा रांची पार्टी कार्यालय में कार्यक्रम का आयोजित किया. इस कार्यक्रम में पूर्व प्रदेश अध्यक्ष सुखदेव भगत और प्रदीप बलमुचू की घर वापसी हुई है. इस दौरान पार्टी कार्यालय में कांग्रेस प्रभारी अविनाश पांडे के साथ ही पूर्व मंत्री सुबोध कांत सहाय, प्रदेश अध्यक्ष राजेश ठाकुर, मंत्री आलमगीर आलम, मंत्री रामेश्वर उराव, मंत्री बादल पत्रलेख भी मौजुद रहे. दो नेताओं ने कांग्रेस में की घर वापसी इस अवसर पर झारखण्ड प्रभारी अविनाश पांडे ने कहा आज हमारे परिवार के दो साथी पुनः कांग्रेस में शामिल हो रहे हैं. दोनों का हम पार्टी में स्वागत करते हैं.यह पार्टी के लिए सुखद घड़ी है.इनके आने से पार्टी और ज्यादा मजबूत होगी. अविनाश पांडे ने कहा कि कि दोनों नेताओं से गलती हुई थी ऐसे में अब यह जरूरी है कि इन गलतियों को माफ कर कांग्रेसी कार्यकर्ता संगठन की मजबूती में लग जाये. कांग्रेस संगठन को मजबूत बनाने पर दिया जोर वहीं, प्रदीप बलमुचू ने कहा अविनाश जी और आलाकमान का वे धन्यवाद करते हैं क्योंकि कांग्रेस से बाहर जाकर हमने गलतियां की थी और उस गलती को अब सुधार लिया है।वे कांग्रेस को मजबूत करने के लिए पूरी मेहनत करेंगे.सुखदेव भगत ने कहा कि उनके डीएनए में कांग्रेस है. पीढ़ी दर पीढ़ी उनका परिवार कांग्रेसी रहा है. उनका जब भी शव यात्रा निकलेगी, वह कांग्रेस के झंडे से निकलेगी. Jharkhand Crime: गढ़वा पुलिस ने ठग गिरोह का किया भंडाफोड़, माइक्रोफाइनेंस कंपनी का कर्मचारी बता कर लाखों का किया फ्रॉड Jharkhand: कोडरमा के BJP के पूर्व सांसद रविंद्र राय पर हमला, थाने में घुस कर बचाई जान, FIR दर्ज
hindi
नौकरी छूटने के बाद भी मिलेगी सैलरी! पढ़ें सरकार की नई योजना कोरोना काल कई लोगों के लिए परेशानी का सबब बन गया है, लेकिन इस दौरान मोदी सरकार उन लोगों को बेरोजगारी भत्ता दे रही है जिनकी नौकरी चली गई है. सरकार ने इसे जून तक बढ़ा दिया है। आप सभी को बता दें कि केंद्र की मोदी सरकार ने इसके लिए ESIC की देखरेख में अटल बीमित व्यक्ति कल्याण योजना ABVKY की शुरुआत की है. वहीं, इस योजना के तहत सरकार उन लोगों को बेरोजगारी भत्ता देगी, जिनकी कोरोना महामारी में नौकरी चली गई है। वहीं, एक अनुमान की मानें तो इस योजना में 40 लाख लोगों को रोजगार मिलेगा। आप सभी को यह भी बता दें कि अटल बीमित व्यक्ति कल्याण योजना ईएसआईसी के बीमित कर्मचारियों को उनकी बेरोजगारी के दौरान नकद मुआवजे के रूप में राहत प्रदान करती है। वर्तमान में, योजना के तहत बीमित कर्मचारी को बेरोजगार होने पर अधिकतम 90 दिनों के लिए उसकी औसत कमाई का 50 प्रतिशत भुगतान किया जाता है। आप सभी को बता दें कि मोदी सरकार उन लोगों को बेरोजगारी भत्ता दे रही है जिनकी नौकरी कोरोना काल में चली गई है. हालांकि इसे अभी खत्म किया जाना था, लेकिन सरकार ने इसे जून तक बढ़ा दिया है। हाल ही में मिली जानकारी के अनुसार सरकार की ओर से इस भुगतान का मतलब है कि अगर कोई व्यक्ति हर महीने 30,000 रुपये कमाता है, तो उसकी 90 दिनों की औसत कमाई को 90 हजार का 50 यानी 2 साल में लगभग 45 हजार रुपये दिया जाएगा. हालांकि, मोदी सरकार की अटल बीमित व्यक्ति कल्याण योजना का लाभ उठाने के लिए कुछ शर्तें निर्धारित हैं। वहीं इस योजना का लाभ केवल उन्हीं लोगों को मिलेगा जो असंगठित क्षेत्र में काम कर रहे हैं और उनका पैसा पीएफ या ईएसआईसी में कट गया है। वहीं, अगर ऐसे लोग कोरोना काल में अपनी नौकरी खो देते हैं, तो केंद्र सरकार उन्हें अटल बीमित व्यक्ति कल्याण योजना के तहत वित्तीय सहायता देगी। कैसे लें योजना का लाभ इसके लिए सबसे पहले आपको ईएसआईसी की वेबसाइट www..esic पर जाना होगा। अच्छा आपको अंदर जाना है। अब इसके बाद बेरोजगारी भत्ता का लाभ उठाने के लिए फॉर्म डाउनलोड करें और उसे विधिवत भरें। अब फॉर्म भरने के बाद उसे ईएसआईसी की नजदीकी शाखा में जमा कर दें। इसके बाद फॉर्म के साथ एक नोटरी हलफनामा संलग्न करना होगा जिसमें 20 रुपये का स्टांप पेपर संलग्न करना होगा। अब फॉर्म में AB1 से AB4 तक के फॉर्म को एक साथ जमा करना होगा। सरकार ने दी जानकारी केंद्रीय श्रम राज्य मंत्री रामेश्वर तेली ने बुधवार को संसद को अटल बीमा व्यक्ति कल्याण योजना की जानकारी दी. दरअसल, तेली ने कहा कि योजना के तहत 82,724 दावे प्राप्त हुए, जिनमें से 7 फरवरी, 2022 तक 61,314 दावों का निपटारा किया जा चुका है. इसका मतलब है कि इतनी बड़ी संख्या में सरकार ने लोगों को बेरोजगारी भत्ता दिया है. वहीं ईएसआईसी द्वारा चलाई जा रही यह योजना बीमित लोगों को नौकरी जाने पर बेरोजगारी भत्ता देती है। ऐसे में पहले भत्ते की राशि 25 फीसदी तय की गई थी, जिसे बढ़ाकर 50 फीसदी कर दिया गया है. हालांकि सरकार ने क्लेम की कुछ शर्तों में ढील भी दी है। आपको बता दें कि इस योजना को पहली बार 1 जुलाई 2018 को पेश किया गया था, जिसे बाद में बढ़ाकर 1 जुलाई 2020 कर दिया गया। वहीं, कोरोना की तीसरी लहर को देखते हुए सरकार ने इसे फिर से बढ़ाकर 30 जून कर दिया है, 2022.
hindi
సితారతో నవీన్ పొలిశెట్టి మూవీ కన్ఫామ్ జాతిరత్నాలను మించి! టాలీవుడ్ యంగ్ సెన్సేషన్ నవీన్ పొలిశెట్టి నెక్స్ట్ మూవీ అప్డేట్ వచ్చేసింది. ఈ ఏడాది జాతిరత్నాలు సినిమాతో సంచలన విజయాన్ని అందుకొని క్రేజీ స్టార్ గా మారిపోయిన ఈ యంగ్ టాలెంటెడ్ హీరో.. మరోసారి ప్రేక్షకులను కడుపుబ్బా నవ్వించి కలెక్షన్లు కొల్లగొట్టాలని చూస్తున్నాడు. అందుకే మళ్ళీ కామెడీనే నమ్ముకొని మరో సినిమా చేస్తున్నాడు. ప్రముఖ నిర్మాణ సంస్థ సితార ఎంటర్టైన్మెంట్స్ లో నవీన్ ఓ సినిమా కమిట్ అయ్యాడు. అయితే స్టొరీ నచ్చక ఆ సంస్థ భారీ మొత్తంలో ఇచ్చిన అడ్వాన్స్ ని సైతం నవీన్ తిరిగి ఇచ్చేశాడని ఇటీవల వార్తలొచ్చాయి. అయితే ఇప్పుడదే సంస్థతో నవీన్ సినిమా చేస్తున్నట్లు అధికారిక ప్రకటన వచ్చింది. నవీన్ తో చేయబోతున్న సినిమా వివరాలను సితార ఎంటర్టైన్మెంట్స్ సోషల్ మీడియా వేదికగా పంచుకుంది. కళ్యాణ్ శంకర్ దర్శకత్వంలో రూపొందనున్న ఈ సినిమాను.. ఫార్చ్యూన్ 4 సినిమాస్ తో కలిసి సితార ఎంటర్టైన్మెంట్స్ నిర్మించనుంది. గణేష్ ఉత్సవ్ శుభాకాంక్షలు తెలుపుతూ ఈ మూవీని అధికారికంగా ప్రకటిస్తూ ఓ వీడియోను విడుదల చేశారు మేకర్స్. ఇదొక ఫన్ ఫిల్డ్ ఎంటర్టైనర్ అని వీడియోలో తెలిపారు. ఈ చిత్రానికి నాగ వంశీ, సాయి సౌజన్య నిర్మాతలుగా వ్యవహరించనున్నారు. జాతిరత్నాలుతో సంచలన విజయాన్ని అందుకున్న నవీన్.. ఈ సినిమాతో ఎలాంటి సంచలనాలు సృష్టిస్తాడో చూడాలి.
telegu
ELD Versus AOBRD: What's the Difference? With less than a year until the December deadline to switch from grandfathered automatic onboard recording devices (AOBRDs) to mandated electronic logging devices (ELDs), the heat is already on to take steps to make the switch and remain in compliance. Some drivers and enforcement personnel have been in a quandary over the differences between an ELD and an AOBRD — particularly with both devices still presently in use — sometimes unable to identify which is being used on vehicles during roadside inspections. While the two are similar, ELDs are more accurate and have more potential to be integrated into other fleet management solutions. The benefits of accuracy and the ability to integrate it into a telematics solution to leverage the ELD data should motivate fleets to begin the transition long before the December 16 deadline for ELD compliance. More practically, as fleets that have already transitioned to ELDs discovered during the 2017 transition, implementation and training will likely take significantly longer than expected. Taking the first steps to transitioning today is essential for all these reasons. AOBRDs were designed to meet FMCSA regulations established in the late 1980s, with the ability to track a driver’s duty status information to comply with HOS rules by recording engine use, speed, miles driven and dates/times by using a physical connection to the engine. The simple technology is limited and comes with flaws like ease of tampering and the ability for supervisors to changes logs without a driver’s approval. In keeping with updated FMCSA regulations, an ELD not only documents a driver’s driving time and speed to ensure compliance with HOS—it has integral synchronization into a vehicle’s diagnostic port to record vehicle motion activity, engine hours, power status, vehicle motion status and location, making it more accurate and less subject to tampering. The sophisticated technology also requires a driver’s approval of their electronic logs, the ability to make alterations and annotations—in the event of errors or need for clarification—and the requirement that drivers approve any changes made by supervisors or other back-office personnel. AOBRDs and ELDs both capture record of duty status (RODS) data automatically at each duty status change, but ELDs also capture RODS automatically every 60 minutes while a vehicle is in motion, whenever the engine is powered on or off, and at the start and finish of personal use and yard moves. In compliance with the regulations, an ELD creates an electronic log that must be assigned to a driver or annotated every time a vehicle moves, and also warns users about unassigned driving time when they log in. An AOBRD presents data through a display or printout, while ELD is required to have the ability to transmit data immediately to authorized safety officials through a wireless service and email or by use of a USB2.0 and Bluetooth. Not all ELDs are compliant or equal, and it is the responsibility of carriers to make sure the device they are using is included in the list of self-certified ELDs on the FMCSA site. Become familiar with the ELD rule and use the FMCSA’s ELD checklist to esure that the ELD device you choose meets the requirements. Choosing a provider who can offer an ELD that is bundled with a telematics system can leverage compliance to improve your fleet’s operations and the company’s bottom line. An ELD that functions as part of a fleet management solution provides transformative features to your business, connecting carriers, drivers, regulatory agencies, enforcement personnel, back office staff, and customers in a seamless cycle of modern business operations. Having a comprehensive fleet management program coupled with the fleet’s ELD provides you with scalable features such as near real-time alerts, customized reporting, programmed preventive maintenance, automated scheduling and dispatch and route optimization while remaining in compliance and on the road. AOBRDs are already outdated and will soon be noncompliant, so it is vital to begin transitioning to a system that will keep your company relevant and competitive in the digital business era. Start today so you can map out a plan for choosing a vendor, pilot potential solutions, provide thorough training, and work out any kinks that may occur so you’re in compliance on December 16. As part of this process, consider bundling your ELD with a telematics solution to leverage the data you’re required to capture so you can be one step ahead of your competition and future-proof your fleet’s operation.
english
THE IMPORTANCE OF BEING EARNEST To 20 June. Tour to 20 June 2015. Runs 2hr 30min Two intervals. Review: Alan Geary: 13 May at Theatre Royal Nottingham. A commendably straightforward production that excels. It would be disingenuous to claim that with the latest Importance of Being Earnest director Adrian Noble has come up with a gimmick-free production: to deploy David Suchet as Lady Bracknell has to be a box-office ploy. But in more fundamental respects this is indeed gimmick-free. Noble avoids plastering himself all over the production. Save for the Suchet/Lady Bracknell wheeze he lets Wilde speak for himself. The set is realistic, with palatial rooms for interiors; a thematic contrast to the bright, sunlit and green country garden exterior in the middle act. And there’s no period shift; this is emphatically the 1890s, so all the lines make sense. And Noble has all his actors speaking the text with respect and clarity. Nothing is lost, by Lady Bracknell especially. Suchet’s delivery of lines allows us to enjoy them. Surrounded as he is by the ghosts of his predecessors, he underplays that handbag line, getting it semi-lost in his own laughter. And finally, when everyone else is romantically teamed up, Lady Bracknell, tall and bulky and alone, takes out a hanky to dab her nose. From the first scene Algernon (Philip Cumbus) is obviously fin de siècle: he’s clad in a dressing gown at tea-time; and he’s smoking. Michael Benz’s Jack Worthing is nicely contrasted with him. Both are, rightly, played mannered but non-effeminate. Sadly, insufficient is made of the comic potential of Algernon’s early scenes with Lane (David Killick); that line about the non-availability of cucumbers even for ready money goes unexploited. Jack speculates whether Gwendolen (Emily Barber) will get to be like her mother; Barber’s performance indicates that she undoubtedly will. Again by contrast, Cecily (Imogen Doel) is pale, fragile, unsophisticated and vulnerable. But, like Gwendolen, she’s calculating. Michele Dotrice’s dotty Miss Prism is the hit of the evening. Her scenes with Chasuble (Richard O’Callaghan) are wonderful; so is the recognition scene at the end. A full house enjoyed this first performance of a short tour. A limited London run follows. John Worthing, JP: Michael Benz. Rev Canon Chasuble, DD: Richard O’Callaghan. Hon Gwendolen Fairfax: Emily Barber.
english
ఆచార్య నుంచి లిరికల్ సాంగ్ నీలాంబరి నీలాంబరి.. రిలీజ్ మెగాస్టార్ చిరంజీవి. మెగాపవర్స్టార్ రామ్చరణ్ హీరోలుగా డైరెక్టర్ కొరటాల శివ దర్శకత్వంలో రూపొందుతోన్న చిత్రం ఆచార్య. శ్రీమతి సురేఖ కొణిదెల సమర్పణలో కొణిదెల ప్రొడక్షన్ కంపెనీ, మ్యాట్నీ ఎంటర్టైన్మెంట్స్ పతాకాలపై నిరంజన్ రెడ్డి ఈ చిత్రాన్ని నిర్మిస్తున్నారు. ప్రస్తుతం సినిమా నిర్మాణానంతర కార్యక్రమాలను జరుపుకుంటోంది. ఈ చిత్రాన్ని ప్రపంచ వ్యాప్తంగా ఫిబ్రవరి 4న విడుదల చేస్తున్నారు. శుక్రవారం ఈ సినిమా నుంచి నీలాంబరి నీలాంబరి... అనే లిరికల్ సాంగ్ను చిత్ర యూనిట్ విడుదల చేసింది. మెలోడీ బ్రహ్మ సంగీత సారథ్యం వహించిన ఈ సినిమాలో ఇప్పటికే లాహే సాంగ్కు అమేజింగ్ రెస్పాన్స్ వచ్చింది. ఇప్పుడు మెలోడీ సాంగ్గా నీలాంబరి.. సాంగ్ను విడుదల చేశారు. రామ్చరణ్, పూజా హెగ్డే జంటపై సాగే పాట ఇది. ఈ లిరికల్ వీడియోలో సాంగ్కు సంబంధించిన కొన్ని క్లిప్పింగ్స్, పాట చిత్రీకరణకు సంబంధించిన మేకింగ్ వీడియో కూడా వీక్షించవచ్చు. పాట విడుదల అనంతరం మెగాస్టార్ చిరంజీవి పాటపై స్పందించారు. మెలోడీ బ్రహ్మ మణిశర్మ అని మరో మారు రుజువు చేస్తున్న నీలాంబరి అని తన సంతోషాన్ని వ్యక్తం చేశారు. అనురాగ్ కులకర్ణి, రమ్యా బెహ్ర పాడిన ఈ పాటను అనంత శ్రీరాం రాశారు. ఆచార్య సినిమాను అనౌన్స్ చేసినప్పటి నుంచి సినిమా గురించి అందరూ ఆసక్తిగా ఎదురుచూస్తున్నారు. అందరి అంచనాలను మించేలా ఈ సినిమా ఉంటుంది. ఇప్పటికే విడుదలైన టీజర్కు, లాహే సాంగ్కు అద్భుతమైన రెస్పాన్స్ వచ్చింది. ఈరోజు నీలాంబరి అనే మెలోడీ సాంగ్ను విడుదల చేశాం. తప్పకుండా సాంగ్ కూల్గా, బ్రీజీగా ఉంటుంది. ప్రతి పాట కూడా అటు మెగాభిమానులనే కాదు, ప్రేమికులకు కూడా మెప్పించేలా ఉంటుంది. ప్రస్తుతం సినిమా పోస్ట్ ప్రొడక్షన్ కార్యక్రమాలు శరవేగంగా జరుగుతున్నాయి. వచ్చే ఏడాది ఫిబ్రవరి 4న ఆచార్యను ప్రపంచ వ్యాప్తంగా గ్రాండ్ లెవల్లో విడుదల చేస్తున్నాం అని నిర్మాతలు తెలియజేశారు. కాజల్ అగర్వాల్, పూజా హెగ్డే హీరోయిన్స్గా నటించిన ఈ చిత్రానికి మెలోడి బ్రహ్మ మణిశర్మ సంగీతం అందించగా, తిరుణ్ణావుక్కరుసు సినిమాటోగ్రాఫర్గా, నవీన్ నూలి ఎడిటర్, సురేశ్ సెల్వరాజ్ ప్రొడక్షన్ డిజైనర్గా వర్క్ చేశారు.కాజల్ అగర్వాల్, పూజా హెగ్డే హీరోయిన్స్గా నటించిన ఈ చిత్రానికి మెలోడి బ్రహ్మ మణిశర్మ సంగీతం అందించగా, తిరుణ్ణావుక్కరుసు సినిమాటోగ్రాఫర్గా, నవీన్ నూలి ఎడిటర్, సురేశ్ సెల్వరాజ్ ప్రొడక్షన్ డిజైనర్గా వర్క్ చేశారు.ప్రతి రోజు ఇలాంటి తెలుగు వార్త విశేషాలు కోసం తెలుగుస్టాప్ ని ఫాలో అవ్వండి , తెలుగుస్టాప్ వెబ్ సైట్ ని చూడండి.ఈ ఆర్టికల్ ని తోటి తెలుగు మిత్రులకి షేర్ చేయండి. Source : TeluguStop.com , Author : Raghu Vadlmudi
telegu
ವರ್ಷದ ಕೊನೆಯ ವೇಳೆಗೆ ಆಯಸ್ಟ್ರಝೆನೆಕ ಲಸಿಕೆಗೆ ಅನುಮೋದನೆ? ಲಂಡನ್, ಡಿ. 19: ಆಕ್ಸ್ಫರ್ಡ್ ವಿಶ್ವವಿದ್ಯಾನಿಲಯದ ಸಹಯೋಗದೊಂದಿಗೆ ಬ್ರಿಟನ್ನ ಔಷಧ ತಯಾರಿಕಾ ಕಂಪೆನಿ ಆಯಸ್ಟ್ರಝೆನೆಕ ಅಭಿವೃದ್ಧಿಪಡಿಸುತ್ತಿರುವ ಕೊರೋನ ವೈರಸ್ ಲಸಿಕೆಗೆ ದೇಶದ ಔಷಧ ನಿಯಂತ್ರಣ ಇಲಾಖೆ ಮೆಡಿಸಿನ್ಸ್ ಆಯಂಡ್ ಹೆಲ್ತ್ಕೇರ್ ರೆಗ್ಯುಲೇಟರಿ ಏಜನ್ಸಿ ಎಮ್ಎಚ್ಆರ್ಎ ಈ ವರ್ಷದ ಕೊನೆಯ ವೇಳೆಗೆ ಅನುಮೋದನೆ ನೀಡುವ ನಿರೀಕ್ಷೆಯಿದೆ ಎಂದು ಹಿರಿಯ ಸರಕಾರಿ ಅಧಿಕಾರಿಯೋರ್ವರನ್ನು ಉಲ್ಲೇಖಿಸಿ ದ ಡೇಲಿ ಟೆಲಿಗ್ರಾಫ್ ಪತ್ರಿಕೆ ಶನಿವಾರ ವರದಿ ಮಾಡಿದೆ. ಕೊರೋನ ವೈರಸ್ ವಿರುದ್ಧ ಬಳಸಲಾಗುವ ಲಸಿಕೆಯು ಸುರಕ್ಷಿತ ಹಾಗೂ ಪರಿಣಾಮಕಾರಿಯಾಗಿದೆ ಎನ್ನುವುದು ಇತ್ತೀಚೆಗೆ ನಡೆದ ಕೊನೆಯ ಹಂತದ ಮಾನವ ಪ್ರಯೋಗಗಳಲ್ಲಿ ಸಾಬೀತಾದ ಬಳಿಕ, ಲಸಿಕೆಗೆ ಅನುಮೋದನೆ ನೀಡುವ ಜವಾಬ್ದಾರಿಯನ್ನು ಸರಕಾರವು ಎಮ್ಎಚ್ಆರ್ಎಗೆ ವಹಿಸಿತ್ತು. ಪ್ರಯೋಗಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಅಂತಿಮ ಅಂಕಿಸಂಖ್ಯೆಗಳನ್ನು ಸೋಮವಾರ ನೀಡಿದರೆ, ಅದು ಡಿಸೆಂಬರ್ 28 ಅಥವಾ 29ರಂದು ಲಸಿಕೆಗೆ ಅನುಮೋದನೆ ನೀಡುವ ಸಾಧ್ಯತೆಯಿದೆ ಅಧಿಕಾರಿ ಹೇಳಿದ್ದಾರೆ.
kannad
চিনে ফের ব্যাপক হারে সংক্রমন, বন্ধ করা হলো শিক্ষা প্রতিষ্ঠান চিনে ফের ব্যাপক হারে সংক্রমন, বন্ধ করা হলো শিক্ষা প্রতিষ্ঠান আনফোল্ড বাংলা ডেস্ক: চিন ফের বিপর্যয়ের সম্মুখীন কোভিড১৯ আর বেশ কয়েকটি জায়গায় ওমিক্রনের ব্যাপক সংক্রমন সেইসব জায়গার স্কুল এবং বাজারগুলিসহ অঞ্চলগুলোতে শাটডাউন করতে বাধ্য হয়েছে প্রশাসনকোভিড সম্পর্কিত সমস্ত আপডেট পড়ুন এখানে শনিবার সংবাদসংস্থা সূত্রে জানা গিয়েছে, বিগত দু বছরের মধ্যে সংক্রমনের ক্ষেত্রে সবচেয়ে উল্লেখযোগ্য বৃদ্ধি পাওয়ায় প্রশাসনের তরফে লকডাউনের পাশাপাশি আরো কঠোর পদক্ষেপ নেওয়ার পরিকল্পনা করা হচ্ছে চিনা কর্তৃপক্ষ জিলিন প্রদেশের চাংচুন শহরটিতে লকডাউনের মেয়াদ বাড়িয়েছে একই সময়ে, কর্তৃপক্ষ শহরটিতে এবং পূর্বাঞ্চলীয় বন্দর শহর কিংদাওতে অস্থায়ী হাসপাতাল নির্মাণের নির্দেশ দিয়েছে অন্যদিকে, সাংহাইতে ওমিক্রন ভেরিয়েন্টের প্রাদুর্ভাবে স্কুলগুলি ফের বন্ধ করে দেওয়া হয়েছে শহরের হোটেলগুলি খালি করে সেখানে কোয়ারেন্টিনের ব্যবস্হা করা হয়েছে পরবর্তী ধাপে আন্তর্জাতিক উড়ানের ক্ষেত্রে বিধিনিষেধ জারি করা হবে বলেও প্রশাসনের তরফে বিজ্ঞপ্তি জারি করা হয়েছে হংকংয়ের স্বায়ত্তশাসিত অঞ্চলেও পরিস্থিতি স্বস্তিতে নেই শহরের মেয়র পদাধিকারী ক্যারি লামের মতে, হংকংয়ে প্রায় ৩লক্ষ কোভিড রোগী এবং তাঁদের ঘনিষ্ঠ, পরিচিতরা হোম কোয়ারেন্টাইনের অধীনে রয়েছেন বলা হয়েছে, সতর্ক না হলে পরিস্থিতি হাতের বাইরে চলে গেলে তাকে নিয়ন্ত্রণ করা রীতিমতো কঠিন হয়ে যাবেচিনের জাতীয় স্বাস্থ্য কমিশনের মতে , চিনে শনিবার স্থানীয়ভাবে ১৮০৭ টি নতুন কোভিড সংক্রমণের খবর পাওয়া গিয়েছে
bengali
namespace Yakari.Demo.Web.Controllers { using Microsoft.AspNetCore.Mvc; using Microsoft.Extensions.Logging; public class HomeController : Controller { private readonly ILocalCacheProvider _littleThunder; private readonly IDemoHelper _demoHelper; private readonly ILogger<HomeController> _logger; public HomeController ( ILogger<HomeController> logger , ILocalCacheProvider littleThunder , IDemoHelper demoHelper ) { _logger = logger; _littleThunder = littleThunder; _demoHelper = demoHelper; } public ActionResult Index() { return View(); } public ActionResult Dashboard() { ViewData["TribeName"] = _demoHelper.TribeName; ViewData["MemberName"] = _demoHelper.MemberName; var keys = _littleThunder.AllKeys(); ViewData["Data"] = keys; return View(); } public ActionResult Error() { return View(); } } }
code
Mathabhanga Child Abuse: স্কুলে যৌন হেনস্থার শিকার সাড়ে চার বছরের শিশু, গ্রেফতার অভিযুক্ত শিক্ষক দ্য ওয়াল ব্যুরো: স্কুলের মধ্যেই যৌন হেনস্থার Mathabhanga Child Abuse শিকার হল সাড়ে চার বছরের শিশু! ঘটনা ঘিরে উত্তাল মাথাভাঙার নিশিগঞ্জ এলাকা গ্রামবাসীদের চাপে ইতিমধ্যেই অভিযুক্তকে গ্রেফতার করেছে নিশিগঞ্জ থানার পুলিশ Police অভিযুক্ত ওই স্কুলের শিক্ষক Teacher বলে জানা গিয়েছে কী হয়েছিল ওই শিশুর সঙ্গে? গ্রামবাসীদের অভিযোগ, ওই শিশু বেসরকারী একটি স্কুলে পড়ে গত শনিবার সে স্কুলে গিয়েছিল সেখানে অভিযুক্ত ওই শিক্ষক শিশুটি উপর যৌন নির্যাতন চালান বলে অভিযোগ বাড়ি আসার পর ওই শিশু অসুস্থ হয়ে পড়লে তাকে চিকিত্সকের কাছে নিয়ে যান অভিভাবকরা তখনই বিষয়টি জানতে পারেন তাঁরা Dalkhola Shootout: ডালখোলায় ভরদুপুরে শ্যুটআউট, দুষ্কৃতীদের গুলিতে খুন ব্যবসায়ী এদিকে ধীরে ধীরে এলাকায় ঘটনার কথা চাউর হতে থাকায় ওই স্কুল কর্তৃপক্ষের উপর ক্ষোভ বাড়তে থাকে বুধবার এই অভিযোগে উত্তাল হয়েছে উঠে নিশিগঞ্জ এলাকা ওই স্কুলের অভিভাবক ও কয়েকশো গ্রামবাসী অভিযুক্ত শিক্ষকের শাস্তির দাবিতে রাস্তায় নেমে বিক্ষোভ দেখাতে থাকেন ঘেরাও করা হয় ওই বেসরকারি স্কুল একই সঙ্গে কোচবিহারমাথাভাঙ্গা রাজ্য সড়কে খেজুরতলা এলাকায় পথ অবরোধে শামিল হন গ্রামবাসীরা মারমুখী গ্রামবাসীদের দেখে ভয়ে স্কুলের পাশে একটি বাড়িতে আত্মগোপন করে ছিলেন ওই শিক্ষক পরে খবর পেয়ে নিশিগঞ্জ ফাঁড়ির পুলিশ ওই বেসরকারি স্কুলে যায় তল্লাশি চালিয়ে অভিযুক্ত শিক্ষককে গ্রেফতার করে যদিও ওই শিশুর পরিবারের তরফ থেকে পুলিশে লিখিত অভিযোগ দায়ের হয়নি তবু গ্রামবাসীদের চাপে পুলিশ স্বতঃস্ফুর্ত ভাবে ঘটনার তদন্তে নেমেছে
bengali
\begin{document} \begin{abstract} Let $G$ be the~free product of~groups $A$ and~$B$ with~commuting subgroups $H\leqslant A$ and~$K\leqslant B$, and~let $\mathcal{C}$ be the~class of~all finite groups or~the~class of~all finite \hbox{$p$-}groups. We derive the~description of~all $\mathcal{C}$-separable cyclic subgroups of~$G$ provided~this group is residually a~$\mathcal{C}$-group. We prove, in~particular, that if~$A$, $B$ are finitely generated nilpotent groups and~$H$, $K$ are $p^\prime$-isolated in~the~free factors, then all $p^\prime$-isolated cyclic subgroups of~$G$ are separable in~the~class of~all finite \hbox{$p$-}groups. The same statement is true provided~$A$, $B$ are free and~$H$, $K$ are $p^\prime$-isolated and~cyclic. \end{abstract} \maketitle \section*{Introduction} \footnotetext{\textit{Key words and~phrases:} subgroup separability, residual \hbox{$p$-}finiteness, free product of~two groups with~commuting subgroups.} \footnotetext{2010 \textit{Mathematics Subject Classification:} 20E26, 20E06.} Let $\pi$ be a~set of~prime numbers, and~let $\mathcal{F}_{\pi}$ be the~class of~all finite \hbox{$\pi$-}groups (recall that a~finite group is said to~be a~\textit{\hbox{$\pi$-}group} if,~and~only if,~all prime divisors of~its order belong to~$\pi$). It is the~main aim of~this paper to~investigate the~\hbox{$\mathcal{F}_{\pi}$-}separability of~cyclic subgroups of~free products of~two groups with~commuting subgroups. Recall (see~\cite[section~4.2]{li01}) that \textit{the~free product of~two groups~$A$ and~$B$ with~commuting subgroups $H \leqslant A$ and~$K \leqslant B$}, $$ G = \langle A * B;\ [H,K] = 1 \rangle, $$ is the~quotient group of~the~ordinary free product~$A * B$ by~the~mutual commutant $[H,K]$ of~$H$ and~$K$. Certain algorithmic problems are investigated in~respect to~this construction in~\cite{li02, li04, li03}. E.~D.~Loginova \cite{li06, li05} researches its residual properties and~obtains a~condition which is necessary and~sufficient for~$G$ to~be residually an~\hbox{$\mathcal{F}_{\pi}$-}group provided~$\pi$ either coincides with~the~set of~all prime numbers or~is an~one-element set. Also, she proves that if~all cyclic subgroups of~$A$ and~$B$ are separable in~the~class of~all finite groups, then $G$ possesses the~same property. At~last, D.~Tieudjo and~D.~I.~Moldavanskii \cite{li08, li07, li09, li10} consider in~detail the~special case of~the~given construction when~$A$ and~$B$ are cyclic. This paper generalizes the~results of~E.~D.~Loginova and~D.~Tieudjo mentioned above. We derive the~description of~all \hbox{$\mathcal{F}_{\pi}$-}separ\-able cyclic subgroups of~$G$ provided~$\pi$ either coincides with~the~set of~all prime numbers or~is an~one-element set and~not necessarily all cyclic subgroups of~the~free factors are \hbox{$\mathcal{F}_{\pi}$-}separ\-able. The~first section of~the~paper is devoted to~the~discussion of~the~relationship between the~notions of~subgroup separability, subgroup isolatedness and~quasi-regu\-lari\-ty. The~second section contains the~proof of~the~main theorem. Some corollaries and~applications of~this result are given in~the~third section of~the~paper. \section{Separability, isolatedness and~quasi-regu\-lari\-ty} Let $X$ be a~group, and~let $\Omega$ be a~family of~normal subgroups of~$X$. We shall say that a~subgroup~$Y$ of~$X$ \textit{is separable by}~$\Omega$ if $$ \bigcap_{N \in \Omega} YN = Y. $$ For each subgroup~$Y$, we call the~subgroup $$ \bigcap_{N \in \Omega} YN $$ the~\textit{$\Omega$-closure} of~$Y$ and~denote it by~$\Omega$\hbox{-\textit{Cl}}$(Y)$. It is easy to~see that the~$\Omega$-closure of~$Y$ is the~least subgroup which contains~$Y$ and~is separable by~$\Omega$. Let further $\Omega_{\pi}(X)$ denote the~family of~all normal subgroups of~finite \hbox{$\pi$-}index of~$X$ (i.~e. the~family of~all such subgroups that the~quotient groups by~them belong to~$\mathcal{F}_{\pi}$). If a~subgroup~$Y$ is separable by~$\Omega_{\pi}(X)$, it is called \textit{\hbox{$\mathcal{F}_{\pi}$-}separ\-able} in~$X$. A~group~$X$ is said to~be \textit{residually an~\hbox{$\mathcal{F}_{\pi}$-}group} if~its trivial subgroup is \hbox{$\mathcal{F}_{\pi}$-}separ\-able. If~$\pi$ coincides with~the~set of~all prime numbers and~$\mathcal{F}_{\pi}$ is the~class of~all finite groups respectively, we get the~well known notions of~\textit{(finite) subgroup separability} and~\textit{residual finiteness}. We shall say also that a~group~$X$ is \textit{\hbox{$\mathcal{F}_{\pi}$-}quasi-regu\-lar} by~its subgroup~$Y$ if, for~each subgroup $M \in \Omega_{\pi}(Y)$, there exists a~subgroup $N \in \Omega_{\pi}(X)$ such that $N \cap Y \leqslant M$. The~notion of~quasi-regu\-lari\-ty is closely tied to~separability as~the~next statement shows. \begin{proposition}\label{prop11} Let $X$ be a~group, and~let $Y$ be its \hbox{$\mathcal{F}_{\pi}$-}separ\-able subgroup. Then $X$ is \hbox{$\mathcal{F}_{\pi}$-}quasi-regu\-lar by~$Y$ if, and~only if, all subgroups of~$\Omega_{\pi}(Y)$ are \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$X$. \end{proposition} \begin{proof} \textit{Necessity.} Let $M$ be a~subgroup of~$\Omega_{\pi}(Y)$, and~let $x \in X$ be an~arbitrary element which does not belong to~$M$. If~$x \notin Y$, we can use the~\hbox{$\mathcal{F}_{\pi}$-}separability of~$Y$ and~find a~subgroup $N \in \Omega_{\pi}(X)$ such that $x \notin YN$ and, hence, $x \notin MN$. Let now $x \in Y$. Since $X$ is \hbox{$\mathcal{F}_{\pi}$-}quasi-regu\-lar by~$Y$, there exists a~subgroup $N \in \Omega_{\pi}(X)$ satisfying the~condition $N \cap Y \leqslant M$. It is easy to~see that in~this case $MN \cap Y=M$ and~so again $x \notin MN$. Thus, $M$ is \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$X$. \textit{Sufficiency.} Let again $M$ be an~arbitrary subgroup of~$\Omega_{\pi}(Y)$, and~let $1=y_{1}, \ldots, y_{n}$ be a~set of~representatives of~all cosets of~$M$ in~$Y$. For~$M$ is \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$X$, we can find a~subgroup $N \in \Omega_{\pi}(X)$ such that $y_{2}, \ldots, y_{n} \notin MN$. If~we suppose now that the~intersection $N \cap Y$ is not contained in~$M$, choose an~element $g \in (N \cap Y)\backslash M$, and~write it in~the~form $g=xy_{i}$ for~suitable $i \in \{2, \ldots, n\}$ and~$x \in M$, then we get $xy_{i} \in N$. But~it follows from here that $y_{i} \in MN$ what contradicts the~choice of~$N$. Thus, $N \cap Y \leqslant M$ and~$X$ is \hbox{$\mathcal{F}_{\pi}$-}quasi-regu\-lar by~$Y$. \end{proof} We call a~subgroup~$Y$ of~a~group~$X$ \textit{subnormal} in~this group if~there exists a~sequence of~subgroups $$ Y=Y_{0} \leqslant Y_{1} \leqslant \ldots \leqslant Y_{n}=X $$ every term of~which is normal in~the~next. \begin{proposition}\label{prop12} If~$Y$ is a~subnormal subgroup of~finite \hbox{$\pi$-}index of~a~group~$X$, then the~\hbox{$\mathcal{F}_{\pi}$-}quasi-regu\-lari\-ty of~$X$ by~$Y$ holds. \end{proposition} \begin{proof} Let $M$ be an~arbitrary subgroup of~$\Omega_{\pi}(Y)$. Since $Y$ is a~subnormal subgroup of~finite \hbox{$\pi$-}index of~$X$, then $M$ possesses the~same properties. Hence, there exists a~series $$ M=M_{0} \leqslant M_{1} \leqslant \ldots \leqslant M_{n}=X $$ such that $M_{i} \in \Omega_{\pi}(M_{i + 1})$, $i=0, 1, \ldots , n-1$. Let us show that there is a~subgroup $N \in \Omega_{\pi}(X)$ such that $N \leqslant M$ and, therefore, $N \cap Y \leqslant M$. We shall use induction on~$n$. With~$n=1$ we have $M \in \Omega_{\pi}(X)$ and~so can simply put $N=M$. Let now $n>1$ and $$ N_1 = \bigcap _{x \in M_2 } M^x. $$ It is obvious that $N_{1}$ is normal in~$M_{2}$. Consider a~set of~representatives of~all right cosets of~$M$ in~$M_{2}$: $\{x_{1}, x_{2}, \ldots, x_{q}\}$. Since any element $x \in M_{2}$ can be written in~the~form $x=m_{x}x_{i}$ for~suitable $i \in \{1, \ldots, q\}$ and~$m_{x} \in M$, then $M^{x}=M^{x_i}$ and $$ N_1 = \bigcap_{i = 1}^q M^{x_i}. $$ For~$M_{1}$ is normal in~$M_{2}$, so it is invariant under the~conjugation by~any element~$x_{i}$. From this it follows that all subgroups~$M^{x_i}$ belong to~$\Omega_{\pi}(M_{1})$. Hence, the~quotient group $M_{1}/N_{1}$ is isomorphic to~a~subgroup of~the~direct product of~the~finite \hbox{$\pi$-}groups $M_{1}/M^{x_i}$ and~so is itself a~finite \hbox{$\pi$-}group. Thus, $N_{1}$ belongs to~$\Omega_{\pi}(M_{2})$, and~we can apply the~induction hypothesis to~it. In accordance with~this hypothesis there exists a~subgroup $N \in \Omega_{\pi}(X)$ such that $N \leqslant N_{1}$. Since $N_{1} \leqslant M$, $N$ is desired, and~the~proposition is proved. \end{proof} As~usual, we denote by~$\pi^\prime$ the~complement of~a~set~$\pi$ in~the~set of~all prime numbers. Recall that a~subgroup~$Y$ of~a~group~$X$ is said to~be \textit{\hbox{$\pi^\prime$-}iso\-lated} in~$X$ if, for~each element $x \in X$ and~for each number $q \in \pi^\prime$, the~inclusion $x^{q} \in Y$ implies $x \in Y$. \begin{proposition}\label{prop13} Every \hbox{$\mathcal{F}_{\pi}$-}separ\-able subgroup is \hbox{$\pi^\prime$-}iso\-lated.\linebreak In~particular, if~a~group is residually an~\hbox{$\mathcal{F}_{\pi}$-}group, then it is \hbox{$\pi^\prime$-}torsion-free. \end{proposition} \begin{proof} Let us suppose that a~subgroup~$Y$ of~a~group~$X$ is not \hbox{$\pi^\prime$-}iso\-lated and~$x \in X$ is such an~element that $x \notin Y$ but $x^{q} \in Y$ for~some number $q \in \pi^\prime$. Let also $N$ be an~arbitrary subgroup of~$\Omega_{\pi}(X)$, and~let $n$ be the~order of~$x$ modulo this subgroup. Since $n$ is a~\hbox{$\pi$-}num\-ber, there exists a~natural number~$m$ such that $qm \equiv 1 \pmod n$ and, hence, $x \equiv x^{qm} \pmod N$. Then $x \in YN$ and, because $N$ has selected arbitrarily, $Y$ is not \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$X$. \end{proof} Let us call the~least \hbox{$\pi^\prime$-}iso\-lated subgroup of~a~group $X$ containing a~subgroup $Y$ the~\textit{\hbox{$\pi^\prime$-}iso\-lator} of~$Y$ in~$X$ and~denote it by~$\mathcal{I}_{\pi^\prime}(X, Y)$. \begin{proposition}\label{prop14} If~$X$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group, then the~\hbox{$\pi^\prime$-}iso\-lator of~an~arbitrary abelian subgroup~$Y$ of~$X$ is an~abelian subgroup and~coincides with~the~set of~all \hbox{$\pi^\prime$-}roots being extracted from the~elements of~$Y$ in~$X$. \end{proposition} \begin{proof} Since the~$\Omega_{\pi}(X)$-closure of~$Y$\,is\,\hbox{$\mathcal{F}_{\pi}$-}separ\-able,\,then\,it\,is\,a\,\hbox{$\pi^\prime$-}iso\-lated subgroup of~$X$ containing~$Y$. Therefore, $$ \mathcal{I}_{\pi^\prime}(X, Y) \leqslant \Omega_{\pi}(X)\text{-\textit{Cl}}(Y). $$ Suppose that the~commutator of~some elements $x_{1}, x_{2} \in \mathcal{I}_{\pi^\prime}(X, Y)$ is not equal to~$1$. Then, since $X$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group, there exists a~subgroup $N \in \Omega_{\pi}(X)$ such that $[x_{1}, x_{2}] \notin N$. From the~other hand, $x_{1}, x_{2} \in \Omega_{\pi}(X)$\hbox{-\textit{Cl}}$(Y)$ in~view of~the~inclusion mentioned above, and, in~particular, $x_{1}, x_{2} \in YN$. So the~elements $x_{1}N$, $x_{2}N$ belong to~the~abelian subgroup~$YN/N$ of~$X/N$ and~$[x_{1}N, x_{2}N]=1$. It follows from here that $[x_{1}, x_{2}] \in N$, and~we get a~contradiction proving that $\mathcal{I}_{\pi^\prime}(X, Y)$ is an~abelian group. Let now $u, v \in X$ be arbitrary elements such that $u^{q}, v^{r} \in Y$ for~some \hbox{$\pi^\prime$-}num\-bers~$q$ and~$r$. Then $u, v \in \mathcal{I}_{\pi^\prime}(X, Y)$ and~$(uv)^{qr}=u^{qr}v^{qr} \in Y$. Therefore, the~set of~all \hbox{$\pi^\prime$-}roots being extracted from the~elements of~$Y$ in~$X$ is a~subgroup and, hence, coincides with~$\mathcal{I}_{\pi^\prime}(X, Y)$. \end{proof} \begin{proposition}\label{prop15} If~$X$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group, then the~\hbox{$\pi^\prime$-}iso\-lator of~an~arbitrary locally cyclic subgroup~$Y$ of~$X$ is a~locally cyclic subgroup. \end{proposition} \begin{lemma} If~$x, y \in X$ and~$y^{q} \in \langle x \rangle$ for~some \hbox{$\pi^\prime$-}num\-ber $q$, then the~subgroup $\langle x, y \rangle $ is cyclic. \end{lemma} \begin{proof} First of~all let observe that $\mathcal{I}_{\pi^\prime}(X, \langle x \rangle)$ is an~abelian subgroup by~the~previous proposition and~$y \in \mathcal{I}_{\pi^\prime}(X, \langle x \rangle )$. Therefore, $[x, y]=1$. Let $y^{q}=x^{k}$. Without lost of~generality we can consider $q$ to~be prime. So the~only two cases are possible: $q\vert k$ and~$(k, q)=1$. If~$k=ql$, then the~equality $y^{q}=x^{ql}$ implies $(y^{-1}x^{l})^{q}=1$. But~$X$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group, so it is \hbox{$\pi^\prime$-}torsion-free by~Proposition~\ref{prop13}. Therefore, $y=x^{l}$ and~$\langle x, y \rangle = \langle x \rangle$. If~$(k, q)=1$, then $ku + qv = 1$ for~certain whole numbers~$u$,~$v$ and \begin{gather*} x=x^{ku+qv}=y^{qu}x^{qv}=(y^{u}x^{v})^{q},\\ y=y^{ku+qv}=y^{ku}x^{kv}=(y^{u}x^{v})^{k}. \end{gather*} Thus, $\langle x, y \rangle = \langle y^{u}x^{v} \rangle$. \end{proof} \begin{proof}[\indent {\it Proof of~proposition}] Let $u$, $v$ be arbitrary elements of~$\mathcal{I}_{\pi^\prime}(X, Y)$. By~Proposition~\ref{prop14}, $\mathcal{I}_{\pi^\prime}(X, Y)$ coincides with~the~set of~all \hbox{$\pi^\prime$-}roots being extracted from the~elements of~$Y$ in~$X$. So $u^{q}=y_{1} \in Y$, \hbox{and~$v^{r}=y_{2} \in Y$} for~some \hbox{$\pi^\prime$-}num\-bers~$q$ and~$r$. Since $Y$ is locally cyclic, the~subgroup $\langle y_{1}, y_{2} \rangle$ is cyclic and~is generated by~an~element $y \in Y$. By~Lemma, the~subgroup $\langle y, u \rangle$ is also cyclic and~is generated by~an~element $w \in \mathcal{I}_{\pi^\prime}(X, Y)$. If~we apply now Lemma to~$w$ and~$v$, then we get that $\langle w, v \rangle = \langle t \rangle$ for~some element $t \in \mathcal{I}_{\pi^\prime}(X, Y)$. Thus, $u, v \in \langle t \rangle$, and~the~proposition is proved. \end{proof} \section{The~main theorem} To formulate the~main result of~this paper we need some auxiliary designations. If~$Y$ is a~subgroup of~a~group~$X$, then we denote by~$\Delta_{\pi}(X)$ the~family of~all \hbox{$\pi^\prime$-}iso\-lated cyclic subgroups of~this group which are not \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~it. By~Proposition~\ref{prop13}, if~a~subgroup is not \hbox{$\pi^\prime$-}iso\-lated in~$X$, then it is a~fortiori not~\hbox{$\mathcal{F}_{\pi}$-}separ\-able in~this group. So the~family of~all \hbox{$\mathcal{F}_{\pi}$-}separ\-able cyclic subgroups of~$X$ is maximal if~$\Delta_{\pi}(X)=\varnothing$. Let $$ G = \langle A*B;\ [H,K] = 1 \rangle $$ be the~free product of~groups~$A$ and~$B$ with~commuting subgroups \hbox{$H \leqslant A$} and~\hbox{$K \leqslant B$} (these notations will be fixed till the~end of~the~paper). We put $$ \Theta_{\pi}(HK) = \{(X \cap H)(Y \cap K) \mid X \in \Omega_{\pi}(A), Y \in \Omega_{\pi}(B)\} $$ and denote by $\Lambda_{\pi}(HK)$ the~family of~all cyclic subgroups lying\linebreak and~\hbox{$\pi^\prime$-}iso\-lated in~$HK$ but being not~separable by~$\Theta_{\pi}(HK)$. \begin{theorem}\label{thrm21} Let $\pi$ be a~set of~prime numbers that coincides with~the~set of~all prime numbers or~is one-element, and~let at~least one of~the~following equivalent statements holds: 1) $A$ and~$B$ are residually \hbox{$\mathcal{F}_{\pi}$-}groups, $H$ and~$K$ are \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~the~factors; 2) $G$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group. Then a~\hbox{$\pi^\prime$-}iso\-lated cyclic subgroup of~$G$ is \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~this group if, and~only if, it is not conjugated with~any subgroup of~the~family $$ \Delta_{\pi}(A) \cup \Delta_{\pi}(B) \cup \Lambda_{\pi}(HK). $$ \end{theorem} \begin{proof} First of~all we note that the~equivalence of~the~conditions~1 and~2 was stated in~\cite{li05}. So the~only thing that it is necessary to~prove is the~criterion of~the~\hbox{$\mathcal{F}_{\pi}$-}separability of~a~cyclic subgroup of~$G$. We begin with~the~check of~the~necessity of~the~condition. If~a~cyclic subgroup~$C$ belongs to~$\Delta_{\pi}(A)$, then it is not \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$A$ and~there exists an~element $a \in A\backslash C$ such that $a \in CX$ for~any subgroup $X \in \Omega_{\pi}(A)$. But~then $a \in CL$ for~every subgroup $L \in \Omega_{\pi}(G)$ since $L \cap A \in \Omega_{\pi}(A)$. Therefore, $C$ is not \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$G$. It is obvious that any subgroup conjugated with~$C$ is also not \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$G$. It can be proved in~precisely the~same way that any subgroup\linebreak of~$\Delta_{\pi}(B)$ or~of~$\Lambda_{\pi}(HK)$ is not \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$G$. It needs only note that, if~$L \in \Omega_{\pi}(G)$, then $$ (L \cap H)(L \cap K) \in \Theta_{\pi}(HK). $$ Before passing to~the~sufficiency we give some facts about the~structure and~properties of~free products with~commuting subgroups. Recall that \textit{the free product of~groups~$M$ and~$N$ with~subgroups\linebreak $U \leqslant M$ and~$V \leqslant N$ amalgamated according to~an~isomorphism\linebreak $\varphi\colon U \to V$,} $$ T = \langle M*N;\ U = V,\ \varphi \rangle, $$ is the~quotient group of~the~ordinary free product~$M*N$ of~$M$ and~$N$ by~the~normal closure of~the~set $\{u(u\varphi)^{-1} \mid u \in U\}$. It is known that the~subgroups of~$T$ generated by~the~generators of~$M$ and~$N$ are isomorphic to~these groups and, therefore, may be identified with~them. Herewith, $U$ and~$V$ turn out to~be coincident and~this lets us to~write down $T$ in~the~form $$ T=\langle M*N;\ U \rangle $$ considering $\varphi$ as~given. We need also one more simply checked property of~elements of~generalized free products of~two groups. Recall that \textit{the~length of~an~element} of~$T$ is the~length of~any reduced form of~this element. \begin{proposition}[{\cite[Proposition~2.1.6]{li11}}]\label{prop22} For every two elements $x, y \in T$, if~one of~them has an~even length and~$y=x^{q}$ for~some\linebreak positive number~$q$, then the~other element has an~even length too\linebreak \hbox{and~$l(y)=l(x)q$.} \qed \end{proposition} It is easy to~see~\cite{li05} that the~structure of~$G$ can be described in~terms of~the~construction of~free product with~amalgamated subgroup as~follows. Let $U=HK$, $M=\langle A, U \rangle$, and~$N=\langle B, U \rangle$. Then $U$ is the~direct product $H\times K$ of~$H$ and~$K$, $M$ is the~free product $\langle A * U;\ H \rangle$ of~$A$ and~$U$ with~$H$ amalgamated, $N$ is the~free product $\langle B * U;\ K \rangle$ of~$B$ and~$U$ with~$K$ amalgamated, and~$G$ is the~free product $\langle M * N;\ U\rangle$ of~$M$ and~$N$ with~$U$ amalgamated. If $Y$ is a~subgroup of~a~group~$X$, we put $$ \Omega_{\pi}(X, Y)=\{L \cap Y \mid L \in \Omega_{\pi}(X)\} $$ and denote by~$\Delta_{\pi}(X, Y)$ the~family of~all cyclic subgroups lying\linebreak and~\hbox{$\pi^\prime$-}iso\-lated in~$Y$, but being not separable by~$\Omega_{\pi}(X, Y)$. The following statements take place. \begin{proposition}[{\cite[Theorems 1.2 and~1.6]{li12}}]\label{prop23} Let $\pi$ be a~set of~prime numbers which coincides with~the~set of~all prime numbers or~is one-element, and~let $T = \langle M*N;\ U \rangle$ be the~free product of~groups~$M$ and~$N$ with~an~amalgamated subgroup~$U$. If~$\{1\}$ and~$U$ are separable by~both~$\Omega_{\pi}(T, M)$ and~$\Omega_{\pi}(T, N)$, then a~\hbox{$\pi^\prime$-}iso\-lated cyclic subgroup of~$T$ is \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~this group if, and~only if, it is not conjugated with~any subgroup of~$\Delta _{\pi}(T, M) \cup \Delta _{\pi}(T, N)$. \qed \end{proposition} \begin{proposition}[{\cite[Lemmas 1 and~3]{li05}}]\label{prop24} Let $\pi$ be a~set of~prime numbers which coincides with~the~set of~all prime numbers or~is one-element. If~$A$, $B$ are residually \hbox{$\mathcal{F}_{\pi}$-}groups and~$H$, $K$ are \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~the~free factors, then $\{1\}$ and~$U$ are separable by~both~$\Omega_{\pi}(G, M)$ and~$\Omega_{\pi}(G, N)$. \qed \end{proposition} It follows also from the~proof of~Lemmas~1 and~3 of~\cite{li05} that the~statement below holds. \begin{proposition}\label{prop25} Let $\pi$ be a~set of~prime numbers which coincides with~the~set of~all prime numbers or~is one-element, \hbox{$X \in \Omega_{\pi}(A)$,} \hbox{$Y \in \Omega_{\pi}(B)$,} and~$Q=(X \cap H)(Y \cap K)$. Then any subgroup $R \in \Omega_{\pi}(M)$ such that $R \cap A=X$ and~$R \cap U=Q$ belongs to~$\Omega_{\pi}(G, M)$. The~same statement holds for~the~subgroups of~$\Omega_{\pi}(N)$. \qed \end{proposition} Now we can turn straight to~proof of~sufficiency. Due to~Propositions~\ref{prop23} and~\ref{prop24}, we need only show that every subgroup of~$\Delta_{\pi}(G, M)$ is conjugated with~some subgroup of~$\Delta_{\pi}(A) \cup \Lambda_{\pi}(U)$ and~every subgroup of~$\Delta_{\pi}(G, N)$ does with~some subgroup of~$\Delta_{\pi}(B) \cup \Lambda_{\pi}(U)$. We consider $M$, the~arguments for~$N$ are the~same. Subgroups $X \leqslant A$ and~$Q \leqslant U$ will be called \textit{$(H, \pi)$-com\-patible} if~there exists a~subgroup $L \in \Omega_{\pi}(M)$ such that \hbox{$L \cap A=X$} and\linebreak $L \cap U=Q$. Since in~this case $X \cap H=Q \cap H$, the~function $$ \varphi_{X, Q}\colon HX/X \to HQ/Q $$ which maps an~element $hX$, $h \in H$, to~$hQ$ is a~correctly defined isomorphism of~subgroups. Therefore, we can construct the~group $$ M_{X,Q} = \langle A/X*U/Q;\ HX/X = HQ/Q,\ \varphi_{X, Q} \rangle $$ and extend the~natural homomorphisms of~$A$ onto~$A/X$ and~of~$U$ onto~$U/Q$ to~the~homomorphism $\rho_{X, Q}$ of~$M$ onto~$M_{X, Q}$. Note that to~prove the~separability of~a~cyclic subgroup~$C$ of~$M$ by~$\Omega_{\pi}(G, M)$ it is sufficient to~be able to~find for~every element \hbox{$g \in M\backslash C$} a~pair of~subgroups $X \in \Omega_{\pi}(A)$ and~$Y \in \Omega_{\pi}(B)$ such that $g\rho_{X, Q}$ doesn't belong to~some \hbox{$\pi^\prime$-}iso\-lated cyclic subgroup $D_{X, Q}$ of~$M_{X, Q}$ containing $C\rho_{X, Q}$ (where, as~early, $Q=(X \cap H)(Y \cap K))$. Indeed, it is proved in~\cite{li12} that the~$(H, \pi)$-compatibility of~$X$ and~$Q$ implies that $M_{X, Q}$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group and~all its \hbox{$\pi^\prime$-}iso\-lated cyclic subgroups are \hbox{$\mathcal{F}_{\pi}$-}separ\-able. So, if~$X$ and~$Y$ possess the~mentioned properties, then there exists a~subgroup $R_{X, Q} \in \Omega_{\pi}(M_{X, Q})$ such that $g\rho_{X, Q} \notin D_{X, Q}R_{X, Q}$ and, hence, $g\rho_{X, Q} \notin C\rho_{X, Q}R_{X, Q}$. Further, since the~quotient groups~$A/X$ and~$U/Q$ are finite, we can consider that $$ R_{X, Q} \cap A/X=R_{X, Q} \cap U/Q=1. $$ Then the~pre-image~$R$ of~$R_{X, Q}$ under~$\rho_{X, Q}$ satisfies the~relations \hbox{$R \cap A=X$} \hbox{and~$R \cap U=Q$.} It follows now from Proposition~\ref{prop25} that $R \in \Omega_{\pi}(G, M)$ and~meanwhile $g \notin CR$ as~it is required. So let $C=\langle c\rangle $ be a~\hbox{$\pi^\prime$-}iso\-lated cyclic subgroup of~$M$ being not conjugated with~any subgroup of~$\Delta_{\pi}(A) \cup \Lambda_{\pi}(U)$. We show that $C$ is separable by~$\Omega_{\pi}(G, M)$. Let $g \in M$ be an~arbitrary element not belonging to~$C$, and~let $$ g=g_{1}g_{2}\ldots g_{m},\ c=c_{1}c_{2}\ldots c_{n} $$ be reduced forms of~$g$ and~$c$ considering as~the~elements of~the~generalized free product~$M$. Applying, if~necessary, a~suitable inner automorphism of~$G$ defining by~an~element of~$M$ we can consider further that $c$ is cyclically reduced. Let, at~first, $n=1$, and~let, for~definiteness, $c \in A$ (the case \hbox{when~$c \in U$} is considered in~the~same way). Note that if~$X \in \Omega_{\pi}(A)$, $Y \in \Omega_{\pi}(B)$, and~$Q=(X \cap H)(Y \cap K)$, then all cyclic subgroups of~the~free factors of~$M_{X, Q}$ (the finite \hbox{$\pi$-}groups) are \hbox{$\pi^\prime$-}iso\-lated. So it is sufficient to~point out a~pair of~subgroups $X \in \Omega_{\pi}(A)$, $Y \in \Omega_{\pi}(B)$ such that $g\rho_{X, Q} \notin C\rho_{X, Q}$. By the~condition, $C$ is separable by~$\Omega_{\pi}(A)$. Therefore, if~$g \in A$, then there exists a~subgroup $X \in \Omega_{\pi}(A)$ such that $g \notin CX$ and, hence, $g\rho_{X, Q} \notin C\rho_{X, Q}$ regardless of~the~choice of~$Y$. Let $g \notin A$. Then, if~$m=1$, $g=g_{1} \in U\backslash H$. When $m>1$, every syllable $g_{i}$ of~the~reduced form of~$g$ belongs to~one of~the~free factors and~doesn't belong to~the~amalgamated subgroup. By the~condition of~the~theorem, $H$ is separable by~$\Omega_{\pi}(A)$. If $u \in U\backslash H$ and~$u=hk$ for~suitable elements $h \in H$, $k \in K$, then $k \ne 1$ and, since $B$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group, there exists a~subgroup $Y \in \Omega_{\pi}(B)$ such that $k \notin Y$. Then $$ u \notin H(X \cap H)(Y \cap K)=H(Y \cap K) $$ regardless of~the~choice of~a~subgroup $X \in \Omega_{\pi}(A)$. Thus, $H$ is separable by~$\Theta_{\pi}(U)$. It follows from the~told that, for~every~$i$ ($1 \leqslant i \leqslant m$), one can point out a~pair of~subgroups $X_{i} \in \Omega_{\pi}(A)$, $Y_{i} \in \Omega_{\pi}(B)$ such that $g_{i} \notin HX_{i}$ if~$g_{i} \in A$ and~$g_{i} \notin H(Y_{i} \cap K)$ if~$g_{i} \in U$. Let us put $$ X = \bigcap_{i = 1}^m {X_i},\ Y = \bigcap_{i = 1}^m {Y_i}. $$ It is obvious that then $X \in \Omega_{\pi}(A)$, $Y \in \Omega_{\pi}(B)$ and~the~presentation of~$g\rho_{X, Q}$ as~the~product $$ g\rho_{X, Q}=g_{1}\rho_{X, Q}g_{2}\rho_{X, Q}\ldots g_{m}\rho_{X, Q} $$ is still the~reduced form in~$M_{X, Q}$. Therefore, its length $l(g\rho_{X, Q})$ equals the~length of~$g$, and, if~$m=1$, then $g\rho_{X, Q} \in U\rho_{X, Q}\backslash H\rho_{X, Q}$. Thus, in~this case the~element $g\rho_{X, Q}$ doesn't belong to~$C\rho_{X, Q}$ too. Let now $n \geqslant 2$. As above, we find a~pair of~subgroups $X \in \Omega_{\pi}(A)$, $Y \in \Omega_{\pi}(B)$ such that $l(g\rho_{X, Q})=l(g)$ and~$l(c\rho_{X, Q})=l(c)$. Note that $c\rho_{X, Q}$ is still a~cyclically reduced element. For any pair of~subgroups $V \in \Omega_{\pi}(A)$, $W \in \Omega_{\pi}(B)$ such that $V \leqslant X$ and~$W \leqslant Y$, the~equality $l(c\rho_{V, P})=l(c)$ holds, where $$ P=(V \cap H)(W \cap K). $$ So the~powers of~the~roots which can be extracted from~$c\rho_{V, P}$ are bounded as~a~whole by~Proposition~\ref{prop22}. It follows now from Proposition~\ref{prop15} that $\mathcal{I}_{\pi^\prime}(M_{V, P}, C\rho_{V, P})$ is a~cyclic subgroup. Show that $V$\linebreak and~$W$ can be chosen in~such a~way that $g\rho_{V, P}$ doesn't belong\linebreak to~$\mathcal{I}_{\pi^\prime}(M_{V, P}, C\rho_{V, P})$. Write $n$ in~the~form $n=qt$, where~$q$ is a~\hbox{$\pi$-}num\-ber, $t$ is a~\hbox{$\pi^\prime$-}num\-ber if~$\pi$ doesn't coincide with~the~set of~all prime numbers and~$t=1$ otherwise. \textit{Case~1.} $n$ doesn't divide~$mt$. Since $n$ doesn't divide $mt$,\,then,\,by~Proposition~\ref{prop22},\,\hbox{$(g\rho_{X, Q})^{t} \notin C\rho_{X, Q}$.} Show that $g\rho_{X, Q} \notin \mathcal{I}_{\pi^\prime}(M_{X, Q}, C\rho_{X, Q})$. Let $d_{X, Q}$ denote a~generator of~$\mathcal{I}_{\pi^\prime}(M_{X, Q}, C\rho_{X, Q})$, and~let ($d_{X, Q})^{z}=c\rho_{X, Q}$. It follows from Proposition~\ref{prop22} that then $z\vert n$. But~$z$ is a~\hbox{$\pi^\prime$-}num\-ber, so it divides $t$ and, therefore, $$ (\mathcal{I}_{\pi^\prime}(M_{X, Q}, C\rho_{X, Q}))^{t} \leqslant C\rho_{X, Q}. $$ Thus, supposing that $g\rho_{X, Q} \in \mathcal{I}_{\pi^\prime}(M_{X, Q}, C\rho_{X, Q})$ we come to~the~inclusion $(g\rho_{X, Q})^{t} \in C\rho_{X, Y}$, which contradicts the~relation stated above. \textit{Case~2.} $mt=nk$ for~certain positive~$k$. Since $C$ is \hbox{$\pi^\prime$-}iso\-lated in~$M$ and~$g \notin C$, then $g^{t} \ne c^{\pm k}$. Arguing as~above we find subgroups $R \in \Omega_{\pi}(A)$, $S \in \Omega_{\pi}(B)$ such that $$ (g^{-t}c^{k})\rho_{R, L} \ne 1 \ne (g^{-t}c^{-k})\rho_{R, L}, $$ where~$L=(R \cap H)(S \cap K)$. Let us put $V=X \cap R$, $W=Y \cap S$, and~$P=(V \cap H)(W \cap K)$. Then $(g\rho_{V, P})^{t} \ne (c\rho_{V, P})^{\pm k}$, and, since $$ l(g\rho_{V, P})=l(g)=m,\ l(c\rho_{V, P})=l(c)=n, $$ we have $(g\rho_{V, P})^{t} \notin C\rho_{V, P}$. As~well as~in~the~case discussed above it follows that $g\rho_{V, P} \notin \mathcal{I}_{\pi^\prime}(M_{V, P}, C\rho_{V, P})$, and~the~proof is finished. \end{proof} \section{Some corollaries} Unfortunately, to~describe the~family $\Lambda_{\pi}(HK)$ is difficult in~general case, and~our further efforts will be directed on~making it at~least in~some special cases. \begin{proposition}\label{prop31} If $A$ is \hbox{$\mathcal{F}_{\pi}$-}quasi-regu\-lar by~$H$ and~$B$ is \hbox{$\mathcal{F}_{\pi}$-}quasi-regu\-lar by~$K$, then $\Lambda_{\pi}(HK)=\Delta_{\pi}(HK)$. \end{proposition} \begin{proof} Indeed, if~$L \in \Omega_{\pi}(HK)$, then we can use the~\hbox{$\mathcal{F}_{\pi}$-}quasi-regu\-lari\-ty and~find such subgroups $X \in \Omega_{\pi}(A)$, $Y \in \Omega_{\pi}(B)$ that $X \cap H \leqslant L \cap H$, $Y \cap K \leqslant L \cap K$ and, hence, $(X \cap H)(Y \cap K) \leqslant L$. Therefore, any subgroup lying in~$HK$ and~being separable by~$\Omega_{\pi}(HK)$ turns out to~be separable by~$\Theta_{\pi}(HK)$ too. Since the~inverse statement is obvious, $\Lambda_{\pi}(HK)=\Delta_{\pi}(HK)$ as~it is required. \end{proof} The~next corollary follows directly from Propositions~\ref{prop31} and~\ref{prop12}. \begin{corollary}\label{corl32} Let $H$, $K$ be subnormal in~$A$, $B$ and~have finite \hbox{$\pi$-}indexes in~them. Then $\Lambda_{\pi}(HK)=\Delta_{\pi}(HK)$. \qed \end{corollary} Alas! the~structure of~the~set $\Delta_{\pi}(HK)$ is also not~simple. And~so we continue the~research of~the~separability of~the~cyclic subgroups lying in~$HK$ and~prove \begin{proposition}\label{prop33} Let $A$ and~$B$ be residually \hbox{$\mathcal{F}_{\pi}$-}groups, and~let $C$ be a~\hbox{$\pi^\prime$-}iso\-lated cyclic subgroup of~$HK$ generated by~an~element $c=hk$, where~$h \in H$, $k \in K$. If~$h$ has infinite order and~all subgroups of~$\Omega_{\pi}(\mathcal{I}_{\pi^\prime}(A, \langle h \rangle ))$ are \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$A$, then $C$ is separable by~$\Theta_{\pi}(HK)$. \end{proposition} \begin{proof} Let $g \in HK\backslash C$ be an~arbitrary element. We need to~point~out such subgroups $X \in \Omega_{\pi}(A)$, $Y \in \Omega_{\pi}(B)$ that $g \notin C(X \cap H)(Y \cap K)$. Write $g$ in~the~form $g=ab$ for~suitable elements $a \in H$, $b \in K$. If $a \notin \Omega_{\pi}(A)$\hbox{-\textit{Cl}}$(\langle h \rangle)$, then there exists a~subgroup $X \in \Omega_{\pi}(A)$ such that $a \notin \langle h \rangle X$. Then $ab \notin C(X \cap H)K$ since $HK$ is the~direct product of~$H$ and~$K$, and~we can take $B$ wholly as~$Y$. The~case when~$b \notin \Omega_{\pi}(B)$\hbox{-\textit{Cl}}$(\langle k \rangle)$ is considered in~the~same~way. Let now $a \in \Omega_{\pi}(A)$\hbox{-\textit{Cl}}$(\langle h \rangle)$ and~$b \in \Omega_{\pi}(B)$\hbox{-\textit{Cl}}$(\langle k \rangle)$. Since $A$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group, then $\mathcal{I}_{\pi^\prime}(A, \langle h \rangle)$ is locally cyclic according to~Proposition~\ref{prop15}. By~the~condition, this subgroup is \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$A$, hence, $\Omega_{\pi}(A)$\hbox{-\textit{Cl}}$(\langle h \rangle)=\mathcal{I}_{\pi^\prime}(A, \langle h \rangle)$ and~$a \in \mathcal{I}_{\pi^\prime}(A, \langle h \rangle)$. Denote by~$u$ the~generator of~the~subgroup $\langle a, h \rangle$ and~consider two cases. \textit{Case~1.} $\langle k \rangle$ is finite. Since $B$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group, every its finite subgroup is\linebreak \hbox{$\mathcal{F}_{\pi}$-}separ\-able. Therefore, $b \in \Omega_{\pi}(B)$\hbox{-\textit{Cl}}($\langle k \rangle)=\langle k \rangle$ and~$C$ is a~\hbox{$\pi^\prime$-}iso\-lated cyclic subgroup of~the~finitely generated abelian group $\langle u, k \rangle$. It is known \cite{li05} that all \hbox{$\pi^\prime$-}iso\-lated subgroups of~a~finitely generated nilpotent group are \hbox{$\mathcal{F}_{\pi}$-}separ\-able. So there exists a~subgroup \hbox{$L \in \Omega_{\pi}(\langle u, k \rangle)$} such that $g \notin CL$. Note that for~any \hbox{$\pi$-}num\-ber~$l$ $\mathcal{I}_{\pi^\prime}(A, \langle h \rangle)^{l} \cap \langle u\rangle \leqslant \langle u^{l} \rangle$. Indeed, let $v \in \mathcal{I}_{\pi^\prime}(A, \langle h\rangle)$ and~$v^{l} \in \langle u \rangle$. By~Proposition~\ref{prop14}, $\mathcal{I}_{\pi^\prime}(A, \langle h \rangle)$ coincides with~the~set of~all \hbox{$\pi^\prime$-}roots being extracted from~$\langle h \rangle$ in~$A$. So there exists a~\hbox{$\pi^\prime$-}num\-ber $m$ such that $v^{m} \in \langle h \rangle \leqslant \langle u \rangle$. Since $l$ and~$m$ are relatively prime, the~equality $l\alpha + m\beta = 1$ holds for~suitable integers $\alpha$ and~$\beta$. From~this it follows that $v=v^{l\alpha + m\beta} \in \langle u \rangle$ and~$v^{l} \in \langle u^{l} \rangle$. Let now $l=[\langle u \rangle : L \cap \langle u \rangle]$. By~Proposition~\ref{prop11}, $A$ is \hbox{$\mathcal{F}_{\pi}$-}quasi-regu\-lar by~$\mathcal{I}_{\pi^\prime}(A, \langle h \rangle)$. We use this fact and~choose a~subgroup \hbox{$X \in \Omega_{\pi}(A)$} so that $X \cap \mathcal{I}_{\pi^\prime}(A, \langle h \rangle) \leqslant \mathcal{I}_{\pi^\prime}(A, \langle h \rangle)^{l}$. Since $B$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group, there exists also a~subgroup $Y \in \Omega_{\pi}(B)$ satisfying the~condition\linebreak \hbox{$Y \cap \langle k \rangle=1$.} Suppose that $g \in C(X \cap H)(Y \cap K)$ and~$g=c^{n}xy$ for~suitable elements $x \in X \cap H$, $y \in Y \cap K$ and~a~number~$n$. Since $g, c \in \langle u, k \rangle$ and~$a, h \in \mathcal{I}_{\pi^\prime}(A, \langle h \rangle)$, then \begin{gather*} x \in X \cap H \cap \langle u, k\rangle \cap \mathcal{I}_{\pi^\prime}(A, \langle h \rangle) = X \cap \mathcal{I}_{\pi^\prime}(A, \langle h \rangle) \cap \langle u \rangle \leqslant \\ \leqslant \mathcal{I}_{\pi^\prime}(A, \langle h \rangle)^{l} \cap \langle u \rangle \leqslant \langle u^{l} \rangle = L \cap \langle u \rangle \end{gather*} and $$ y \in Y \cap K \cap \langle u, k \rangle = Y \cap \langle k \rangle = 1, $$ whence $g \in CL$ what contradicts the~choice of~$L$. Thus, $$ g \notin C(X \cap H)(Y \cap K) $$ as~it is required. \textit{Case~2.} $\langle k \rangle$ is infinite. Let $a=u^{l}$ and~$h=u^{q}$. Since $\mathcal{I}_{\pi^\prime}(A, \langle h \rangle)$ coincides with~the~set of~all \hbox{$\pi^\prime$-}roots being extracted from $\langle h \rangle$ in~$A$, we can consider $q$ as~a~\hbox{$\pi^\prime$-}num\-ber. Suppose that $b^{q}=k^{l}$. Then ($ab)^{q}=u^{lq}b^{q}=h^{l}k^{l}=(hk)^{l}$. But~$C$ is \hbox{$\pi^\prime$-}iso\-lated, so $q=1$ and~$g \in C$ what is impossible. Therefore, $b^{q}k^{-l} \ne 1$ and, since $B$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group, there exists a~subgroup \hbox{$Z \in \Omega_{\pi}(B)$} which doesn't contain this element. Consider the~group $$ G_{Z} = \langle A*B/Z;\ [H,KZ/Z] = 1 \rangle. $$ It is obvious that the~natural homomorphism of~$B$ onto~$B/Z$ can be extended to~the~surjective homomorphism $\rho_{Z}\colon G \to G_{Z}$. Let $$ D = \mathcal{I}_{\pi^\prime}(\langle u, kZ \rangle, C\rho_{Z}). $$ Since $D$ lies in~the~finitely generated abelian group, it is cyclic and~is generated by~an~element~$d$. Write it in~the~form $d=x \cdot yZ$ for~suitable elements $x \in H$, $yZ \in KZ/Z$. Let $s$ be a~\hbox{$\pi^\prime$-}num\-ber such that $d^{s} \in C\rho_{Z}$. Then $x^{s} \in \langle h\rangle $ and~so $x \in \mathcal{I}_{\pi^\prime}(A, \langle h \rangle)$. From~this it follows that $\mathcal{I}_{\pi^\prime}(A, \langle x \rangle) = \mathcal{I}_{\pi^\prime}(A, \langle h \rangle)$. Suppose that $g\rho_{Z} \in D$. Then $(g\rho_{Z})^{r}=(c\rho_{Z})^{m}$ for~some numbers~$r$ and~$m$, while $r$ can be considered without lost of~generality as~a~\hbox{$\pi^\prime$-}num\-ber. Since $b \in \Omega_{\pi}(B)$\hbox{-\textit{Cl}}$(\langle k \rangle)$, then $b \in \langle k \rangle Z$ and~$b \equiv k^{t} \pmod{Z}$ for~a~suitable number~$t$. We have $$ (u^{q} \cdot kZ)^{m} = (h \cdot kZ)^{m} = (c\rho_{Z})^{m} = (g\rho_{Z})^{r} = (a \cdot bZ)^{r} = (u^{l} \cdot (kZ)^{t})^{r} $$ whence $m \equiv tr \pmod{n}$, where~$n$ is the~order of~$kZ$, and~$qm=lr$ due to~infinity of~the~orders of~$h$ and~$u$. Since $Z$ has a~finite \hbox{$\pi$-}index in~$B$, $n$ is a~\hbox{$\pi$-}num\-ber. Therefore, the~congruencies $qtr \equiv qm \equiv lr \pmod{n}$ imply that $qt \equiv l \pmod{n}$. But in~this case $$ 1 \equiv k^{tq-l} \equiv b^{q}k^{-l} \pmod{Z} $$ what contradicts the~choice of~$Z$. Thus, $g\rho_{Z} \notin D$, and, while we don’t assert that $D$ is \hbox{$\pi^\prime$-}iso\-lated in~$H \cdot KZ/Z$, we can however repeat for~$G_{Z}$ the~same arguments as~in~the~case~1. As~a~result one can find in~this group such subgroups $X \in \Omega_{\pi}(A)$, $Y/Z \in \Omega_{\pi}(B/Z)$ that $$ g\rho_{Z} \notin D(X \cap H)(Y/Z \cap KZ/Z). $$ It is obvious that $X$ and~$Y$ turn~out to~be required, and~the~proposition is proved. \end{proof} Note that with\,$H=A$\;and\,$K=B$\,the~equalities\,\hbox{$\Theta_{\pi}(HK)=\Omega_{\pi}(HK)$} and~$\Lambda_{\pi}(HK)=\Delta_{\pi}(HK)$ hold. So Proposition~\ref{prop33} and~the~corollary given below can be used also for~describing of~\hbox{$\mathcal{F}_{\pi}$-}separ\-able cyclic subgroups of~an~arbitrary direct product of~groups. \begin{corollary}\label{corl34} Let the~following statements hold: 1) $A$ and~$B$ are residually \hbox{$\mathcal{F}_{\pi}$-}groups, 2) $H$ and~$K$ are \hbox{$\pi^\prime$-}iso\-lated in~the~free factors, 3) all cyclic subgroups which lie in~$H$ and~are \hbox{$\pi^\prime$-}iso\-lated in~$A$ are \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$A$, 4) all cyclic subgroups which lie in~$K$ and~are \hbox{$\pi^\prime$-}iso\-lated in~$B$ are \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$B$, 5) $H$ and~$K$ don't contain locally cyclic subgroups unless $\pi$ coincides with~the~set of~all prime numbers. Then $\Lambda_{\pi}(HK)=\varnothing$. \end{corollary} \begin{proof} Let $C$ be a~\hbox{$\pi^\prime$-}iso\-lated cyclic subgroup of~$HK$ generated\linebreak by~an~element $c=hk$, where~$h \in H$, $k \in K$. Let $C$ be finite, and~let $g=ab$, $a \in H$, $b \in K$, be an~arbitrary element which doesn't belong to~$C$. Since~$A$ and~$B$ are residually \hbox{$\mathcal{F}_{\pi}$-}finite, there exist subgroups $X \in \Omega_{\pi}(A)$, $Y \in \Omega_{\pi}(B)$ such that $$ X \cap \langle h \rangle = Y \cap \langle k \rangle = 1, $$ $a^{-1}h^{m} \notin X$ whenever $a^{-1}h^{m} \ne 1$, and~$b^{-1}k^{n} \notin Y$ whenever $b^{-1}k^{n} \ne 1$. It is obvious that then $g \notin C(X \cap H)(Y \cap K)$ and~so $C$ is separable by~$\Theta_{\pi}(HK)$. If $C$ is infinite, then at~least one of~the~elements~$h$ and~$k$ has an~infinite order. Let, for~definiteness, $h$ be such an~element. Since $H$ is \hbox{$\pi^\prime$-}iso\-lated in~$A$, then $\mathcal{I}_{\pi^\prime}(A, \langle h \rangle) \leqslant H$. If~$\pi$ coincides with~the~set of~all prime numbers, then any subgroup is \hbox{$\pi^\prime$-}iso\-lated and~so $\mathcal{I}_{\pi^\prime}(A, \langle h \rangle)=\langle h \rangle$. Otherwise, by~condition, $H$ doesn't contain locally cyclic subgroups, and, therefore, $\mathcal{I}_{\pi^\prime}(A, \langle h \rangle)$ is cyclic too. But, again by~condition, any cyclic subgroup which lies in~$H$ and~is \hbox{$\pi^\prime$-}iso\-lated in~$A$ is \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$A$. Hence, $\mathcal{I}_{\pi^\prime}(A, \langle h \rangle)$ and~all its subgroups of~finite \hbox{$\pi$-}index are \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$A$. Thus, we can use Proposition~\ref{prop33} in~this case, which states that $C$ is separable by~$\Theta_{\pi}(HK)$. \end{proof} The corollary proved in~a~combination with~the~main theorem lets generalize the~result of~E.~D.~Loginova~\cite{li06} that, if~$G$ is residually finite and~all cyclic subgroups of~$A$ and~$B$ are finitely separable in~these groups, then all cyclic subgroups of~$G$ are finitely separable too. \begin{theorem}\label{thrm35} Let $\pi$ be a~set of~prime numbers which coincides with~the~set of~all prime numbers or~is one-element. Let all cyclic subgroups which lie in~$H$ and~are \hbox{$\pi^\prime$-}iso\-lated in~$A$ be \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$A$, and~let all cyclic subgroups which lie in~$K$ and~are \hbox{$\pi^\prime$-}iso\-lated in~$B$ be \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~$B$. Let also $H$ and~$K$ don't contain locally cyclic subgroups unless $\pi$ coincides with~the~set of~all prime numbers. If~$G$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group, then a~\hbox{$\pi^\prime$-}iso\-lated cyclic subgroup of~this group is \hbox{$\mathcal{F}_{\pi}$-}separ\-able in~it if, and~only if, it is not conjugated with~any subgroup of~$\Delta_{\pi}(A) \cup \Delta_{\pi}(B)$. \qed \end{theorem} It is not difficult to~show (see., e.~g., \cite{li13}) that every \hbox{$\pi^\prime$-}iso\-lated cyclic subgroup of~an~arbitrary free group is \hbox{$\mathcal{F}_{\pi}$-}separ\-able regardless of~the~choice of~a~set~$\pi$. As~it was already noted during the~proof of~Proposition~\ref{prop33} the~stronger assertion holds for~finitely generated nilpotent groups: all \hbox{$\pi^\prime$-}iso\-lated subgroups of~such groups are \hbox{$\mathcal{F}_{\pi}$-}separ\-able. So the~next two statements result from Theorem~\ref{thrm21} and~Corollary~\ref{corl34}. \begin{theorem}\label{thrm36} Let $\pi$ be a~set of~prime numbers which coincides with~the~set of~all prime numbers or~is one-element. Let $A$ and~$B$ be free groups, and~let $H$ and~$K$ be cyclic subgroups \hbox{$\pi^\prime$-}iso\-lated in~the~free factors. Then all \hbox{$\pi^\prime$-}iso\-lated cyclic subgroups of~$G$ are \hbox{$\mathcal{F}_{\pi}$-}separ\-able. \qed \end{theorem} \begin{theorem}\label{thrm37} Let $\pi$ be a~set of~prime numbers which coincides with~the~set of~all prime numbers or~is one-element, and~let $A$ and~$B$ be finitely generated nilpotent groups. If~$G$ is residually an~\hbox{$\mathcal{F}_{\pi}$-}group, then all its \hbox{$\pi^\prime$-}iso\-lated cyclic subgroups are \hbox{$\mathcal{F}_{\pi}$-}separ\-able. \qed \end{theorem} Note that the~conditions of~Theorem~\ref{thrm36} are true for~the~group $$ G_{mn} = \langle a, b;\ [a^{m}, b^{n}] = 1 \rangle $$ with~a~suitable choice of~numbers~$m$ and~$n$. This group is investigated in~\cite{li08, li07}, where~the~finite separability of~all its cyclic subgroups is proved. \end{document}
math
To enable the new sewerage system to discharge to a new sea outfall a 340m long tunnel was constructed with 1200 & 1500 dia pipe jacks. Both pipe jacks were driven from a 40m deep central shaft. The 4.27m dia shaft was sunk by underpinning through breccia (a sandstone conglomerate) to 26m and then increased in size to 6m dia by inserting an in-situ concrete ring beam and then continuing with 6m dia segments. Once completed the 1500 dia pipe jack was then driven from just below the ring beam, uphill to an existing shaft in the town centre. The 1200 dia pipe jack was then driven downhill from the shaft bottom at a gradient of 1:50 beneath main line rail tracks and under the existing sea wall towards the beach. This connected to the sea outfall laid in open cut to complete the scheme. If you have a question about Brimley Brook Outfall Teignmouth or anything related to this, please contact us, alternatively fill in the form below and we'll get back to you as soon as possible.
english
ಹೊಸ ವರ್ಷದ ಸಂದರ್ಭದಲ್ಲಿ ಜೂಮ್ ಬಳಕೆದಾರರಿಗೆ ಬಂಪರ್ ಆಫರ್.! ಕೊರೊನಾ ವೈರಸ್ ಬಳಿಕ ದೂರದಲ್ಲಿರುವ ಜನರನ್ನ ಒಂದು ಮಾಡುವಲ್ಲಿ ಮಹತ್ವ ಪಾತ್ರ ವಹಿಸಿರುವ ಜೂಮ್ ಕಂಪನಿ ಹಬ್ಬದ ವಿಶೇಷವಾಗಿ ಉಚಿತ ಚಂದಾದಾರರಿಗೆ ಇದ್ದ 40 ನಿಮಿಷದ ಮಿತಿಯನ್ನ ತೆಗೆದು ಹಾಕೋದಾಗಿ ಹೇಳಿದೆ. ಕ್ರಿಸ್ ಮಸ್ ಹಾಗೂ ಹೊಸ ವರ್ಷದ ವಿಶೇಷವಾಗಿ ನಿಮಿಷದ ಮಿತಿಗೆ ತಾತ್ಕಾಲಿಕ ಬ್ರೇಕ್ ನೀಡಲಾಗಿದೆ. ಜೂಮ್ನನ ಈ ಕೊಡುಗೆಯಿಂದಾಗಿ ಜನತೆ ದೂರದಲ್ಲಿರುವ ತಮ್ಮ ಪ್ರೀತಿ ಪಾತ್ರರ ಜೊತೆ ಉಚಿತವಾಗಿ ಎಷ್ಟು ನಿಮಿಷಗಳ ಕಾಲ ಬೇಕಿದ್ದರೂ ಮಾತನಾಡಬಹುದಾಗಿದೆ. ಡಿಸೆಂಬರ್ 17ರಿಂದ ಬೆಳಗ್ಗೆ 10 ಗಂಟೆಯಿಂದ ಡಿಸೆಂಬರ್ 19ರ ಬೆಳಗ್ಗೆ 6 ಗಂಟೆಯವರೆಗೆ ಉಚಿತ ನಿಮಿಷದ ಮಿತಿ ಇರೋದಿಲ್ಲ. ಇದಾದ ಬಳಿಕ ಡಿಸೆಂಬರ್ 23ರ ಬೆಳಗ್ಗೆ 10 ಗಂಟೆಯಿಂದ ಡಿಸೆಂಬರ್ 26ರ ಬೆಳಗ್ಗೆ 6 ಗಂಟೆಯವರೆಗೆ ನಿಮಿಷದ ಮಿತಿಗೆ ಬ್ರೇಕ್ ಇರೋದಿಲ್ಲ. ಇನ್ನು ಹೊಸ ವರ್ಷದ ವಿಶೇಷವಾಗಿ ಡಿಸೆಂಬರ್ 30ರ ಬೆಳಗ್ಗೆ 10ರಿಂದ ಜನವರಿ 02, 2021ರ ಬೆಳಗ್ಗೆ 6ರವರೆಗೆ ನಿಮಿಷದ ಮಿತಿ ತೆಗೆದು ಹಾಕಲಾಗುತ್ತೆ.
kannad
ಜಿಲ್ಲಾ, ತಾಲ್ಲೂಕು ಪಂಚಾಯತ್ ಚುನಾವಣೆಗೆ ಬಿಜೆಪಿ ತಯಾರಿ ಬೆಂಗಳೂರು: ಕೋವಿಡ್19 ಸಾಂಕ್ರಾಮಿಕ ನಿಯಂತ್ರಣಕ್ಕೆ ಬಂದ ಹಿನ್ನಲೆಯಲ್ಲಿ ಆಡಳಿತಾರೂಢ ಬಿಜೆಪಿ ಮುಂಬರುವ ಜಿಲ್ಲಾ ಪಂಚಾಯತ್ ಹಾಗೂ ತಾಲ್ಲೂಕು ಪಂಚಾಯತ್ ಚುನಾವಣೆಗೆ ಸಿದ್ಧತೆಗಳನ್ನು ಪ್ರಾರಂಭಿಸಿದೆ. ಕೊರೋನಾ ಸನ್ನಿವೇಶ ಸಂಪೂರ್ಣ ನಿಯಂತ್ರಣಕ್ಕೆ ಬಂದ ನಂತರವೇ ಈ ನಗರ ಸ್ಥಳೀಯ ಸಂಸ್ಥೆಗಳಿಗೆ ಚುನಾವಣೆ ಮುಂದಿನ ವರ್ಷದ ಆರಂಭದಲ್ಲಿ ನಡೆಯುವ ಸಾಧ್ಯತೆಯಿದೆ. ಬಿಜೆಪಿ ರಾಜ್ಯ ಕಾರ್ಯಕಾರಿ ಸಮಿತಿ ಸಭೆಯಲ್ಲಿ ಶನಿವಾರ ಚುನಾವಣೆಗೆ ಮುನ್ನ ಸಂಘಟನೆಯನ್ನು ತಳಮಟ್ಟದಲ್ಲಿ ಬಲಪಡಿಸುವ ಕ್ರಮಗಳು ಮತ್ತು ಕೋವಿಡ್19 ಸಾಂಕ್ರಾಮಿಕ ರೋಗದಿಂದ ಬಳಲುತ್ತಿರುವ ಜನರಿಗೆ ಸಹಾಯ ಮಾಡಲು ಕೈಗೊಳ್ಳಬೇಕಾದ ಕ್ರಮಗಳ ಕುರಿತು ಚರ್ಚಿಸಲಾಯಿತು. ಸಮಿತಿ ಸಭೆಯ ಉದ್ಘಾಟನಾ ಸೆಷನ್ ನಲ್ಲಿ ಮುಖ್ಯಮಂತ್ರಿ ಬಿ ಎಸ್ ಯಡಿಯೂರಪ್ಪ ಅವರು ಪಕ್ಷದ ಮುಖಂಡರಿಗೆ ಎರಡು ವಿಧಾನಸಭಾ ಕ್ಷೇತ್ರಗಳಿಗೆ ಉಪಚುನಾವಣೆಗಳನ್ನು ಎದುರಿಸಲು ಸಿದ್ಧರಾಗಿರಬೇಕು ಮತ್ತು ಜಿಲ್ಲಾ ಹಾಗೂ ತಾಲ್ಲೂಕು ಪಂಚಾಯತ್ ಚುನಾವಣೆಗಳಿಗೆ ತಯಾರಾಗಿ ಎಂದು ಕರೆ ನೀಡಿದರು. ಸ್ಥಳೀಯ ಸಂಸ್ಥೆಗಳ ಚುನಾವಣೆಗಳಲ್ಲಿ ಉತ್ತಮ ಸಾಧನೆ ತೋರುವುದರಿಂದ 2023 ರಲ್ಲಿ ನಡೆಯಲಿರುವ ವಿಧಾನಸಭಾ ಚುನಾವಣೆಯಲ್ಲಿ ಪಕ್ಷಕ್ಕೆ ನೆರವಾಗಲಿದೆಎಂದು ಅವರು ಒತ್ತಿ ಹೇಳಿದರು. ಸಭೆಯ ನಂತರ, ಬಿಜೆಪಿ ರಾಜ್ಯ ಪ್ರಧಾನ ಕಾರ್ಯದರ್ಶಿ ಎನ್ ರವಿ ಕುಮಾರ್ ಅವರು ಜುಲೈ 1 ರಿಂದ 15 ರವರೆಗೆ ಜಿಲ್ಲಾ ಕಾರ್ಯಕಾರಿ ಸಮಿತಿ ಸಭೆಗಳನ್ನು ನಡೆಸಲು ನಿರ್ಧರಿಸಿದ್ದಾಗಿಯೂ ಜುಲೈ 16 ರಿಂದ 30 ರವರೆಗೆ ಎಲ್ಲಾ ಮಂಡಳಿಗಳಲ್ಲಿ ಸಭೆ ನಡೆಸಲಾಗುವುದು ಎಂದು ಹೇಳಿದರು. ಕೋವಿಡ್ ಪರಿಸ್ಥಿತಿಯನ್ನು ಗಮನಿಸಿದರೆ, ಈ ಎಲ್ಲಾ ಸಭೆಗಳು ಪ್ರೋಟೋಕಾಲ್ಗಳನ್ನು ಅನುಸರಿಸಿ ಪ್ರತ್ಯಕ್ಷ ಹಾಗೂ ವರ್ಚುವಲ್ ಎರಡೂ ಮಾದರಿಯಲ್ಲಿ ನಡೆಯುತ್ತವೆ. ಪಕ್ಷವು ಬೂತ್ ಅಧ್ಯಕ್ಷರಿಗೆ ನೇಮ್ಪ್ಲೇಟ್ಗಳನ್ನು ನೀಡಲಿದ್ದು, ಆಗಸ್ಟ್ನಲ್ಲಿ ಗ್ರಾಮ ಪಂಚಾಯತ್ ಸದಸ್ಯರ ಸಮಾವೇಶ ನಡೆಯಲಿದ್ದು, ಅಕ್ಟೋಬರ್ನಲ್ಲಿ ಬೆಂಗಳೂರಿನಲ್ಲಿ ಜಿಲ್ಲಾ ಪಂಚಾಯತ್ ಅಧ್ಯಕ್ಷರು ಮತ್ತು ಉಪಾಧ್ಯಕ್ಷರ ರಾಜ್ಯಮಟ್ಟದ ಸಮಾವೇಶವನ್ನು ನಡೆಸಲು ಯೋಜಿಸಿದೆ. ನವದೆಹಲಿಯಿಂದ ನಡೆದ ಸಭೆಯಲ್ಲಿ ಭಾಗವಹಿಸಿದ ಪಕ್ಷದ ರಾಷ್ಟ್ರೀಯ ಪ್ರಧಾನ ಕಾರ್ಯದರ್ಶಿ ಅರುಣ್ ಸಿಂಗ್, ಸಂಘಟನೆಯನ್ನು ಬಲಪಡಿಸುವತ್ತ ಗಮನಹರಿಸುವಂತೆ ಮತ್ತು ರಾಜ್ಯ ಮತ್ತು ಕೇಂದ್ರ ಸರ್ಕಾರಗಳು ಕೈಗೊಂಡ ಹಲವಾರು ಉಪಕ್ರಮಗಳ ಬಗ್ಗೆ ಜಾಗೃತಿ ಮೂಡಿಸುವಂತೆ ಬಿಜೆಪಿ ಮುಖಂಡರು ಮತ್ತು ಕಾರ್ಯಕರ್ತರಿಗೆ ಕೇಳಿದ್ದಾರೆ. ಈ ವೇಳೆ ಸಾಂಕ್ರಾಮಿಕ ರೋಗದ ವಿರುದ್ಧ ಹೋರಾಡಲು ಕೇಂದ್ರ ಸರ್ಕಾರವು ಕೈಗೊಂಡ ಕ್ರಮಗಳನ್ನು ಶ್ಲಾಘಿಸಿ ಮತ್ತು ಬಂಗಾಳದಲ್ಲಿ ಮತದಾನದ ನಂತರದ ಹಿಂಸಾಚಾರವನ್ನು ಖಂಡಿಸಿ ನಿರ್ಣಯಗಳನ್ನು ಅಂಗೀಕರಿಸಲಾಯಿತು. ಕೋವಿಡ್ ನಿಂದ ಸಾವನ್ನಪ್ಪಿದ 4,531 ಜನರ ಅಂತಿಮ ವಿಧಿಗಳನ್ನು ನಡೆಸಿದ ಕಾರ್ಯಕರ್ತರನ್ನು ಪಕ್ಷವು ಸನ್ಮಾನಿಸುತ್ತದೆ ಎಂದು ರಾಜ್ಯ ಬಿಜೆಪಿ ಅಧ್ಯಕ್ಷ ನಳಿನ್ ಕುಮಾರ್ ಕಟೀಲ್ ಹೇಳಿದರು. ಕೋವಿಡ್19ನಿಂದ ಕುಟುಂಬದ ಸದಸ್ಯರನ್ನು ಕಳೆದುಕೊಂಡ ಬಿಪಿಎಲ್ ಕುಟುಂಬಗಳಿಗೆ 1 ಲಕ್ಷ ರೂ. ಪರಿಹಾರ ಮತ್ತು ಪೋಷಕರನ್ನು ಕಳೆದುಕೊಂಡ ಮಕ್ಕಳಿಗೆ ಆರ್ಥಿಕ ನೆರವು ನೀಡುವ ರಾಜ್ಯ ಸರ್ಕಾರದ ಉಪಕ್ರಮವನ್ನು ಅವರು ಶ್ಲಾಘಿಸಿದರು. ಕಾಂಗ್ರೆಸ್ ಪಕ್ಷದ ಮುಖಂಡರು ಸರ್ಕಾರವನ್ನು ಟೀಕಿಸುವುದು ಬಿಟ್ಟು ಸಾಂಕ್ರಾಮಿಕ ರೋಗದಿಂದ ಬಳಲುತ್ತಿರುವ ಜನರಿಗೆ ಯಾವುದೇ ಸಹಾಯವನ್ನು ನೀಡುತ್ತಿಲ್ಲ ಎಂದು ಅವರು ವಾಗ್ದಾಳಿ ನಡೆಸಿದರು. ಕೋವಿಡ್ ಲಸಿಕೆ ಅಭಿಯಾನದಲ್ಲಿ ತಮ್ಮನ್ನು ಸಕ್ರಿಯವಾಗಿ ತೊಡಗಿಸಿಕೊಳ್ಳಲು ಬಿಜೆಪಿ ಮುಖಂಡರು ಮತ್ತು ಕಾರ್ಯಕರ್ತರಿಗೆ ಹೇಳಲಾಗಿದೆ.
kannad
/******************************************************************************* * This file is part of romer. * * romer is distributed under the terms of the GNU Lesser General Public License (LGPL), Version 3.0. * * Copyright 2011-2014, The University of Manchester * * romer is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser * General Public License as published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * romer is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even * the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser * General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License along with romer. * If not, see http://www.gnu.org/licenses/. ******************************************************************************/ package uk.ac.manchester.cs.romer.reasonertasks; import java.util.Set; import org.semanticweb.owlapi.model.OWLAxiom; /** * @author Rafael S. Goncalves <br/> * Information Management Group (IMG) <br/> * School of Computer Science <br/> * University of Manchester <br/> */ public class RealizerResult extends EntailmentGeneratorResult { /** * Constructor * @param results Reasoning task results * @param time Task time * @param errorMsg Error message (if applicable) */ public RealizerResult(Set<OWLAxiom> results, double time, String errorMsg, boolean isConsistent) { super(results, time, errorMsg, isConsistent); } }
code
\begin{document} \author{Alex Kontorovich} \thanks{The author is partially supported by an NSF CAREER grant DMS-1254788 and DMS-1455705, an NSF FRG grant DMS-1463940, an Alfred P. Sloan Research Fellowship, and a BSF grant.} \email{[email protected]} \address{Department of Mathematics, Rutgers University, New Brunswick, NJ} \title[Integral Soddy Sphere Packings]{The Local-Global Principle for Integral Soddy Sphere Packings } \begin{abstract} Fix an integral Soddy sphere packing $\sP$. Let $\sB$ be the set of all bends in $\sP$. A number $n$ is called {\it represented} if $n\in\sB$, that is, if there is a sphere in $\sP$ with bend equal to $n$. A number $n$ is called {\it admissible} if it is everywhere locally represented, meaning that $n\in\sB(\mod q)$ for all $q$. It is shown that every sufficiently large admissible number is represented. \end{abstract} \date{\today} \subjclass[2010]{11D85, 11F06, 20H05} \maketitle \tableofcontents \section{Introduction} \begin{figure} \caption{Four tangent spheres} \caption{Two more spheres} \caption{Reflection of (b) through a sphere centered at $p$} \label{fig:Sod4} \label{fig:Sod6} \label{fig:SodStandard} \end{figure} This paper is concerned with a 3-dimensional analogue of an Apollonian circle packing in the plane, constructed as follows. Given four mutually tangent spheres with disjoint points of tangency (\figref{fig:Sod4}), a generalization to spheres of Apollonius's theorem says that \be\label{eq:SoddyThm} \text{ there are exactly two spheres } \ee tangent to the given ones (\figref{fig:Sod6}). For a proof of \eqref{eq:SoddyThm}, take a point $p$ of tangency of two given spheres and reflect the configuration through a sphere centered at $p$. Thus $p$ is sent to $\infty$, and the resulting configuration (\figref{fig:SodStandard}) consists of two tangent spheres wedged between two parallel planes; whence the two solutions claimed in \eqref{eq:SoddyThm} are obvious. Returning to \figref{fig:Sod6}, one now has more configurations of tangent spheres, and can iteratively inscribe further spheres in this way (\figref{fig:Sod12}). Repeating this procedure {\it ad infinitum}, one obtains what we will call a {\it Soddy sphere packing} (\figref{fig:Leys}). \\ \begin{figure} \caption{More tangent spheres} \caption{A Soddy sphere packing. Image by\\ Nicolas Hannachi, used with permission} \label{fig:Sod12} \label{fig:Leys} \end{figure} The name refers to the radiochemist Frederick Soddy (1877-1956), who in 1936 wrote a {\it Nature} poem \cite{Soddy1936} in which he rediscovered Descartes's Circle Theorem \cite[pp. 37--50]{Descartes1901} and a generalization to spheres, see \thmref{thm:Soddy}. The latter was known already in 1886 to Lachlan \cite{Lachlan1886}, and appears in some form as early as 1798 in Japanese Sangaku problems \cite{SangakuW}. We name the packings after Soddy because he was the first, as far as we know, to observe that there are configurations of circle and sphere packings in which all bends\footnote{The ``bend'' of a circle or sphere is defined to be one over its radius.} are integers \cite{Soddy1937} ; such a packing is called {\it integral}. The numbers illustrated in \figref{fig:Leys} are some of the bends in that packing. In \cite[p. 78]{Soddy1937}, Soddy writes that he ``discovered this [integrality] years ago for the simpler case of cylinders, or circles, in connection with the design of an actual mechanism,'' and provides a picture of a corresponding spherical mechanism, reproduced in \figref{fig:Soddy}. \begin{figure} \caption{A reproduction from \cite{Soddy1937} \label{fig:Soddy} \end{figure} By rescaling an integral packing, we may assume that the only integers dividing all of the bends are $\pm1$; such a packing is called {\it primitive}. We restrict our attention henceforth to bounded, integral, primitive Soddy sphere packings. In fact, all of the salient features persist if one considers just the packing $\sP_{0}$ illustrated in \figref{fig:Leys}. \\ The goal of this paper is to address the question: What numbers appear in \figref{fig:Leys}? For a sphere $S\in\sP$, let $b(S)$ be its bend, and let $\sB=\sB(\sP)$ be the set of all bends in $\sP$, $$ \sB:=\{n\in\Z:\exists S\in\sP,\ b(S)=n\} . $$ The bounding sphere is internally tangent to the others, so is given opposite orientation and negative bend. The first few bends in $\sP_{0}$ are: \be\label{eq:sKs} \begin{array}{c} \sB=\{ -11, 21, 25, 27, 28, 34, 36, 40, 42, 43, 46, 48, 49, 51, 54, 57, 61, 63,\\ 64,67, 69, 70, 72, 73, 75, 78, 79, 81, 82, 84, 85, 87, 90, \begin{comment} 91,93, 94, 96, 97, 100, \\ 102, 103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 118, 120, 121, 123, 124, \\ 126, 127, 129, 130,132, 133, 135, 136, 138, 139, 141, 142, 144, 145, 147, 148,\\ 150, 151, 153, 154, 156, 157, 159, 160, 162, 163, 166, 168, 169, 171, 172, 174,\\ 175, 177, 178, 180, 181, 183, 184, 186, 187, 189, 190, 192, 193, 195, 196, 199, \\ 201, 202, 204, 205, 207, 208, 210, 211, 213, 214, 216, 217, 219, 220, 222, 223, \\ 225, 226, 228, 229, 231, 232, 234, 235, 237, 238, 240, 241, 243, 244, 246, 247, \\ 249,250, 252, 253, 255, 256, 258, 259, 261, 262, 265, 267, 268, 270, 271, 273,\\ 274, 276, 277, 279, 280, 282, 283, 285, 286, 288, 289, 291, 292, 294, 295, 297, \\ 298, 300, 301, 303, 304, 306, 307, 309, 310, 312, 313, 315, 316, 318, 319, 321, \\322, 324, 325, 327, 328, 331, 333, \end{comment} \dots\}. \end{array} \ee A moment's inspection reveals that every bend in $\sP_{0}$ is \be\label{eq:cong} \equiv0\text{ or }1\ (\mod3) , \ee that is, there are local obstructions. That such exist was already observed 40 years ago by Boyd \cite[p. 376]{Boyd1973}. In analogy with Hilbert's 11th problem on representations of numbers by quadratic forms, we say that $n$ is {\it represented} if $n\in\sB$. Let $\sA=\sA(\sP)$ be the set of {\it admissible} numbers, that is, numbers $n$ that are everywhere locally represented in the sense that \be\label{eq:loc} n\in\sB(\mod q)\text{ for all $q$}. \ee In our example, $\sA$ is the set of all numbers satisfying \eqref{eq:cong}. The set of admissible numbers for any primitive packing $\sP$ satisfies either \eqref{eq:cong} or \be\label{eq:cong2} \equiv0\text{ or }2\ (\mod 3), \ee see \lemref{lem:loc}. The number of spheres in $\sP$ with bend at most $N$ (counted with multiplicity) is asymptotically equal to a constant times $N^{\gd}$, where $\gd$ is the Hausdorff dimension of the closure of the packing (see \cite{Kim2011}, which generalizes \cite{KontorovichOh2011} to this setting). Soddy packings are rigid (one can be mapped to any other by a conformal transformation), and so $\gd$ is a universal constant; it is approximately (see \cite{Boyd1973, Borkovec1994}) equal to $$ \gd\approx 2.4739\dots . $$ Hence one expects, on grounds of randomness, that the multiplicity of a given admissible bend up to $N$ is roughly $N^{\gd-1}$, which should be quite large. In particular, every sufficiently large admissible should be represented. The main purpose of this paper is to confirm this claim. \begin{thm}[The Local-Global Theorem]\label{thm:main} The bends of a fixed primitive, integral Soddy sphere packing $\sP$ satisfy a local-to-global principle. That is, there is an effectively computable $N_{0}=N_{0}(\sP)$ so that, if $n>N_{0}$ and $n$ is admissible, $n\in\sA$, then $n$ is represented, $n\in\sB$. \end{thm} Empirical evidence suggests (and could be verified with enough computation) that $N_{0}(\sP_{0})=330$ suffices.\\ \thmref{thm:main} is the analogue to Soddy sphere packings of the local-global conjecture for integral Apollonian circle packings \cite{GrahamLagarias2003, FuchsSanden2011, BourgainFuchs2011, BourgainKontorovich2014a}. Being in higher dimension puts more variables into play, making the problem much easier. \\ For the proof, we study a certain infinite index subgroup $\G$ of the integral orthogonal group preserving a particular quadratic form of signature $(4,1)$. This group, $\G$, which we call the {\it Soddy group}, is isomorphic to the group of symmetries of $\sP$; extended to act on hyperbolic $4$-space, the quotient is an infinite volume hyperbolic $4$-fold. After a calculation, we find that $\G$ contains an arithmetic (in fact, {\it congruence!}) Kleinian subgroup $\Xi$. A consequence is that the set $\sB$ of bends contains the ``primitive'' values of a shifted quaternary quadratic form (and moreover an infinite family of such). After some work, we show that these satisfy the Hasse principle, from which the local-global theorem follows. This proof is a generalization to sphere packings of the following related result in $2$-dimensions due to Sarnak \cite{SarnakToLagarias}: the bends in an integral, primitive Apollonian circle packing contain the primitive values of a shifted {\it binary} quadratic form. It is in this sense that we have more variables: instead of binary forms, sphere packings contain values of quaternary forms. Binary forms represent very few numbers, so despite some recent advances \cite{BourgainFuchs2011, BourgainKontorovich2014a}, the analogous problem in circle packings is currently wide open. So our main innovation in this paper is that, for sphere packings, the arithmetic subgroup orbit already fills out all large admissible numbers. In dimension $n\ge4$, one can start with a configuration of $n$ tangent hyperspheres, repeating the above-described generating procedure. Unfortunately this does not give rise to a packing, as the hyperspheres eventually overlap \cite{Boyd1973b}. \footnote{Added in print: See Baragar \cite{Baragar2017} for an alternate construction with non-overlapping hyperspheres.} Moreover there are no longer any such configurations in which all bends are integral (they can be $S$-integral, with the set $S$ of localized primes depending on the dimension $n$); this follows from Gossett's \cite{Gossett1937} generalization (also in verse) of Soddy's \thmref{thm:Soddy} to $n$-space. \footnote{Added in print: The tangency graph of a quintuple of mutually tangent spheres generating a Soddy sphere packing is isomorphic to the 1-skeleton of a 4-dimensional simplex. A further generalization in 3-dimensional sphere packings is to consider configurations coming from the 1-skeleton of a 4-orthoplex; the results here have been extended to this setting independently by Dias \cite{Dias2014} and Nakamura \cite{Nakamura2014}. For the corresponding generalization of classical Apollonian packings, see Zhang \cite{Zhang2013a}.} \subsection*{Notation} \ The following notation for parentheses is used throughout. We sometimes write $x\equiv y(z)$ for $x\equiv y(\mod z)$. We will use bold parentheses $\boldsymbol ( x,y\boldsymbol )$ for the ideal generated by $x$ and $y$, not to be confused with the $\gcd$, denoted simply by $(x,y)$. The indicator function $\bo_{\{X\}}$ is $1$ if $X$ holds and $0$ otherwise. \subsection*{Acknowledgments}\ The author wishes to express his gratitude to Dimitri Dias, Jeff Lagarias, Yair Minsky, Kei Nakamura, Alan Reid, and Peter Sarnak for enlightening conversations, comments and corrections. Thanks also to Stony Brook University, where the bulk of this text was completed. \section{Preliminaries} \begin{figure} \caption{Five tangent spheres and a dual reflection to a sixth } \caption{Dual spheres intersect} \label{fig:Dual} \label{fig:Duals} \end{figure} Let $\cS=( S_{1}, S_{2}, S_{3}, S_{4}, S_{5})$ be a configuration of five mutually tangent spheres, and let $$ \bb_{0}=\bb(\cS) =( b_{1}, b_{2}, b_{3}, b_{4}, b_{5}) $$ be the corresponding quintuple of bends, with $b_{j}=b(S_{j})$. Any four tangent spheres, say $S_{1},S_{2},S_{3},S_{4}$ have six cospherical points of tangency, and determine a {\it dual sphere} $\tilde S_{5}$ passing through these points. Similarly, for $j=1,\dots,4$, let $\tilde S_{j}$ be the dual sphere orthogonal to all those in $\cS$ except $S_{j}$, and call $\tilde\cS=(\tilde S_{1},\dots,\tilde S_{5})$ the {\it dual configuration}. Reflection through $\tilde S_{5}$ fixes $S_{1},S_{2},S_{3},S_{4}$, and sends $S_{5}$ to $S_{5}'$, the other sphere satisfying \eqref{eq:SoddyThm}, see \figref{fig:Dual}. The same holds for the other $\tilde S_{j}$, and iteratively reflecting the original configuration through the $\tilde S_{j}$ {\it ad infinitum} yields the Soddy packing $\sP=\sP(\cS)$ corresponding to $\cS$. Observe that unlike the Apollonian case, the dual spheres in $\tilde\cS$ are not tangent, but intersect non-trivially, see \figref{fig:Duals}. Extend the reflections through dual spheres to hyperbolic $4$-space, \be\label{eq:bH4} \sH^{4}:=\{(x_{1},x_{2},x_{3},y):x_{1},x_{2},x_{3}\in\R,y>0\} , \ee replacing the action of the dual sphere $\tilde S_{j}$ by a reflection through a hyper(hemi)sphere $\fs_{j}$ whose equator (at $y=0$) is $\tilde S_{j}$ (with $j=1,\dots,5$). We abuse notation, writing $\fs_{j}$ for both the hypersphere and the conformal map reflecting through $\fs_{j}$. The group \be\label{eq:Gapp} \cA:=\< \fs_{1}, \fs_{2}, \fs_{3}, \fs_{4}, \fs_{5} \> < \Isom(\sH^{4}) , \ee generated by these reflections acts discretely on $\sH^{4}$. The $\cA$-orbit of any given base point in $ \sH^{4}$ has a limit set in the boundary $\dd\sH^{4}\cong\R^{3}\cup\{\infty\}$, which is the closure of the original sphere packing. A fundamental domain for this action is the exterior in $\sH^{4}$ of the five dual hyperspheres $\fs_{j}$. Hence the quotient hyperbolic $4$-fold $\cA\bk\sH^{4}$ is geometrically finite (with orbifold singularities corresponding to non-trivial intersections of the dual spheres $\tilde S_{j}$), and has infinite hyperbolic volume with respect to the hyperbolic measure $$ y^{-4}dx_{1}dx_{2}dx_{3}dy $$ in the coordinates \eqref{eq:bH4}. The group $\cA$ is the symmetry group of all conformal transformations fixing $\sP$. \\ For an algebraic realization of $\cA$, we need the following \begin{thm}[\cite{Lachlan1886, Soddy1936}]\label{thm:Soddy} Given a configuration $\cS$ of five tangent spheres, the quintuple $\bb=(b_{1}, b_{2}, b_{3}, b_{4}, b_{5})$ of their bends lies on the cone \be\label{eq:cone} Q(\bb)=0 , \ee where $Q$ is the quinternary quadratic form \be\label{eq:Qis} Q(b_{1},\dots,b_{5}) := 3( b_{1}^{2}+\cdots+b_{5}^{2} )-( b_{1}+\cdots+b_{5} )^{2}. \ee \end{thm} Recall again that a bounding sphere was negative bend. Arguably the nicest formulation of \thmref{thm:Soddy} is the last line of the following excerpt from Soddy's aforementioned poem \cite{Soddy1936}. \vskip10pt {\footnotesize \qquad To spy out spherical affairs / An oscular surveyor / \qquad Might find the task laborious, / The sphere is much the gayer, / \qquad And now besides the pair of pairs / A fifth sphere in the kissing shares. / \qquad Yet, signs and zero as before, / For each to kiss the other four / \qquad {\it The square of the sum of all five bends / Is thrice the sum of their squares.} } \vskip10pt If $b_{1},\dots,b_{4}$ are given, it then follows from \eqref{eq:cone} that the variable $b_{5}$ satisfies a quadratic equation, and hence there are two solutions. This is an algebraic proof of \eqref{eq:SoddyThm}. Writing $b_{5}$ and $b_{5}'$ for the two solutions, it is elementary from \eqref{eq:cone} that $$ b_{5}+b_{5}' = b_{1}+b_{2}+b_{3}+b_{4} . $$ In other words, if the quintuple $(b_{1},b_{2},b_{3},b_{4},b_{5})$ is given, then one obtains the quintuple with $b_{5}$ replaced by $b_{5}'$ via a linear action: $$ \bp 1&&&&\\ &1&&&\\ &&1&&\\ &&&1&\\ 1&1&1&1&-1 \ep \cdot \bp b_{1}\\ b_{2}\\ b_{3}\\ b_{4}\\ b_{5} \ep = \bp b_{1}\\ b_{2}\\ b_{3}\\ b_{4}\\ b_{5}' \ep . $$ This is an algebraic realization of the geometric action of $\tilde S_{5}$ (or $\fs_{5}$) on a quintuple. Call the above $5\times5$ matrix $M_{5}$. One can similarly replace other $b_{j}$ by $b_{j}'$ keeping the four complementary bends fixed, via the matrices \be\label{eq:Mj} M_{1} = \bp -1&1&1&1&1\\ &1&&&\\ &&1&&\\ &&&1&\\ &&&&1 \ep , M_{2} = \bp 1&&&&\\ 1&-1&1&1&1\\ &&1&&\\ &&&1&\\ &&&&1 \ep , \ee $$ M_{3} = \bp 1&&&&\\ &1&&&\\ 1&1&-1&1&1\\ &&&1&\\ &&&&1 \ep , M_{4} = \bp 1&&&&\\ &1&&&\\ &&1&&\\ 1&1&1&-1&1\\ &&&&1 \ep . $$ Let $\G$ be the group generated by the $M_{j}$: \be\label{eq:GamAp} \G:= \< M_{1}, M_{2}, M_{3}, M_{4}, M_{5} \> . \ee By construction, each generator $M_{j}$ (and hence also $\G$) lies inside the orthogonal group $O_{Q}$ preserving the form $Q$, $$ O_{Q} := \left\{ g\in\GL_{5} : Q(g\cdot \bb) = Q(\bb),\ \forall\bb \right\} . $$ Moreover the Soddy group $\G$ is clearly contained in the group $O_{Q}(\Z)$ of integer matrices. The fact that $\cA$ has infinite co-volume is equivalent to $\G$ having infinite index in $O_{Q}(\Z)$. That is, $\G$ is a ``thin'' group. The generators of $\G$ satisfy the relations: $M_{j}^{2}=I$ and $(M_{j}M_{k})^{3}=I$ \cite[Theorem 5.1]{GrahamLagarias2006}. Geometrically, these relations correspond, respectively, to reflections being involutions, and to the non-trivial intersections of the dual spheres (recall \figref{fig:Duals}). The orbit \be\label{eq:cOAp} \sO:=\G\cdot\bb \ee of the quintuple $\bb =\bb(\cS)$ under the Soddy group $\G$ consists of all quintuples corresponding to bends of five mutually tangent spheres in the packing $\sP$. Hence the set $\sB$ of all bends in $\sP$ is simply the union of sets of the form \be\label{eq:KwGv} \sB=\bigcup_{\bw \in\{\bbe_{1},\dots,\bbe_{5}\}}\<\bw ,\G\cdot\bb \> , \ee as $\bw $ ranges through the standard basis vectors $$ \bbe_{1} = (1,0,0,0,0), \cdots , \bbe_{5} = (0,0,0,0,1). $$ The inner product $\<\cdot,\cdot\>$ in \eqref{eq:KwGv} is the standard one on $\R^{5}$. This explains the integrality of all bends in \figref{fig:Leys}: the group $\G$ has only integer matrices, so if the initial quintuple $\bb_{0}$ (or for that matter, any bends of five mutually tangent spheres in $\sP$) is integral, then the bends in $\sP$ are all integers (as first observed by Soddy \cite{Soddy1937}). \\ From \eqref{eq:KwGv} it is elementary to see the local obstruction claimed in \eqref{eq:cong}. For the packing $\sP_{0}$ of \figref{fig:Leys}, one can choose to generate from the ``root'' quintuple (meaning it consists of the bends of the five largest tangent spheres, see \cite[\S3]{GrahamLagarias2003}) \be\label{eq:bv0Is} \bb_{0}:=(-11, 21, 25, 27, 28). \ee The orbit under $\G$, reduced mod $3$, is then elementarily computed. In general we have the following \begin{lem}\label{lem:loc} For $\sB$ the set of bends of an integral, primitive Soddy packing $\sP$, there is always a local obstruction $\mod 3$, either of the form \eqref{eq:cong} or \eqref{eq:cong2}. In particular, there is an $\vep=\vep(\sP)\in\{\pm1\}$ so that, for any quintuple $\bb$ in the cone \eqref{eq:cone} over $\Z$, two entries are $\equiv0(\mod 3)$ and three entries are $\equiv\vep(\mod 3)$. \end{lem} Note that we are not (yet) claiming that these are the {\it only} local obstructions; this will follow from our proof of the local-to-global theorem. \pf One may first attempt to understand the cone \eqref{eq:cone} over $\Z/3\Z$, but the form $Q$ in \eqref{eq:Qis} reduced mod $3$ is highly degenerate. So instead consider the cone over $\Z/9\Z$. Disregarding the origin (since the packing is assumed to be primitive), there are $140$ vectors $\mod 9$, not counting permutations. Reducing these $\mod 3$ leaves only the two vectors $(0,0,\vep,\vep,\vep)$, $\vep\in\{\pm1\}$, and their permutations. The action of $\G(\mod 3)$ on these is trivial: each vector is fixed. This is all verified by direct computation. \epf It is convenient to also record here the following \begin{lem}\label{lem:bend24mod6} The set $\sB$ of bends of an integral, primitive Soddy packing $\sP$ always contains an element $b\equiv\vep(\mod 6)$, and an element $b\equiv3+\vep(\mod 6)$. \end{lem} \pf The cone \eqref{eq:cone} mod $36$ has $30,576$ vectors, not counting permutations. Reducing these mod $6$ leaves $15$ vectors, of which $5$ are imprimitive, the remaining ones being: $$ \text{if $\vep(\sP)=+1$:}\qquad \left( \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ \end{array} \right) , \left( \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 3 \\ \end{array} \right) ,\left( \begin{array}{c} 0 \\ 1 \\ 1 \\ 3 \\ 4 \\ \end{array} \right) , \left( \begin{array}{c} 1 \\ 1 \\ 3 \\ 3 \\ 4 \\ \end{array} \right) , \left( \begin{array}{c} 1 \\ 3 \\ 3 \\ 4 \\ 4 \\ \end{array} \right) $$ $$ \text{if $\vep(\sP)=-1$:}\qquad \left( \begin{array}{c} 0 \\ 0 \\ 5 \\ 5 \\ 5 \\ \end{array} \right) , \left( \begin{array}{c} 0 \\ 3 \\ 5 \\ 5 \\ 5 \\ \end{array} \right) , \left( \begin{array}{c} 0 \\ 2 \\ 3 \\ 5 \\ 5 \\ \end{array} \right) , \left( \begin{array}{c} 2 \\ 2 \\ 3 \\ 3 \\ 5 \\ \end{array} \right) , \left( \begin{array}{c} 2 \\ 3 \\ 3 \\ 5 \\ 5 \\ \end{array} \right) . $$ They plainly each have at least one element $\equiv1$ or $5(\mod 6)$, giving the first claim. Next observe that the orbit under $\G(\mod 6)$ plus permutations acts transitively on each row (of course, $\G$ cannot change $\vep(\sP)$). This gives the second claim, that one can always make either $2$ or $4$ appear as one of the entries $\mod 6$. \epf \section{Bends as Primitive Values of Quaternary Forms} In this section, we show that a subset of the bends $\sB$ in a Soddy packing can be obtained as ``primitive'' (which has a non-standard meaning here; see below) values of certain shifted quaternary quadratic forms. Our first goal is to prove that the Soddy group $\G$, while being infinite index in $O_{Q}\cong O(4,1)$, contains a congruence Kleinian subgroup. The method is a generalization of Sarnak's observation in \cite{SarnakToLagarias}. \begin{figure} \caption{A fundamental domain for the action of $\cA_{1} \caption{The same domain on sending two spheres to planes} \label{fig:A1} \label{fig:A1std} \end{figure} Recall the configuration $\cS=(S_{1},\dots,S_{5})$ of five mutually tangent spheres and the group $\cA$ in \eqref{eq:Gapp} of reflections through spheres in the configuration $\tilde\cS$ dual to $\cS$. Let $$ \cA_{1}=\<\fs_{2},...,\fs_{5}\> $$ be the subgroup of $\cA$ which fixes the sphere $S_{1}$ in $\cS$. It acts discontinuously on the interior of $S_{1}$, which we now consider as the ball model for hyperbolic $3$-space $\sH^{3}$. A fundamental domain for the quotient $\cA_{1}\bk\sH^{3}$ is the curvilinear regular ideal tetrahedron interior to $S_{1}$ and exterior to the dual spheres $\tilde S_{2},\dots,\tilde S_{5}$, see \figref{fig:A1}. This is easier seen by first applying the same transformation as in \figref{fig:SodStandard}, see \figref{fig:A1std}. In particular, the quotient has finite volume, and at any vertex, the three edges meet at dihedral angles all equal to $\pi/3$. Then the volume can be computed via the dilogarithm, or equivalently, Lobachevsky's function $$ \Rla(\gt):=-\int_{0}^{\gt}\log|2\sin u|\, du , $$ see, e.g., \cite[Lemma 2]{Milnor1982}. Namely, the volume of this domain is $ 3\,\Rla(\pi/3). $ Then its index-2 orientation preserving subgroup, a gluing of two such tetrahedra, has co-volume \be\label{eq:volA1} \vol((\cA_{1}\cap\Isom^{+})\bk\sH^{3})=6\,\Rla(\pi/3). \ee \begin{rmk} \label{rmk:McM} Curt McMullen asked (private communication) whether this quotient is then the figure eight knot complement; recall that Thurston showed the latter can be triangulated by two maximal tetrahedra. It turns out that, like the knot complement, our quotient is indeed arithmetic; but the two are not isomorphic, see \rmkref{rmk:Grun} below. \end{rmk} To realize this geometric action algebraically, let \be\label{eq:G1is} \G_{1}:=\<M_{2},\cdots,M_{5}\> \ee be the corresponding subgroup of $\G$, where the $M_{j}$ are given in \eqref{eq:Mj}. We immediately pass again to the index-2 orientation preserving subgroup, setting \be\label{eq:XiIs} \Xi:=\G_{1}\cap\SL_{5}. \ee Then $\Xi$ is generated by \be\label{eq:Xidef} \Xi= \< \xi_{1},\xi_{2},\xi_{3} \> , \ee where $$ \xi_{1}:=M_{2}M_{3}=\left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & -1 & 2 & 2 \\ 1 & 1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right),\ \xi_{2}:= M_{2}M_{4} = \left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 2 & -1 & 2 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right) , $$ and $$ \xi_{3}:= M_{2}M_{5}= \left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 2 & 2 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & -1 \end{array} \right) . $$ It will turn out that $\Xi$ is in fact a {\it congruence} group, as a form of $\SL_{2}(\mathbb C)$. To see this, we make a number of transformations. \begin{lem} Let $$ J = \left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1/3 & 1/3 & -2/3 & 1/3 & 1/3 \\ 1/3 & -2/3 & 1/3 & 1/3 & 1/3 \\ 1 & 0 & 0 & 0 & 1 \end{array} \right) . $$ Then for $j=1,2,3$, the conjugates \be\label{eq:Jcong} \tilde\xi_{j}:=J\cdot\xi_{j}\cdot J^{-1} \ee are given by \be\label{eq:tilXis} \tilde\xi_{1}= \left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right) ,\ \tilde\xi_{2}= \left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -3 & -3 & 3 \\ 0 & 0 & -1 & -1 & 2 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right) , \ee and $$ \tilde\xi_{3}= \left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & -1 & -1 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 3 & -3 & -3 & 1 \end{array} \right) . $$ \end{lem} \pf Of course this can be verified by direct computation. But we elucidate the role of $J$ as follows. Let $\bb=\bb(\cS)=(b_{1},\dots,b_{5})$ be the quintuple of bends corresponding to $\cS$. Write the form $Q$ in \eqref{eq:Qis} as \beann Q(b_{1},b_{2},\dots,b_{5}) &=& 3(b_{1}^{2}+b^{2}_{2}+\cdots+b^{2}_{5})-(b_{1}+b_{2}+\cdots+b_{5})^{2} \\ &=& 2(\widetilde Q(\by)+3b_{1}^{2}) , \eeann where \be\label{eq:by} \by=(y_{2},\dots,y_{5}) :=(b_{2},\dots,b_{5})+(b_{1},b_{1},b_{1},b_{1}), \ee and $$ \widetilde Q(\by):= y_{2}^{2}+\cdots+y_{5}^{2}-y_{2}y_{3}-y_{2}y_{4}-\cdots-y_{4}y_{5}. $$ The affine action of $\Xi$ on $(b_{2},\dots,b_{5})$ is conjugated by the above to a linear action $\Xi'<\SO_{\widetilde Q}$. Since $\bb$ was assumed to be primitive, $\by $ is a primitive point on the quadric \be\label{eq:gyIs} \widetilde Q(\by)=-3b_{1}^{2}. \ee For later convenience, we make another change of variables. It turns out that, despite beginning with a problem in the (rational) integers, we will need to work in the number field $$ K:=\Q(\sqrt{-3}) $$ with its ring of (Eisenstein) integers $$ \cO:=\Z[\gw]. $$ Here $$ \gw:=e^{\pi i/3} $$ is a primitive {\it sixth} root of unity (it turns out to be more convenient to use the sixth root than the cube root). We will conjugate $\widetilde Q$ to the form \be\label{eq:Fis} F(\bba):=B^{2}+BC+C^{2}-AD , \ee where $\bba=(A,B,C,D)$. The determinant of the Hermitian matrix \be\label{eq:Xis} X:= \mattwo{A}{B+\gw C}{B+\bar\gw C}{D} \ee is easily seen to be $-F(\bba)$. Let $$ y_{2}=A - B- 2 C+ D ,\ y_{3}=A - 2 B- C+ D ,\ y_{4}=A ,\ y_{5}=D , $$ or equivalently, make the change of variables $$ A=y_{4} ,\ B= \frac{y_{2}-2y_{3}+y_{4}+y_{5}}3 ,\ {C}= \frac{-2y_{2}+y_{3}+ y_{4}+ y_{5}}3 ,\ {D}= {y_{5}} . $$ We claim that $B$ and $C$ are integers; indeed, returning to the $b$ variables in \eqref{eq:by}, we have \bea\nonumber A&=& b _1+ b _4 ,\\ \nonumber B&=&\frac13( b _1+ b _2-2 b _3+ b _4+ b _5) ,\\ \nonumber C&=&\frac13( b _1-2 b _2+ b _3+ b _4+ b _5) ,\\ \label{eq:ABCD} D&=& b _1+ b _5 . \eea But reducing \eqref{eq:cone}, \eqref{eq:Qis} mod $3$ shows that $b_{1}+\dots+b_{5}\equiv0(\mod 3)$, and hence $B$ and $C$ are integers. In these coordinates, \eqref{eq:gyIs} becomes \be\label{eq:Ftogk1} F(\bba) =-b_{1}^{2} . \ee The action $\Xi'<\SO_{\widetilde Q}$ on $\by$ is then conjugated to an action $\widetilde\Xi<\SO_F$ on $\bba$. The matrix $J$ is then simply the change of variables matrix from $\bb$ to $(b_{1},\bba)$. \epf The convenience of this conjugation is made apparent in the following \begin{lem} The quadratic form $F$ in \eqref{eq:Fis} has signature $(3,1)$. The connected component of the identity of the special orthogonal group $\SO_{F}(\R)$ has spin double cover isomorphic to $\PSL_{2}(\mathbb C)$. There is a homomorphism $ \rho:\PSL_{2}(\mathbb C)\to\SO_{F}(\R)$ given explicitly (for our purposes embedded in $\GL_{5}$) by mapping \be\label{eq:g} g=\mattwo \ga\gb\g\gd \in\PSL_{2}(\mathbb C) \ee to $\frac1{|\det(g)|^{2}}\times$ \be\label{eq:gTil} \hskip-20pt \left( \begin{array}{ccccc} 1&&&&\\ & |\alpha |^2 & 2 \Re\left(\beta \bar{\alpha }\right) & 2 \Re\left(\alpha \omega \bar{\beta }\right) & |\beta |^2 \\ & \frac{2 }{\sqrt{3}}\Im\left(\gamma \omega \bar{\alpha }\right) & \frac{2}{\sqrt{3}} \Im\left(\omega \left(\delta \bar{\alpha }+\gamma \bar{\beta }\right)\right) & \frac{2}{\sqrt{3}} \Im\left(\gamma \bar{\beta } \omega ^2+\delta \bar{\alpha }\right) & \frac{2}{\sqrt{3}}\Im\left(\delta \omega \bar{\beta }\right) \\ & \frac{2}{\sqrt{3}} \Im\left(\alpha \bar{\gamma }\right) & \frac{2}{\sqrt{3}} \Im\left(\beta \bar{\gamma }+\alpha \bar{\delta }\right) & \frac{2 }{\sqrt{3}}\Im\left(\omega \left(\alpha \bar{\delta }-\gamma \bar{\beta }\right)\right) & \frac{2 }{\sqrt{3}}\Im\left(\beta \bar{\delta }\right) \\ & |\gamma |^2 & 2 \Re\left(\gamma \bar{\delta }\right) & 2 \Re\left(\gamma \omega \bar{\delta }\right) & |\delta |^2 \end{array} \right) . \ee The preimages under $ \rho$ of the matrices $\tilde\xi_{1},\tilde\xi_{2},\tilde\xi_{3}$ in \eqref{eq:tilXis} are $\pm \ft_{1},\pm\ft_{2},\pm\ft_{3}$, respectively, where: \be\label{eq:SpinMats} \ft_{1}= \left( \begin{array}{cc} {\omega^{-1} } & 0 \\ 0 & \omega \end{array} \right) ,\quad \ft_{2}= \left( \begin{array}{cc} {\omega ^{-2}} & \omega\varrho \\ 0 & \omega ^2 \end{array} \right) ,\quad \ft_{3}= \left( \begin{array}{cc} \omega & 0 \\ \omega\varrho & {\omega^{-1} } \end{array} \right) . \ee Here $$ \varrho:=1+\gw $$ is the prime in $\cO$ above the ramified rational prime $3$, which factors as $ 3=\bar\gw \varrho^{2}. $ \end{lem} \pf The signature of $F$ is computed directly, and its spin group being $\PSL_{2}(\mathbb C)$ is a general fact in the theory of quadratic forms, see e.g. \cite[Ch. 10]{Cassels1978}. We construct $ \rho$ explicitly as follows. Return to the Hermitian matrix $X$ in \eqref{eq:Xis} with determinant $-F(\bba)$. Then for $g\in\PSL_{2}(\mathbb C)$, $$ X':= g\cdot X\cdot \bar g^{t} = \mattwo{A'}{B'+\gw C'}{B'+\bar\gw C' }{D'} $$ is also Hermitian with the same determinant. This gives a linear action sending $(A,B,C,D)$ to $(A',B',C',D')$, which can be computed explicitly in the coordinates \eqref{eq:g}. The result (embedded in $\GL_{5}$) is \eqref{eq:gTil}. The preimages \eqref{eq:SpinMats} are then computed directly. \epf Let \be\label{eq:gLis} \gL=\<\pm\ft_{1},\pm\ft_{2},\pm\ft_{3}\>/\<\pm I\> \ <\ \PSL_{2}(\mathbb C) \ee be the group generated by \eqref{eq:SpinMats}. Then $\gL$ is clearly a subgroup of the Bianchi group $\PSL_{2}(\cO)$. The full group $\PSL_{2}(\cO)$ is well-known to have co-volume $$ \vol(\PSL_{2}(\cO)\bk\sH^{3})=\foh\Rla(\pi/3), $$ see e.g. \cite[p. 21]{Milnor1982}. Combined with \eqref{eq:volA1}, this gives us the index $$ [\PSL_{2}(\cO):\gL]=12, $$ since $\gL\cong\Xi\cong\cA_{1}\cap\Isom^{+}$. \begin{rmk}\label{rmk:Grun} This fact was already known to Grunewald-Schwermer, who list a conjugate of the generators \eqref{eq:SpinMats} in their table \cite[p. 76]{GrunewaldSchwermer1993}, calling the group ``$\G_{-3}(12,7)$''. In the same table [p. 75], the figure eight knot complement is listed as ``$\G_{-3}(12,1)$''; so these are not isomorphic, cf. \rmkref{rmk:McM}. \end{rmk} The next lemma, crucial for our purposes, states that our group is not just arithmetic, but {\it congruence}. \begin{lem} The group $\gL$ is equal to the following congruence subgroup of $\PSL_{2}(\cO)$, \be\label{eq:Gam0Is} \left\{ \mattwo\ga\gb\g\gd\in\PSL_{2}(\cO):\gb,\g\equiv0(\mod \varrho) \right\} . \ee \end{lem} \pf The inclusion \be\label{eq:gLinG} \gL\quad<\quad \eqref{eq:Gam0Is} \ee is clear from the generators \eqref{eq:SpinMats}. For the opposite inclusion, is it an elementary computation that \eqref{eq:Gam0Is} has index $12$ in $\PSL_{2}(\cO)$, as does $\gL$. \epf The point is that, since $ \gL$ is now realized as an congruence group, its elements can be parametrized, giving an injection of affine space into the otherwise intractable thin Soddy group $\G$. (In the Apollonian circle packing setting, the analogous idea was exploited extensively in, e.g., \cite{SarnakToLagarias, BourgainFuchs2011, BourgainKontorovich2014a}.) \begin{prop}\label{prop:xiGgd} For any $\g, \gd \in \cO$ with \be\label{eq:gcd} \g\equiv0(\mod\varrho),\qquad \boldsymbol (\g,\gd\boldsymbol )=\cO, \ee there is an element $$ \xi_{\g,\gd}:= J^{-1}\cdot\rho\mattwo**{\g}\gd\cdot J \in \Xi<\G_{1}<\G , $$ where $$ \xi_{\g,\gd}= \bp 1&0&0&0&0\\ *&*&*&*&*\\ *&*&*&*&*\\ *&*&*&*&*\\ V&W&X&Y&Z \ep , $$ and \beann V&=& \frac{2}{3} \Re\left(\varrho\gamma \bar{\delta }\right)+|\gamma |^2+|\delta |^2-1 ,\\ W&=& - \frac{2}{3} \Re\left( \gw\varrho \gamma \bar{\delta }\right) ,\\ X&=& - \frac{2}{3} \Re\left( \bar\varrho \gamma \bar{\delta }\right) ,\\ Y&=& \frac{2}{3} \Re\left( \varrho \gamma \bar{\delta }\right) +|\gamma |^2 ,\\ Z&=& \frac{2}{3} \Re\left(\varrho\gamma \bar{\delta }\right) +|\delta |^2 . \eeann \end{prop} \pf This follows directly from \eqref{eq:Gam0Is}, \eqref{eq:Jcong}, \eqref{eq:Xidef}, \eqref{eq:XiIs} and \eqref{eq:G1is}. \epf Recall that $\sO=\G\cdot\bb $ in \eqref{eq:cOAp} is the orbit under the Soddy group $\G$ of a quintuple $\bb =(b_{1},\dots,b_{5})$ of bends. According to \lemref{lem:loc}, there is an $\vep=\vep(\sP)\in\{\pm1\}$ so that every bend in $\sB$ is $\equiv0$ or $\vep(\mod 3)$. Recalling that the set $\sB$ of bends contains sets of the form \eqref{eq:KwGv}, and setting $\bw=\bbe_{5}$, \propref{prop:xiGgd} immediately implies the following key \begin{cor}\label{cor:fF} Let $\bb\in\sO$ be a quintuple of bends, and assume that $\g,\gd\in\cO$ satisfy \eqref{eq:gcd}. Then the integer \be\label{eq:fFbbDef} \fF_{\bb}(\g,\gd) := \<\bbe_{5},\xi_{\g,\gd}\cdot\bb\> \ee is in the set $\sB$ of bends. Setting \be\label{eq:ffToF} \ff_{\bb} \ := \ \fF_{\bb}+b_{1}, \ee we have that $\ff_{\bb}$ is a homogeneous quaternary quadratic form given by: \bea \nonumber \ff_{\bb}(\varrho\g,\gd) \begin{comment} &=& 3 \left( b _1+ b _4\right)(\gamma _1^2+\gamma _2 \gamma _1 +\gamma _2^2) + \left( b _1+ b _5\right)(\delta _1^2 +\delta _1 \delta _2 +\delta _2^2) \\\nonumber &&+ \left( b _1+ b _2-2 b _3+ b _4+ b _5\right) (\gamma _1 \delta _1 +\gamma _2 \delta _2) \\\nonumber && +\gamma _1 \delta _2 \left(2 b _1- b _2- b _3+2 b _4+2 b _5\right) \\\nonumber &&-\gamma _2 \delta _1 \left( b _1-2 b _2+ b _3+ b _4+ b _5\right) \\ \nonumber \end{comment} &=& 3A(\gamma _1^2+\gamma _1 \gamma _2 +\gamma _2^2) +3 B(\gamma _1 \delta _1 +\gamma _2 \delta _2) -3C\gamma _2 \delta _1 \\ \label{eq:fvIs} && +3(B+C)\gamma _1 \delta _2 + D (\delta _1^2 +\delta _1 \delta _2 +\delta _2^2) . \eea Here the coefficients $A,B,C,D$ are as in \eqref{eq:ABCD}, and $\g=\g_{1}+\g_{2}\gw$, $\gd=\gd_{1}+\gd_{2}\gw$ with $\g_{j},\gd_{j}\in\Z$. Abusing notation, we write \be\label{eq:ffbx} \ff_\bb(\bx)=\ff_\bb(\varrho\g,\gd), \ee where $\bx:=(\g_{1},\g_{2},\gd_{1},\gd_{2})$. The (classically integral) symmetric matrix (that is, Hessian) corresponding to $\ff_{\bb}(\bx)$ is \be\label{eq:bbADef} \bbA:= \left( \begin{array}{cccc} 6A& 3A &3B &3(B+C) \\ 3A & 6A &-3C&3B \\ 3B& -3C& 2 D &D \\ 3(B+C)&3B&D & 2 D \end{array} \right) , \ee so that $\ff_{\bb}(\varrho\g,\gd)=\foh\bx\bbA\bx^{t}$. By \eqref{eq:cone}, the discriminant of $\ff_{\bb}$ is \be\label{eq:disc} \discr(\ff_{\bb})=|\bbA|= 9 \left(\foh Q(\bb)-3b_{1}^{2} \right)^{2} = (3 b_{1})^{4} . \ee Assume further that \be\label{eq:order} b_{1}\le b_{2}\le b_{3}\le b_{4}\le b_{5} ,\quad\text{and}\quad b_{2}\ge0 . \ee Then the form $\ff_\bb$ is positive definite iff $b_1\neq0$ (otherwise it is positive semidefinite). \end{cor} \pf All direct computation. This should also elucidate the choice of the change of variables in \eqref{eq:ABCD}. \epf \begin{Def} We say that $\fF_\bb$ ``$\cO$-primitively'' represents an integer $n$ if there exist $\g,\gd\in\cO$ satisfying \eqref{eq:gcd} so that $\fF_\bb(\g,\gd)=n$. \end{Def} We have thus shown that $\sB$ contains all the $\cO$-primitive values of the shifted quaternary quadratic form $\fF_\bb$. In the next section, we show that enough numbers are represented by such forms to produce a local-global principle in $\sB$. \section{Proof of The Local-Global Theorem} Recall from \lemref{lem:loc} that, to a primitive integral Soddy packing $\sP$, one assigns the number $\vep=\vep(\sP)\in\{\pm1\}$, so that every bend in $\sB=\sB(\sP)$ is congruent either $0$ or $\vep$ modulo $3$. The analysis turns out to require that the odd primes dividing $b_1$ be $\equiv1(\mod 3)$, so we first claim that this can always be arranged. \begin{thm}\label{thm:makePrime} If $\vep(\sP)=+1$, then there exists a (rational) prime \be\label{eq:fpDef} \fp\equiv1(\mod 3) \ee which is a bend in $\sP$. If $\vep(\sP)=-1$, then $2\fp$ is a bend. \end{thm} Before giving the proof, we explain how this fact will be used. By \corref{cor:fF}, we turn our attention to numbers $\cO$-primitively represented by $\fF_\bb$, as these are guaranteed to be in the bend set $\sB$. It turns out that these are all $\equiv b_5(\mod 3)$, which is fine for our purposes, since we can make $b_5\equiv0$ or $\vep (\mod 3)$ by a choice of the quintuple $\bb=(b_j)$. Changing to the homogeneous form $\ff_\bb$ as in \eqref{eq:ffToF}, it will then suffice to show the following \begin{thm}\label{thm:FullLocGlob} Assume that the quintuple $\bb$ has $b_1=\fp\equiv1(\mod 3)$ or $b_1=2\fp$, and is ordered, that is, satisfies \eqref{eq:order}. Then every sufficiently large $n\equiv b_1+b_5(\mod 3)$ is $\cO$-primitively represented by $\ff_\bb$. \end{thm} Let \be\label{eq:sRbbDef} \sR_{\bb}(n):=\sum_{\g,\gd\in\cO\atop\boldsymbol (\varrho\g,\gd\boldsymbol )=\cO }\bo_{\{n=\ff_{\bb}(\varrho\g,\gd)\}} \ee be the number of $\cO$-primitive representations of $n$ by $\ff_{\bb}$. The study of this function will prove both theorems, with most of the tools going into the proof of the first also being useful for the second. The key proposition which follows is essentially Kloosterman's method for representations by quaternary forms (as championed in this generality by Malyshev). For an integer $m\ge1$ and a prime power $p^{a}$, define the $p$-adic local density $\gs_{p}(m;\bb)$ by \be\label{eq:gsIs} \gs_{p}(m;\bb) := \lim_{a\to\infty} \frac1{p^{3a}} \#\{ \bx\in(\Z/p^{a}\Z)^{4}: \ff_{\bb}(\bx) \equiv m\ (\mod p^{a}) \} , \ee where we have used the convention \eqref{eq:ffbx}. \begin{prop}\label{prop:Kloo} If $n\equiv b_1+b_5(\mod 3)$ and $(b_1,3)=1$, then \be\label{eq:propKloo} \sR_\bb(n) \ =\ n\, { \pi ^{2} \over 9 b_{1}^{2} } \fS_0(n;\bb)\fS_1(n;\bb)\fS_2(n;\bb) + O_{\bb,\gep}\left( n^{3/4+\gep} \right) , \ee with an effective implied constant. Here \be\label{eq:fSnbbDef} \fS_0(n;\bb) \ :=\ \prod_{p} \gs_p(n;\bb), \ee $$ \quad \fS_1(n;\bb) \ :=\ \prod_{p\equiv1(3)\atop p\mid n} \gs^{(1)}_p(n;\bb), \qquad \fS_2(n;\bb) \ :=\ \prod_{p\equiv2(3)\atop p^{2}\mid n} \gs^{(2)}_p(n;\bb), $$ where \be\label{eq:Type1Def} \gs_p^{(1)}(n;\bb)\ :=\ \left( 1 - {2\over p }{ \gs_{p}\left({n\over p};\bb\right) \over \gs_{p}\left({n};\bb\right) } +\bo_{\{p^{2}\mid n\}} {1\over p^{2}}{ \gs_{p}\left({n\over p^{2}};\bb\right) \over \gs_{p}\left({n};\bb\right) } \right) , \ee and \be\label{eq:Type2Def} \gs_p^{(2)}(n;\bb)\ :=\ \left( 1-{1\over p^{2}}{ \gs_{p}\left({n\over p^{2}};\bb\right) \over \gs_{p}\left({n};\bb\right) } \right) . \ee \end{prop} We will call the terms arising in $\fS_j$ ``Type $j$'', and refer to primes $p$ as ``Good'' or ``Bad'' depending on whether $(p, 2\cdot3\cdot b_1)=1$ or not. While the proof largely uses standard techniques, a few of the manipulations are somewhat delicate, so we give the details. \pf Recall that the Dedekind zeta function of $K$ is $$ \gz_{K}(s):=\sum_{\fm}{1\over \N\fm^{s}}=\prod_{\fp}\left(1-{1\over\N\fp^{s}}\right)^{-1}, $$ where $\N$ is the norm, the sum is over non-zero integral ideals $\fm$ of $K$, and the product is over prime ideals $\fp$. We define the $K$-M\"obius function $\mu_{K}$ via $$ {1\over \gz_{K}(s)} =\prod_{\fp}\left(1-{1\over\N\fp^{s}}\right)=\sum_{\fm}{\mu_{K}(\fm)\over \N\fm^{s}}. $$ Thus $\mu_{K}$ is multiplicative, supported on non-zero, square-free integral ideals, and takes the value $-1$ on prime ideals. M\"obius inversion now reads: $$ \sum_{\fd\supset\fm}\mu_{K}(\fd)=\twocase{}{1}{if $\fm=\cO$,}{0}{otherwise.} $$ M\"obius inversion works on the level of ideals, but $\ff_{\bb}$ in \eqref{eq:sRbbDef} is a function on elements of $\cO$, not ideals (i.e. it is {\it not} invariant under units in each variable $\g,$ $\gd$ separately). So we will have to pass from ideals to elements, and back again. Begin by writing \beann \sR_{\bb}(n) &=&\sum_{\g,\gd\in\cO}\bo_{\{n=\ff_{\bb}(\varrho\g,\gd)\}}\sum_{\fd\supset\boldsymbol (\varrho\g,\gd\boldsymbol )}\mu_{K}(\fd) \\ &=& \sum_{\fd}\mu_{K}(\fd) \sum_{\g,\gd\in\cO\atop\boldsymbol (\varrho\g\boldsymbol )\subset\fd,\boldsymbol (\gd\boldsymbol )\subset\fd}\bo_{\{n=\ff_{\bb}(\varrho\g,\gd)\}} . \eeann The field $K$ is a principal ideal domain with a finite group of units, $|\cO^{\times}|=6$, so the non-zero integral ideals of $K$ are in 1-to-6 correspondence with non-zero elements of $\cO$. So we can write $\fd=\boldsymbol (\eta\boldsymbol )$ with $\eta\in\cO\setminus0$, whence \beann \sR_{\bb}(n) &=& \frac1{|\cO^{\times}|} \sum_{\eta\in\cO}\mu_{K}(\boldsymbol (\eta\boldsymbol )) \sum_{\g,\gd\in\cO\atop\varrho\g\equiv0(\mod\eta),\gd\equiv0(\mod\eta)}\bo_{\{n=\ff_{\bb}(\varrho\g,\gd)\}} . \eeann Now comes a little trick which will allow us to replace $\varrho\g\equiv0(\eta)$ by just $\g\equiv0(\eta)$. Indeed, an easy calculation shows that \be\label{eq:ffHom} \ff_{\bb}(\eta\g',\eta\gd')= \N\eta \cdot \ff_{\bb}(\g',\gd'). \ee So $n=\ff_\bb(\varrho\g,\gd)$, together with $\varrho\g,\gd\equiv0(\mod \eta)$, implies that $\N\eta$ divides $n$. But $b_1\equiv\vep(\mod 3)$, $b_5\equiv0$ or $\vep(\mod 3)$, and $n\equiv b_1+b_5(\mod 3)$ together imply that $n\equiv\vep$ or $2\vep(\mod 3)$. In particular, $(n,3)=1$, hence $(\N\eta,3)=1$, so $\varrho$ is coprime to $\eta$. Now we have: \beann \sR_{\bb}(n) &=& \frac1{|\cO^{\times}|} \sum_{\eta\in\cO\atop \N\eta\mid n }\mu_{K}(\boldsymbol (\eta\boldsymbol )) \sum_{\g,\gd\in\cO }\bo_{\{{n\over\N\eta}=\ff_{\bb}(\varrho\g,\gd)\}} . \eeann Having freed the variables $\g,\gd$, we may return to ideals, and use the convention \eqref{eq:ffbx} to write \be\label{eq:sRtocR} \sR_{\bb}(n) = \sum_{ \N\fd\mid n}\mu_{K}(\fd) \cR_{\bb}\left({n\over\N\fd}\right) , \ee where $$ \cR_{\bb}(m):= \sum_{\bx \in\Z^{4}} \bo_{\{m=\ff_{\bb}(\bx) \}} $$ is now a classical representation quantity. Combining \eqref{eq:disc} with \cite[(11.57), (11.62), (11.19)]{Iwaniec1997book}, we have, for any $\gep>0$ (not to be confused with $\vep(\sP)\in\{\pm1\}$), \be\label{eq:Kloo} \cR_{\bb}(m) = { \pi ^{2} \over 9 b_{1}^{2} }\, m\, \fS_0(m,\bb) \ +\ O_{\bb,\gep}(m^{3/4+\gep}) , \ee where the singular series $ \fS_0(m,\bb) $ is as in \eqref{eq:fSnbbDef}. The implied constant is effective. Inserting \eqref{eq:Kloo} into \eqref{eq:sRtocR} gives \bea \label{eq:sRbbKloo} \sR_{\bb}(n) &=& n\, { \pi ^{2} \over 9 b_{1}^{2} } \sum_{\N\fd\mid n}{\mu_{K}(\fd)\over\N\fd} \fS_0\left({n\over\N\fd},\bb\right) \\ \nonumber && \hskip1in+ O_{\bb,\gep}\left( n^{3/4+\gep} \sum_{\N\fd\mid n}1 \right) . \eea We clearly have $\sum_{\N\fd\mid n}1\ll_{\gep} n^{\gep}$, so the error term is as claimed in \eqref{eq:propKloo}. It remains to control the local densities. Recall that $\fd$ is a square-free ideal. Let $p$ be a rational prime dividing $\N\fd$; then $p\neq3$. If $p\equiv2(3)$ is inert, then $\N (p)=p^{2}$ and we can write $\fd=\boldsymbol ( p\boldsymbol )\fd'$, where $(\N\fd',p)=1$; thus $\ord_{p}(\N\fd)=2$. If $p\equiv1(3)$ splits in $\cO$ as $\boldsymbol ( p\boldsymbol )=\pi\bar\pi$, then we have $\ord_{p}(\N\fd)=2$ or $1$, depending on whether both $\pi$ and $\bar\pi$ divide $\fd$ or just one. Either way, we can write $$ \fd=\fp_{0}\fd'\quad\text{ with }\quad(\N\fd',p)=1. $$ Extend this notation to rational primes $p$ not dividing $\N\fd$ by setting $\fp_{0}=\cO$ and $\fd'=\fd$. We claim that: \be\label{eq:densitiesEq} \gs_{p}\left({n\over \N\fd};\bb\right) = \gs_{p}\left({n\over \N\fp_{0}};\bb\right) . \ee Indeed, let $\fd'=(\eta')$. Applying \eqref{eq:ffHom} in reverse together with \eqref{eq:gsIs}, we see that the density $ \gs_{p}\left({n\over \N\fd};\bb\right) $ is counting the number of solutions to $$ \ff_{\bb}(\eta' \varrho(\g_{1}+\g_{2}\gw),\eta'(\gd_{1}+\gd_{2}\gw))\equiv {n\over\N\fp_{0}}\qquad(\mod p^a). $$ The linear map $$ (\varrho(\g_{1}+\g_{2}\gw),\gd_{1}+\gd_2\gw)\mapsto (\eta'\varrho (\g_{1}+\g_{2}\gw),\eta'(\gd_{1}+\gd_{2}\gw)) $$ has determinant $(\N\fd')^{2}$, and hence is invertible since $(p,\N\fd')=1$. Thus the two densities agree and we have proved \eqref{eq:densitiesEq}. In particular, we have \be\label{eq:hDef} \sum_{\N\fd\mid n}{\mu_{K}(\fd)\over\N\fd} \fS_0\left({n\over\N\fd},\bb\right) = \fS_0\left({n},\bb\right) \sum_{\N\fd\mid n}{\mu_{K}(\fd)\over\N\fd} h(\fd) , \ee where $$ h(\fd):= \prod_{p\mid \N\fd\atop p\equiv2(3)} { \gs_{p}\left({n\over p^{2}};\bb\right) \over \gs_{p}\left({n};\bb\right) } \prod_{p\mid \N\fd\atop p\equiv1(3)} { \gs_{p}\left({n\over p^{\ord_{p}(\N\fd)}};\bb\right) \over \gs_{p}\left({n};\bb\right) } , $$ assuming the denominators do not vanish. Note that this function is {\it not} multiplicative on ideals. \begin{comment} in $\cO$. Indeed, if $p\equiv1(3)$ splits as $\boldsymbol ( p\boldsymbol )=\pi\bar\pi$, then $$ h(\pi)=h(\bar\pi)={ \gs_{p}\left({n\over p};\bb\right) \over \gs_{p}\left({n};\bb\right) } , $$ and $$ h(\pi \bar\pi)={ \gs_{p}\left({n\over p^{2}};\bb\right) \over \gs_{p}\left({n};\bb\right) } . $$ But there is no {\it a priori} reason why $$ \gs_{p}\left({n\over p};\bb\right)^{2} \ \overset{?}{=}\ \gs_{p}\left({n\over p^{2}};\bb\right) \gs_{p}\left({n};\bb\right) $$ is true, as would be required for $h(\pi)h(\bar\pi)=h(\pi\bar\pi)$ to hold. \end{comment} Nevertheless, we do have a factorization with respect to rational primes of the following form: \bea \nonumber && \hskip-.5in \sum_{\N\fd\mid n}{\mu_{K}(\fd)\over\N\fd} h(\fd) = \prod_{p\equiv2(3)\atop p^{2}\mid n} \left( 1+{\mu_{K}(\boldsymbol ( p\boldsymbol ))\over \N (p)}{ \gs_{p}\left({n\over p^{2}};\bb\right) \over \gs_{p}\left({n};\bb\right) } \right) \\ \nonumber && \hskip-.5in \times \prod_{p\equiv1(3)\atop p\mid n,(p)=\pi\bar\pi} \left( 1 + {\mu_{K}(\pi)\over \N \pi}{ \gs_{p}\left({n\over p};\bb\right) \over \gs_{p}\left({n};\bb\right) } + {\mu_{K}(\bar\pi)\over \N \bar\pi}{ \gs_{p}\left({n\over p};\bb\right) \over \gs_{p}\left({n};\bb\right) } +\bo_{\{p^{2}\mid n\}} {\mu_{K}(\pi\bar\pi)\over \N(\pi \bar\pi)}{ \gs_{p}\left({n\over p^{2}};\bb\right) \over \gs_{p}\left({n};\bb\right) } \right) \\ \nonumber && = \prod_{p\equiv2(3)\atop p^{2}\mid n} \left( 1-{1\over p^{2}}{ \gs_{p}\left({n\over p^{2}};\bb\right) \over \gs_{p}\left({n};\bb\right) } \right) \prod_{p\equiv1(3)\atop p\mid n} \left( 1 - {2\over p }{ \gs_{p}\left({n\over p};\bb\right) \over \gs_{p}\left({n};\bb\right) } +\bo_{\{p^{2}\mid n\}} {1\over p^{2}}{ \gs_{p}\left({n\over p^{2}};\bb\right) \over \gs_{p}\left({n};\bb\right) } \right) . \\ \label{eq:hIs} \eea The problem has now returned back to the rational integers $\Z$ after the detour through the Eisenstein ones $\cO$ . Inserting \eqref{eq:hIs} and \eqref{eq:hDef} into \eqref{eq:sRbbKloo} gives \eqref{eq:propKloo}, as claimed. \epf It remains to analyze the Type 0, 1, and 2 factors for both Good and Bad primes. First the Good. \begin{lem}\label{lem:Good} Let $n$ and $b_1$ as in \propref{prop:Kloo}, and assume that $p$ is Good, that is, $(p,2\cdot3\cdot b_1)=1$. Then \be\label{eq:Type0} \gs_p(n;\bb)=\twocase{} {1+\frac1p+O({1\over p^2})} {if $p\mid n$,} {1-{1\over p^2}} {otherwise,} \ee $$ \gs^{(1)}_p(n;\bb)=\twocase{} {1+O(\frac1p)} {if $p\mid n$,} {1} {otherwise,} $$ $$ \gs^{(2)}_p(n;\bb)= {1+O\left({1\over p^2}\right)} , $$ and none of these local factors vanish. \end{lem} \pf Write $p^{k}\| n$. We first handle $\gs_p(n;\bb)$. Apply \cite[(11.69), (11.70), (11.72)]{Iwaniec1997book}, giving $$ \gs_{p}\left({n};\bb\right) = {\left(1-{\chi(p)\over p^{2}}\right)\left(1-{\chi(p^{k+1})\over p^{k+1}}\right) \over \left(1-{\chi(p)\over p}\right) } . $$ Here $\chi(m):=\left({|\bbA|\over m} \right)$ is the quadratic character modulo the discriminant $|\bbA|=(3 b_{1})^{4}$ of $\ff_\bb$, cf. \eqref{eq:disc}. Since the latter is a square and $(p,|\bbA|)=1$, we have that $\chi(p)=\chi(p^k)=1$; hence \be\label{eq:gspIs} \gs_{p}\left({n};\bb\right) = {\left(1+{1\over p}\right)\left(1-{1\over p^{k+1}}\right) } . \ee This clearly never vanishes, and \eqref{eq:Type0} is readily verified. Next we deal with $\gs_p^{(2)}$. Then $p\equiv2(3)$ and $p^{2}\mid n$, that is, $p^{k}\|n$ with $k\ge2$. Inserting \eqref{eq:gspIs} into \eqref{eq:Type2Def} gives $$ \gs_p^{(2)}(n;\bb)= 1-{1\over p^{2}}{ \gs_{p}\left({n\over p^{2}};\bb\right) \over \gs_{p}\left({n};\bb\right) } = 1-{1\over p^{2}}{ \left(1-{1\over p^{k-1}}\right) \over \left(1-{1\over p^{k+1}}\right) } = 1- { p^{k-1}-1 \over p^{k+1}-1 } .$$ This factor clearly never vanishes, and for $p$ large is of size $ 1 +O\left({1\over p^{2}}\right) , $ so is harmless. Finally we handle $\gs_p^{(1)}$. Here $p\equiv1(3)$ and there are two cases depending on whether $k=1$, or $k\ge1$. If $k=1$, then the factor is $$ \gs_p^{(1)}(n;\bb)= 1 - {2\over p }{ \gs_{p}\left({n\over p};\bb\right) \over \gs_{p}\left({n};\bb\right) } = 1 - {2\over p }{ {\left(1-{1\over p}\right) } \over {\left(1-{1\over p^{2}}\right) } } = 1 - { 2 \over p+1 } , $$ which doesn't vanish. If $k\ge2$, then the factor is \beann && 1 - {2\over p }{ \gs_{p}\left({n\over p};\bb\right) \over \gs_{p}\left({n};\bb\right) } + {1\over p^{2}}{ \gs_{p}\left({n\over p^{2}};\bb\right) \over \gs_{p}\left({n};\bb\right) } = 1 - {2\over p }{ \left(1-{1\over p^{k}}\right) \over \left(1-{1\over p^{k+1}}\right) } + {1\over p^{2}}{ \left(1-{1\over p^{k-1}}\right) \over \left(1-{1\over p^{k+1}}\right) } \\ && \hskip.5in = 1 - { 2 p^{k} -p^{k-1} -1 \over p^{k+1}-1 } . \eeann This again does not vanish, and is asymptotically of size $1+O(\frac1p)$. This completes the proof. \epf To deal with the Bad primes, we first record Hensel's Lemma. Recall from \eqref{eq:bbADef} that $\bbA$ is the Hessian of $\ff_\bb$. \begin{lem}[Hensel's Lemma]\label{lem:Hensel} Assume that $$ \ff_\bb(\bx) \equiv n(\mod p^k) $$ for $\bx\in(\Z/p^k\Z)^4$ with $\bx\bbA\neq0(\mod p)$. Then the set of ``lifts'' $\by\in(\Z/p^{k+1}\Z)^4$ with $\by\equiv\bx(\mod p^k)$ having \be\label{eq:ffby} \ff_\bb(\by)\equiv n(\mod p^{k+1}) , \ee has cardinality exactly $p^3$. If on the other hand $\bx\bbA\equiv0(\mod p)$, then the number of lifts is either $p^4$ or $0$, depending on whether $\ff_\bb(\bx)\equiv n(\mod p^{k+1})$ or not. \end{lem} \pf Write $\by=\bx+p^k\bba$ with $\bba\in(\Z/p\Z)^4$. The equation $$ \ff_\bb(\bx+p^k\bba)\ = \ \ff_\bb(\bx)+p^k\bx\bbA\bba^t+p^{2k}\ff_\bb(\bba) $$ is valid in the integers, and hence also valid mod $p^{k+1}$, even for $p=2$. Write $$ n-\ff_\bb(\bx)\equiv p^k m\qquad(\mod p^{k+1}) . $$ Then the equation \eqref{eq:ffby} becomes \be\label{eq:Hensel} m= \bx\bbA\bba^t (\mod p ) . \ee If $\bx\bbA$ is not the zero vector mod $p$, then there are exactly $p^3$ solutions for $\bba$, and hence for $\by$, as claimed. If, on the other hand, $\bx\bbA\equiv0(\mod p)$, then \eqref{eq:Hensel} has either $p^4$ or $0$ solutions, depending on whether $m\equiv0$ or not, that is, whether $\ff_\bb(\bx)\equiv n(\mod p^{k+1})$ or not. \epf This is already sufficient to deal conclusively with the crucial prime $p=3$, for which there is only Type 0, and the only relevant $n$'s are those coprime to $3$. \begin{lem}\label{lem:p3} Let $n$ and $b_1$ as in \propref{prop:Kloo}. Then $$ \gs_3(n;\bb) \ \gg \ 1. \begin{comment} \ = \ \twocase{} {*}{if $n\equiv b_1+b_5(\mod 3)$,} {0}{otherwise.} \end{comment} $$ \end{lem} \pf Reducing \eqref{eq:fvIs} mod $3$ shows that $\ff_{\bb}(\varrho\g,\gd)\equiv( b_{1}+ b_{5})\N(\gd)$, where $\N(\gd)=\gd_{1}^{2}+\gd_{1}\gd_{2}+\gd_{2}^{2}$. As $\varrho$ and $\gd$ are coprime, $\N(\gd)\equiv1(\mod 3)$. Hence $\ff_{\bb}(\varrho\g,\gd)$ is always $$ \equiv b_{1}+ b_{5}(\mod3) . $$ Having assumed that $b_1\equiv\vep(\mod 3)$, we have that $D=b_1+b_5\equiv\vep$ or $2\vep(\mod 3)$, in either case this is coprime to $3$. Hence Hensel's lemma applies and solutions can be lifted to the $3$-adic integers $\Z_3$. \epf Next we record that for Bad primes $p\neq3$, the Hessian $\bbA$ cannot vanish completely. \begin{lem}\label{lem:HessModP} Assume $p\mid 2b_1$ and $p\neq3$. Then $\bbA$ is not identically zero mod $p$. \end{lem} \pf For $p=2$, this is a direct calculation. Indeed, if $\bbA\equiv0(\mod p)$, then \be\label{eq:ABCBCD} A\equiv B \equiv C\equiv D\equiv B+C, \ee which forces the $b_j$'s to either be all $0$ or all $1$. The former is impossible by the primitivity of $\bb$. The latter is also impossible from looking at the cone \eqref{eq:cone} mod $4$. If instead $p\mid b_1$, then \eqref{eq:ABCBCD} forces the $b_j$ to all be $\equiv0(\mod p)$, which again is impossible by primitivity. \epf By \lemref{lem:HessModP}, the Hessian $\bbA$ has a non-zero entry; assume that $A\neq0(\mod p)$, the other cases being similar. For Bad primes $p\ge5$, that is, those diving $b_1$, the following is a convenient normal basis for studying the quadratic space of $\ff_\bb$. \begin{lem}\label{lem:A0p} Assume $p\mid b_1$, $p\ge5$, and $A\neq0(\mod p)$. Then the following vectors $$ \bu_1=(1,0,0,0),\ \bu_2=(1,-2,0,0), $$ $$ \bu_3=(-B-2C,-B+C,0,3A),\ \bu_4=(-2B-C,B+2C,3A,0), $$ form a basis for $\F_p^4$ which is normal, that is, $\bu_j\bbA\bu_k\equiv0$ if $j\neq k$. Moreover, \be\label{eq:fbujs} \ff_\bb(\bu_1)=3A,\ \ff_\bb(\bu_2)=9A,\ \ff_\bb(\bu_3)=\ff_\bb(\bu_4)=-9A\cdot F(\bba), \ee where $F(\bba)$ is given in \eqref{eq:Fis}. Hence writing any $\bx\in\F_p^4$ as \be\label{eq:bxabcd} \bx=a\bu_1+b\bu_2+c\bu_3+d\bu_4, \ee we have that \be\label{eq:ffbxaa3bb} \ff_\bb(\bx)\ \equiv \ 3Aa^2+9Ab^2\ \equiv \ 3A(a^2+3b^2)\quad(\mod p). \ee \end{lem} \pf By \eqref{eq:Ftogk1}, $$ F(\bba)\ = \ B^{2}+BC+C^{2}-AD\ \equiv \ 0(\mod p) , $$ whence $\bu_3$ and $\bu_4$ are null vectors for $\bbA$, that is, $$ \bu_3\bbA \equiv\bu_4\bbA \equiv0(\mod p). $$ The rest is readily verified by computation. \epf The appearance of the binary form $a^2+3b^2$ in \eqref{eq:ffbxaa3bb} explains why we want $b_1$ to contain only primes $p\equiv1(\mod 3)$ in \thmref{thm:makePrime}; indeed, if there are Bad primes $p\equiv2(\mod 3)$, then there {\it can} be further local obstructions mod $p^2$, and $\gs_p$ can vanish! But first, we are now in position to give a \subsection{Proof of \thmref{thm:makePrime}}\ Assume first that $\vep=\vep(\sP)=+1$. By \lemref{lem:bend24mod6}, we may arrange $\bb$ so that $$ b_1\equiv3+\vep=4 \qquad(\mod 6). $$ In particular, $b_1$ is even, and $b_1\equiv1(\mod 3)$. We may also assume that $b_5\equiv\vep\equiv1(\mod 3)$, as can be arranged by \lemref{lem:loc}. We first claim that $\ff_\bb$, the homogeneous form, $\cO$-primitively represents every sufficiently large \be\label{eq:n2vep} n\equiv 1+4b_1\qquad(\mod 6b_1). \ee Indeed, in this progression, $$ n\equiv 2\equiv2\vep\equiv b_1+b_5\ (\mod 3), $$ so the conditions of \propref{prop:Kloo} is satisfied. Moreover, $n$ is coprime to $2 b_1$, so there are no Bad factors of Type 1 or 2, and Hensel's lemma, together with \lemref{lem:HessModP}, allows us to control the local densities at $2$ and at primes dividing $b_1$. Then \eqref{eq:propKloo} is a true asymptotic, giving the claim. Returning to the shifted quaternary form $\fF_\bb$ in \eqref{eq:fFbbDef}, we have from \eqref{eq:ffToF} that every sufficiently large value of \be\label{eq:nMinB1} n-b_1\equiv 1+3b_1(\mod 6b_1) \ee is $\cO$-primitively represented by $\fF_\bb$, and hence appears in the set $\sB$ of bends. Such numbers are all $\equiv1(\mod 6)$, and this arithmetic progression has coprime modulus and shift (since $b_1$ is even), whence Dirichlet's theorem applies, showing that $\sB$ contains a prime $\fp\equiv1(\mod 6)$. This of course is equivalent to $\fp\equiv1(\mod 3)$. The argument for the case $\vep(\sP)=-1$ is similar, so we omit it. This completes the proof of \thmref{thm:makePrime}. \begin{comment} The second case $\vep(\sP)=-1$ is similar. Now we use \lemref{lem:bend24mod6} to choose $$ b_1\equiv \vep \equiv 5(\mod 6) , $$ and keep $b_5\equiv\vep(\mod 3)$, whence every large $$ n\equiv1\qquad(\mod 6b_1) $$ is $\cO$-primitively represented by $\ff_\bb$. Then every large value of $$ n-b_1\equiv1-b_1\quad(\mod 6b_1) $$ is $\cO$-primitively represented by $\fF_\bb$. Since $b_1$ is odd, these values are all even. Writing $b_1=-1-6m$, $m\in\Z$, the half-values are $$ \foh(n-b_1)\equiv1+3m\quad(\mod 3b_1). $$ This is an admissible (for Dirichlet's theorem) progression since $$ (1+3m,b_1) \ = \ (1+3m,1+6m) \ = \ (1+3m,3m) \ = \ 1, $$ and hence contains a prime $\fp\equiv1(\mod 3)$, which is also odd, and hence $\fp\equiv1(\mod 6)$. Thus the set $\sB$ contains a bend $\fb=2\fp$. This completes a proof of \thmref{thm:makePrime}. \end{comment} \subsection{Proof of \thmref{thm:FullLocGlob}}\ Now we assume that $b_1=\fp$ or $b_1=2\fp$ as in \thmref{thm:makePrime}; clearly then $b_1\equiv\vep(\mod 3)$. As before, if $n\equiv b_1+b_5(\mod 3)$ is coprime to $2b_1$ and sufficiently large, then it is $\cO$-primitively represented by $\ff_\bb$. So if $n$ is even, we need to handle the $2$-adic densities, both of Type 0 and Type 2, and when $n\equiv0(\mod \fp)$, we need control on the $\fp$-adic local factors of Type 0 and Type 1. We begin by recording the following \begin{lem}\label{lem:429} If $n\equiv0(\mod \fp),$ then $$ \#\{\bx\in\F_\fp^4\ : \ \ff_\bb(\bx)\equiv n ,\ \bx\bbA\neq0\ (\mod \fp)\} \ =\ 2(\fp-1)\fp^2, $$ and $$ \#\{\bx\in\F_\fp^4\ : \ \ff_\bb(\bx)\equiv n ,\ \bx\bbA\equiv0\ (\mod \fp)\} \ =\ \fp^2. $$ If $(n,\fp)=1$, then $$ \#\{\bx\in\F_\fp^4\ : \ \ff_\bb(\bx)\equiv n\ (\mod \fp)\} \ =\ (\fp-1)\fp^2. $$ \end{lem} \pf This follows easily from \lemref{lem:A0p}. Indeed, assume that $A\neq0(\mod \fp)$, and first check the case $n\equiv0(\mod \fp)$. Then by \eqref{eq:ffbxaa3bb}, we need (since the values $c$ and $d$ in \eqref{eq:bxabcd} are completely free) to count the number of $a^2+3b^2\equiv0(\mod \fp)$. Since $\fp\equiv1(\mod 3)$, there are $2(\fp-1)$ such non-trivial solutions \footnote{In the language of \cite[Ch. 2.2]{Cassels1978}, the span of $\bu_1$ and $\bu_2$ in \lemref{lem:A0p} is a regular, isotropic subspace of $\F_\fp^4$ when $\fp\equiv1(\mod 3)$.} , plus one trivial, $(a,b)=(0,0)$. For any of these, $\bx\bbA\equiv0$ if and only if $(a,b)$ is trivial, so the total number of solutions is as claimed. If $(n,\fp)=1$, then the number of solutions, say $\cN$, is independent of $n$. By the counts for $\ff_\bb(\bx)\equiv0$ above, we then have that $$ (\fp-1)\cN+\fp^2+2(\fp-1)\fp^2 \ =\ \fp^4, $$ since there are $\fp^4$ total choices for $\bx$. Solving for $\cN$ gives the claim. \epf Lifting these solutions by Hensel's lemma, we completely control the Type 0 factors, as follows. \begin{lem} If $(n,\fp)=1$, then \be\label{eq:BadLocDensP0np} \gs_\fp(n;\bb) \ = \ \left(1-{1\over \fp}\right). \ee If $\fp\| n$, then $$ \#\{\bx\in(\Z/\fp^2\Z)^4\ : \ \ff_\bb(\bx)\equiv n (\mod \fp^2)\} \ = \ 2 (\fp - 1) \fp^5, $$ whence \be\label{eq:BadLocDensP0} \gs_\fp(n;\bb) \ = \ 2\left(1-{1\over \fp}\right). \ee If $\fp^2\mid n$, then $$ \#\{\bx\in(\Z/\fp^2\Z)^4\ : \ \ff_\bb(\bx)\equiv n (\mod \fp^2)\} \ = \ 2 (\fp - 1) \fp^5+\fp^6, $$ and \be\label{eq:BadLocLower} \gs_\fp(n;\bb) \ \ge \ 2\left(1-{1\over \fp}\right). \ee \end{lem} \pf If $(n,\fp)=1$, then the last statement of \lemref{lem:429} applies, and can be lifted by Hensel's Lemma, giving \eqref{eq:BadLocDensP0np}. Next consider the case $\fp\|n$. By \lemref{lem:429}, there are $2(\fp-1)\fp^2$ ``non-trivial'' solutions mod $\fp$ (i.e., those with $\bx\bbA\neq0$), and by Hensel's Lemma, these each lift to $\fp^3$ solutions mod $\fp^2$. We claim that the trivial mod $\fp$ solutions (those with $\bx\bbA\equiv0$) have no lifts mod $\fp^2$. Indeed, \eqref{eq:fbujs} and \eqref{eq:Ftogk1} imply that $\ff_\bb(\bu_3)\equiv\ff_\bb(\bu_4)\equiv0(\mod \fp^2)$, and $n/\fp$ is coprime to $\fp$, so the trivial solutions do not lift. This gives the asserted count, and also \eqref{eq:BadLocDensP0} by iterating Hensel's Lemma. If $\fp^2\mid n$, then the non-trivial mod $\fp$ solutions still each lift to $\fp^3$ solutions mod $\fp^2$. But now the trivial mod $\fp$ solutions also lift, and each has $\fp^4$ lifts, since $\bba$ in \eqref{eq:Hensel} is completely free. The lower bound \eqref{eq:BadLocLower} comes from lifting just the non-trivial solutions. \epf Thus the Type 0 local density is controlled. We can also now handle the Type 1 local density. \begin{lem} If $\fp\|n$, then $$ \gs_\fp^{(1)}(n;\bb) \ = \ 1-\frac1\fp. $$ If $p^2\mid n$, then $$ \gs_\fp^{(1)}(n;\bb) \ \ge \ 1-\frac1\fp. $$ \end{lem} \pf If $p\|n$, then the claim follows trivially on combining \eqref{eq:BadLocDensP0np} and \eqref{eq:BadLocDensP0} into \eqref{eq:Type1Def}, where there is no third term. If $p^k\| n$ with $k\ge2$, then there is a third term in \eqref{eq:Type1Def}, but we can drop it by positivity (since we're only claiming a lower bound). In the expression \eqref{eq:gsIs} for the local density $\gs_\fp$, the limit stabilizes as soon as $a>k+\ord_\fp(|\bbA|)$, so we can take $a=k+3$, since $\ord_\fp(|\bbA|)=2$. Setting $$ \cN_\fb(n;p^a):= \#\{ \bx\in(\Z/p^{a}\Z)^{4}: \ff_{\bb}(\bx) \equiv m\ (\mod p^{a}) \} , $$ we see that, since $p^k\|n$, $$ \cN_\fb(n;p^{k+3}) \ \ge \ \cN_\fb(n/p;p^{k+3}), $$ since the former may have more ``trivial'' lifts. Hence $\gs_\fp(n;\fb)\ge \gs_\fp(n/p;\fb)$, from which the claim follows. \epf This completes our analysis for the special Bad prime $p=\fp$. It remains to handle $p=2$. \begin{lem} For $p=2$, $$ \gs_2(n;\bb)\ \gg \ 1, \qquad \gs_2^{(2)}(n;\bb)\ \gg\ 1. $$ \end{lem} \pf Assume first that $b_1,$ $b_2$, and $b_3$ are odd, and that $b_4$ is even, the other cases being similar. Reducing \eqref{eq:ABCD} mod $2$ gives $$ A\equiv1,\ B\equiv b_5,\ C\equiv b_5,\ B+C\equiv0,\ D\equiv1+b_5. $$ For either possible value of $b_5$, there are six $\bx\in\F_2^4$ with $\ff_\bb(\bx)\equiv1$ and the other ten have $\ff_\bb(\bx)\equiv0$. One of the ten is of course the zero vector, and the remaining nine all have $\bx\bbA\neq0(\mod 2)$. Hence they lift by Hensel's lemma, giving control on both $\gs_2$ and $\gs_2^{(2)}$. \epf \subsection{Proof of \thmref{thm:main}}\ Now we put evertything together. By \thmref{thm:makePrime}, we take $b_1=\fp$ or $2\fp$, the arrange for the ordering \eqref{eq:order} to be satisfied. By \thmref{thm:FullLocGlob}, $\ff_\bb$ then $\cO$-primitively represents every large $n\equiv b_1+b_5(\mod 3)$. Hence $\fF_\bb=\ff_\bb-b_1$, the shifted form, $\cO$-primitively represents every large $n\equiv b_5(\mod 3)$, and by \corref{cor:fF}, these numbers are all in $\sB$. Since we can make $b_5\equiv0$ or $\vep$ mod $3$, this covers all the local obstructions in \lemref{lem:loc}. In particular, they are {\it a posteriori} all the local obstructions. This completes the proof of the Local-Global Theorem. \subsection{Explicit Example}\ We illustrate here the procedure described above for the example of the packing $\sP_0$ having ``root'' quintuple $\bb_0=(-11,21,25,27,28)$ as in \eqref{eq:bv0Is}. In this case, $\vep(\sP)=+1$, but $b_1=-11$ has prime factors (namely, $11$) which are not $\equiv 1(\mod 3)$, so we cannot apply \thmref{thm:FullLocGlob} directly. Following the proof of \thmref{thm:makePrime}, we first arrange for $b_1$ to be $\equiv4(\mod 6)$ and $b_5\equiv 1(\mod 3)$, by reordering $\bb_0$ to $\bb_1=(28,21,25,27,-11)$. This does not satisfy \eqref{eq:order}, so we apply $M_4M_5M_4M_3M_2M_5$ in \eqref{eq:Mj} to $\bb_1$, giving $$ \bb_2=(28, 171, 313, 912, 997). $$ (Note that at no point are we changing the bends appearing in $\sP_0$, and each quintuple still represents the bends of five mutually tangent spheres. We also only apply even length words in $M_j$, $j=2,\dots, 5$, so are staying within $\Xi$ in \eqref{eq:XiIs}.) Now we have $b_1\equiv4(\mod 6)$ and $b_5\equiv1(\mod 3)$, so can argue as in \eqref{eq:nMinB1} to show that the set $\sB$ of bends contains all sufficiently large values of the progression $85(\mod 168)$. The smallest of these, $\fp=421$, turns out to already be in $\sB$; in fact, applying $M_5M_3M_4M_3M_5M_4$ to $\bb_2$, and reordering to make $b_1=\fp$ gives $$ \bb_3=({ 421, 25, 28, 171, 309 }) . $$ Now apply $\G$ some more to correct the ordering, $$ \bb_4= M_5M_4M_3M_2\cdot\bb_3=({421, 904, 1777, 3240, 6033}). $$ We are finally in position to apply \thmref{thm:FullLocGlob}; then every sufficiently large number $$ n\equiv b_5\equiv0(\mod 3) $$ is $\cO$-primitively represented by the shifted form $\fF_\bb$, and hence appears in $\sB$ by \corref{cor:fF}. Next we apply $M_5.M_3$ to $\bb_4$ and reorder to obtain $ \bb_5 = ({421, 904, 3240, 7353, 8821}). $ This has $b_5\equiv1(\mod 3)$, and hence all large numbers $\equiv1(\mod 3)$ also appear in $\sB$, as claimed. \end{document}
math
Alberta Stojkovic | The Sentinel AmeriCorps Ohio online teacher, Melissa Kipp guides a class through finding their family roots on Ancestry.com at the Mount Gilead Public Library. Mount Gilead Public Library patrons can now tap into a free service online to learn about their ancestors. Last week the library hosted a computer class on genealogy online featuring the Ancestry.com website service that is known from TV programs like “Who do you think you are?” on the TLC Channel. AmeriCorps Ohio online teacher, Melissa Kipp lead the class through the process of finding information about their ancestors on Ancestry.com. That is the online website that traces family trees through census, military and immigration records. Mount Gilead Library Director, Mike Kirk said this free genealogy search is a library service through Ohio Public Library Information Network (OPLIN.) This service is free for clients at public libraries around the state. Access to Ancestry.com is easy through the library’s Wi-Fi technology system. Library patrons can either use the library computers or bring their own laptop, tablet or other device that can access Wi-Fi. Ancestry.com can only be used as a free service when used in the library. There is a charge when it’s used in the home or at a business. Those attending the workshop were guided to the Ancestry.com website by Kipp and immediately traced grandparents who immigrated from Germany, Sweden and Switzerland. Several were excited to learn the name of the ship on which grandparents arrived in New York. Kipp pointed out that patrons must be in the library to use its Ancestry.com website. However it is possible to save the information you discover about ancestors there and email it to your own email address or print out the pages at the library. The census records on the website go back to 1790 census lists. Also available are immigration records, vital statistics of birth and death records, military records from 1872 forward, court records and some church membership lists. People in the class also toured the Genealogy Dept. in the Mount Gilead Library Annex. Records and books are available in the Annex from the founding of Morrow County. Other Ohio counties records and some other state records are also in the annex along with some local high school yearbooks. Books available to read or purchase at the library annex include histories and atlases of Morrow County from 1856 forward. Also available for purchase are books on Morrow County birth, marriage and death records, war veterans’ graves, and other Morrow County records. on Ancestry.com at the Mount Gilead Public Library.
english
மாயாற்றில் வெள்ளப்பெருக்கு ஆற்றை கடக்க முயன்ற வாகனங்கள் புதை மணலில் சிக்கியது சத்தியமங்கலம் : பவானிசாகர் அருகே அடர்ந்த வனப்பகுதியில் நீலகிரி மாவட்ட எல்லையில் தெங்குமரஹாடா கிராமம் அமைந்துள்ளது. இக்கிராமத்தில் 700 க்கும் மேற்பட்ட குடும்பத்தினர் வசித்து வருகின்றனர். இந்த கிராமத்திற்கு பவானிசாகர் வனச்சரகத்திற்கு உட்பட்ட அடர்ந்த வனப்பகுதியில் கரடுமுரடான சாலையில் 25 கிலோ மீட்டர் பயணிக்க வேண்டும்.நீலகிரி மாவட்டத்தில் பெய்து வரும் தொடர் கனமழையின் காரணமாக மாயாற்றில் நேற்று வெள்ளப்பெருக்கு ஏற்பட்டதால் மாயாற்றில் பரிசல் இயக்க தடை விதிக்கப்பட்டது. இந்நிலையில் பவானிசாகரிலிருந்து தெங்குமரஹாடா கிராமத்தில் தக்காளி பாரம் ஏற்றுவதற்காக சென்ற சரக்குவேன் செந்நிற மலை நீர் பெருக்கெடுத்து ஓடும் மாயாற்றை கடக்க முயன்றபோது எதிர்பாராவிதமாக வாகனம் தண்ணீரில் இழுத்துச் சென்றது. வாகன ஓட்டுனர் லாவகமாக வாகனத்தை இயக்கி கரை சேர்த்தார். இந்நிலையில் அப்போது ஆபத்தை உணராமல் மாயாற்றைக் கடக்க பின் தொடர்ந்து வந்த கார் மற்றும் மற்றொரு பிக்கப் வேன் இரண்டும் வெள்ளத்தில் சிக்கி கரை ஓரம் ஆற்றில் புதை மணலில் சிக்கி நகர முடியாமல் நின்றது.இதை கண்ட கரையோரம் நின்றிருந்த தெங்குமரஹாடா கிராம பொதுமக்கள் வெள்ளத்தில் சிக்கியிருந்த வாகனங்களை கயிறு கட்டி மற்றொரு வாகனம் மூலம் இழுத்து வாகனங்களை மீட்டனர்.
tamil
تہۍ ہیٚکوا یم ٹیبلس پیٚٹھ ؤچھتھ
kashmiri
ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ?'] ", 'ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ?', ' [\'ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ?\', \'ਜੇ ਤੁਸੀਂ ਤਿੰਨ ਲਈ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ?ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਵਾਰ, ਤੁਸੀਂ ਸੰਭਵ ਤੌਰ \'ਤੇ ਵੇਖੋਗੇ ਕਿ ਹਰ ਵਾਰ ਜਦੋਂ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡਦੇ ਹੋ ਤਾਂ ਗੁਬਾਰਾ ਫੁੱਲ ਜਾਂਦਾ ਹੈ।ਹਰੇਕ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਨਾਲ ਗੁਬਾਰਾ ਫੈਲਦਾ ਹੈ ਅਤੇ ਸੰਕੁਚਿਤ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਹ ਸੰਭਾਵਤ ਤੌਰ \'ਤੇ ਇੱਕ "ਸੁਓਸ਼ਿੰਗ" ਆਵਾਜ਼ ਪੈਦਾ ਕਰੇਗਾ ਕਿਉਂਕਿ ਹਵਾ ਹਵਾ ਦੇ ਅੰਦਰ ਅਤੇ ਬਾਹਰ ਜਾਂਦੀ ਹੈ।ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ ਹਰੇਕ ਮਹਿੰਗਾਈ ਤੋਂ ਬਾਅਦ ਗੁਬਾਰਾ ਵੱਡਾ ਅਤੇ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਗੁਬਾਰੇ ਦਾ ਲੈਟੇਕਸਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ, ਇਸ ਨੂੰ ਵਧੇਰੇ ਟਿਕਾਊ ਬਣਾਉਂਦਾ ਹੈ ਅਤੇ ਘੱਟ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਘੱਟ ਹੁੰਦੀ ਹੈ। \\n\\n ਇੱਕ ਗੁਬਾਰੇ ਨੂੰ ਕਈ ਵਾਰ ਉਡਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੋ ਸਕਦੀ ਹੈਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਅਤੇ ਸੰਚਾਰ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਵਿੱਚ ਵੀ ਮਦਦ ਕਰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਲਈ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਰਗਰਮ ਸਾਹ ਛੱਡਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਲੋਕਾਂ ਲਈ ਵਿਸ਼ੇਸ਼ ਤੌਰ \'ਤੇ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਾਹ ਲੈਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆਉਂਦੀ ਹੈ ਜਾਂ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ. \',\' ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ,ਇਸ ਨੂੰ ਘਟਾਓ, ਅਤੇ ਫਿਰ ਇਸ ਨੂੰ ਦੋ ਵਾਰ ਹੋਰ ਕਰੋ? ', 'ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ?', ' [\'ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ?\', \'ਜੇ ਤੁਸੀਂ ਤਿੰਨ ਲਈ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ?ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਵਾਰ, ਤੁਸੀਂ ਸੰਭਵ ਤੌਰ \'ਤੇ ਵੇਖੋਗੇ ਕਿ ਹਰ ਵਾਰ ਜਦੋਂ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡਦੇ ਹੋ ਤਾਂ ਗੁਬਾਰਾ ਫੁੱਲ ਜਾਂਦਾ ਹੈ।ਹਰੇਕ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਨਾਲ ਗੁਬਾਰਾ ਫੈਲਦਾ ਹੈ ਅਤੇ ਸੰਕੁਚਿਤ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਹ ਸੰਭਾਵਤ ਤੌਰ \'ਤੇ ਇੱਕ "ਸੁਓਸ਼ਿੰਗ" ਆਵਾਜ਼ ਪੈਦਾ ਕਰੇਗਾ ਕਿਉਂਕਿ ਹਵਾ ਹਵਾ ਦੇ ਅੰਦਰ ਅਤੇ ਬਾਹਰ ਜਾਂਦੀ ਹੈ।ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ ਹਰੇਕ ਮਹਿੰਗਾਈ ਤੋਂ ਬਾਅਦ ਗੁਬਾਰਾ ਵੱਡਾ ਅਤੇ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਗੁਬਾਰੇ ਦਾ ਲੈਟੇਕਸਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ, ਇਸ ਨੂੰ ਵਧੇਰੇ ਟਿਕਾਊ ਬਣਾਉਂਦਾ ਹੈ ਅਤੇ ਘੱਟ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਘੱਟ ਹੁੰਦੀ ਹੈ। \\n\\n ਇੱਕ ਗੁਬਾਰੇ ਨੂੰ ਕਈ ਵਾਰ ਉਡਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੋ ਸਕਦੀ ਹੈਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਅਤੇ ਸੰਚਾਰ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਵਿੱਚ ਵੀ ਮਦਦ ਕਰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਲਈ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਰਗਰਮ ਸਾਹ ਛੱਡਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਲੋਕਾਂ ਲਈ ਵਿਸ਼ੇਸ਼ ਤੌਰ \'ਤੇ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਾਹ ਲੈਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆਉਂਦੀ ਹੈ ਜਾਂ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ. \',\' ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ,ਇਸ ਨੂੰ ਘਟਾਓ, ਅਤੇ ਫਿਰ ਇਸ ਨੂੰ ਦੋ ਵਾਰ ਹੋਰ ਕਰੋ? \',\' ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ, ਤਾਂ ਇਸ ਨੂੰ ਘਟਾਓ, ਅਤੇ ਫਿਰ ਇਸ ਨੂੰ ਦੁਬਾਰਾ ਕਰੋਦੋ ਵਾਰ ਹੋਰ, ਤੁਸੀਂ ਸ਼ਾਇਦ ਵੇਖੋਗੇ ਕਿ ਹਰ ਵਾਰ ਜਦੋਂ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡਦੇ ਹੋ ਤਾਂ ਗੁਬਾਰਾ ਫੁੱਲਦਾ ਹੈ।ਬੈਲੂਨ ਕਈ ਵਾਰ ਲੈਟੇਕਸ ਨੂੰ ਖਿੱਚਣ ਦਾ ਕਾਰਨ ਬਣਦਾ ਹੈ ਅਤੇ ਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਹੋ ਜਾਂਦਾ ਹੈ। \\n\\n ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਦੇਖ ਸਕਦੇ ਹੋ ਕਿ ਬੈਲੂਨਹਰ ਵਾਰ ਫੁੱਲਣਾ ਵਧੇਰੇ ਮੁਸ਼ਕਲ ਹੋ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਲੈਟੇਕਸ ਵਧੇਰੇ ਖਿੱਚਿਆ ਅਤੇ ਘੱਟ ਲਚਕੀਲਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਲੈਟੇਕਸ ਪਤਲਾ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਕਮਜ਼ੋਰ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਗੁਬਾਰੇ ਵਿੱਚ ਵਧੇਰੇ ਹਵਾ ਜੋਡ਼ਨਾ ਵਧੇਰੇ ਮੁਸ਼ਕਲ ਹੋ ਜਾਂਦਾ ਹੈ। \\n\\n ਗੁਬਾਰੇ ਨੂੰ ਕਈ ਗੁਣਾ ਵਧਾਉਣ ਅਤੇ ਘਟਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆਸਮਾਂ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਅਤੇ ਸੰਚਾਰ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਵਿੱਚ ਵੀ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਲਈ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਰਗਰਮ ਸਾਹ ਛੱਡਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਵਿਸ਼ੇਸ਼ ਤੌਰ \'ਤੇ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਉਹਨਾਂ ਲੋਕਾਂ ਲਈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਾਹ ਲੈਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆਉਂਦੀ ਹੈ ਜਾਂ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। \',\' ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਕਿਉਂ ਹੈ? \' ', 'ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ?', ' [\'ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ?\', \'ਜੇ ਤੁਸੀਂ ਤਿੰਨ ਲਈ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ?ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਵਾਰ, ਤੁਸੀਂ ਸੰਭਵ ਤੌਰ \'ਤੇ ਵੇਖੋਗੇ ਕਿ ਹਰ ਵਾਰ ਜਦੋਂ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡਦੇ ਹੋ ਤਾਂ ਗੁਬਾਰਾ ਫੁੱਲ ਜਾਂਦਾ ਹੈ।ਹਰੇਕ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਨਾਲ ਗੁਬਾਰਾ ਫੈਲਦਾ ਹੈ ਅਤੇ ਸੰਕੁਚਿਤ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਹ ਸੰਭਾਵਤ ਤੌਰ \'ਤੇ ਇੱਕ "ਸੁਓਸ਼ਿੰਗ" ਆਵਾਜ਼ ਪੈਦਾ ਕਰੇਗਾ ਕਿਉਂਕਿ ਹਵਾ ਹਵਾ ਦੇ ਅੰਦਰ ਅਤੇ ਬਾਹਰ ਜਾਂਦੀ ਹੈ।ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ ਹਰੇਕ ਮਹਿੰਗਾਈ ਤੋਂ ਬਾਅਦ ਗੁਬਾਰਾ ਵੱਡਾ ਅਤੇ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਗੁਬਾਰੇ ਦਾ ਲੈਟੇਕਸਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ, ਇਸ ਨੂੰ ਵਧੇਰੇ ਟਿਕਾਊ ਬਣਾਉਂਦਾ ਹੈ ਅਤੇ ਘੱਟ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਘੱਟ ਹੁੰਦੀ ਹੈ। \\n\\n ਇੱਕ ਗੁਬਾਰੇ ਨੂੰ ਕਈ ਵਾਰ ਉਡਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੋ ਸਕਦੀ ਹੈਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਅਤੇ ਸੰਚਾਰ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਵਿੱਚ ਵੀ ਮਦਦ ਕਰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਲਈ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਰਗਰਮ ਸਾਹ ਛੱਡਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਲੋਕਾਂ ਲਈ ਵਿਸ਼ੇਸ਼ ਤੌਰ \'ਤੇ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਾਹ ਲੈਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆਉਂਦੀ ਹੈ ਜਾਂ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ. \',\' ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ,ਇਸ ਨੂੰ ਘਟਾਓ, ਅਤੇ ਫਿਰ ਇਸ ਨੂੰ ਦੋ ਵਾਰ ਹੋਰ ਕਰੋ? \',\' ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ, ਤਾਂ ਇਸ ਨੂੰ ਘਟਾਓ, ਅਤੇ ਫਿਰ ਇਸ ਨੂੰ ਦੁਬਾਰਾ ਕਰੋਦੋ ਵਾਰ ਹੋਰ, ਤੁਸੀਂ ਸ਼ਾਇਦ ਵੇਖੋਗੇ ਕਿ ਹਰ ਵਾਰ ਜਦੋਂ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡਦੇ ਹੋ ਤਾਂ ਗੁਬਾਰਾ ਫੁੱਲਦਾ ਹੈ।ਬੈਲੂਨ ਕਈ ਵਾਰ ਲੈਟੇਕਸ ਨੂੰ ਖਿੱਚਣ ਦਾ ਕਾਰਨ ਬਣਦਾ ਹੈ ਅਤੇ ਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਹੋ ਜਾਂਦਾ ਹੈ। \\n\\n ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਦੇਖ ਸਕਦੇ ਹੋ ਕਿ ਬੈਲੂਨਹਰ ਵਾਰ ਫੁੱਲਣਾ ਵਧੇਰੇ ਮੁਸ਼ਕਲ ਹੋ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਲੈਟੇਕਸ ਵਧੇਰੇ ਖਿੱਚਿਆ ਅਤੇ ਘੱਟ ਲਚਕੀਲਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਲੈਟੇਕਸ ਪਤਲਾ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਕਮਜ਼ੋਰ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਗੁਬਾਰੇ ਵਿੱਚ ਵਧੇਰੇ ਹਵਾ ਜੋਡ਼ਨਾ ਵਧੇਰੇ ਮੁਸ਼ਕਲ ਹੋ ਜਾਂਦਾ ਹੈ। \\n\\n ਗੁਬਾਰੇ ਨੂੰ ਕਈ ਗੁਣਾ ਵਧਾਉਣ ਅਤੇ ਘਟਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆਸਮਾਂ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਅਤੇ ਸੰਚਾਰ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਵਿੱਚ ਵੀ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਲਈ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਰਗਰਮ ਸਾਹ ਛੱਡਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਵਿਸ਼ੇਸ਼ ਤੌਰ \'ਤੇ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਉਹਨਾਂ ਲੋਕਾਂ ਲਈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਾਹ ਲੈਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆਉਂਦੀ ਹੈ ਜਾਂ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। \',\' ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਕਿਉਂ ਹੈ? \',\' ਇਹਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿਉਂਕਿ ਇਹ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਵਧੇਰੇ ਸਹੀ ਨੁਮਾਇੰਦਗੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਕਈ ਵਾਰ ਤੁਹਾਨੂੰ ਨਤੀਜਿਆਂ ਦੀ ਔਸਤ ਲੈਣ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ, ਜੋ ਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨਸ਼ੀਲਤਾ ਜਾਂ ਗਲਤੀ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦੀ ਹੈ ਜੋ ਇੱਕ ਸਮੇਂ ਦੌਰਾਨ ਹੋ ਸਕਦੀ ਹੈਇਸ ਤੋਂ ਇਲਾਵਾ, ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਕਿਸੇ ਵੀ ਰੁਝਾਨ ਜਾਂ ਤਬਦੀਲੀਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ।ਸਮੇਂ ਦੇ ਨਾਲ. ਉਦਾਹਰਣ ਵਜੋਂ, ਜੇ ਤੁਸੀਂ ਕਈ ਹਫ਼ਤਿਆਂ ਲਈ ਹਫ਼ਤੇ ਵਿੱਚ ਦੋ ਵਾਰ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਮਾਪਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਇਹ ਵੇਖਣ ਦੇ ਯੋਗ ਹੋ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਸੁਧਾਰ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਨਹੀਂ।ਜਾਂ ਘਟ ਰਿਹਾ ਹੈ। ਇਹ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਦੇ ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀ ਕਰਨ ਜਾਂ ਫੇਫਡ਼ਿਆਂ ਦੀ ਪ੍ਰਗਤੀ ਨੂੰ ਟਰੈਕ ਕਰਨ ਲਈ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਬਿਮਾਰੀ। ਕੁੱਲ ਮਿਲਾ ਕੇ, ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਬਾਰੇ ਕੀਮਤੀ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ ਅਤੇ ਕਿਸੇ ਵੀ ਬਿਮਾਰੀ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ।ਤਬਦੀਲੀਆਂ ਜਾਂ ਰੁਝਾਨ ਜੋ ਸਮੇਂ ਦੇ ਨਾਲ ਹੋ ਸਕਦੇ ਹਨ। \',\' ਇਸ \'ਤੇ ਵਿਆਖਿਆ ਕਰੋ। \\n ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿਉਂਕਿ ਇਹ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਵਧੇਰੇ ਸਹੀ ਨੁਮਾਇੰਦਗੀ। ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ ਤੁਹਾਨੂੰ ਨਤੀਜਿਆਂ ਦੀ ਔਸਤ ਲੈਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜੋ ਕਿਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨਸ਼ੀਲਤਾ ਜਾਂ ਗਲਤੀ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ ਜੋ ਇੱਕ ਸਿੰਗਲ ਮਾਪ ਦੌਰਾਨ ਹੋ ਸਕਦੀ ਹੈ। \\n\\n ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾਸਮੇਂ ਦੇ ਨਾਲ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਕਿਸੇ ਵੀ ਰੁਝਾਨ ਜਾਂ ਤਬਦੀਲੀਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ, ਜੇ ਤੁਸੀਂ ਹਫ਼ਤੇ ਵਿੱਚ ਦੋ ਵਾਰ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਦੇ ਹੋ।ਹਫ਼ਤਿਆਂ ਵਿੱਚ, ਤੁਸੀਂ ਇਹ ਵੇਖਣ ਦੇ ਯੋਗ ਹੋ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਸੁਧਾਰ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਘਟ ਰਿਹਾ ਹੈ। ਇਹ ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀ ਲਈ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਜਾਂ ਫੇਫਡ਼ਿਆਂ ਦੀ ਬਿਮਾਰੀ ਦੀ ਪ੍ਰਗਤੀ ਨੂੰ ਟਰੈਕ ਕਰਨ ਲਈ। ', 'ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ?', ' [\'ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ?\', \'ਜੇ ਤੁਸੀਂ ਤਿੰਨ ਲਈ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ?ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਵਾਰ, ਤੁਸੀਂ ਸੰਭਵ ਤੌਰ \'ਤੇ ਵੇਖੋਗੇ ਕਿ ਹਰ ਵਾਰ ਜਦੋਂ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡਦੇ ਹੋ ਤਾਂ ਗੁਬਾਰਾ ਫੁੱਲ ਜਾਂਦਾ ਹੈ।ਹਰੇਕ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਨਾਲ ਗੁਬਾਰਾ ਫੈਲਦਾ ਹੈ ਅਤੇ ਸੰਕੁਚਿਤ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਹ ਸੰਭਾਵਤ ਤੌਰ \'ਤੇ ਇੱਕ "ਸੁਓਸ਼ਿੰਗ" ਆਵਾਜ਼ ਪੈਦਾ ਕਰੇਗਾ ਕਿਉਂਕਿ ਹਵਾ ਹਵਾ ਦੇ ਅੰਦਰ ਅਤੇ ਬਾਹਰ ਜਾਂਦੀ ਹੈ।ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ ਹਰੇਕ ਮਹਿੰਗਾਈ ਤੋਂ ਬਾਅਦ ਗੁਬਾਰਾ ਵੱਡਾ ਅਤੇ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਗੁਬਾਰੇ ਦਾ ਲੈਟੇਕਸਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ, ਇਸ ਨੂੰ ਵਧੇਰੇ ਟਿਕਾਊ ਬਣਾਉਂਦਾ ਹੈ ਅਤੇ ਘੱਟ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਘੱਟ ਹੁੰਦੀ ਹੈ। \\n\\n ਇੱਕ ਗੁਬਾਰੇ ਨੂੰ ਕਈ ਵਾਰ ਉਡਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੋ ਸਕਦੀ ਹੈਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਅਤੇ ਸੰਚਾਰ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਵਿੱਚ ਵੀ ਮਦਦ ਕਰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਲਈ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਰਗਰਮ ਸਾਹ ਛੱਡਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਲੋਕਾਂ ਲਈ ਵਿਸ਼ੇਸ਼ ਤੌਰ \'ਤੇ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਾਹ ਲੈਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆਉਂਦੀ ਹੈ ਜਾਂ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ. \',\' ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ,ਇਸ ਨੂੰ ਘਟਾਓ, ਅਤੇ ਫਿਰ ਇਸ ਨੂੰ ਦੋ ਵਾਰ ਹੋਰ ਕਰੋ? \',\' ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ, ਤਾਂ ਇਸ ਨੂੰ ਘਟਾਓ, ਅਤੇ ਫਿਰ ਇਸ ਨੂੰ ਦੁਬਾਰਾ ਕਰੋਦੋ ਵਾਰ ਹੋਰ, ਤੁਸੀਂ ਸ਼ਾਇਦ ਵੇਖੋਗੇ ਕਿ ਹਰ ਵਾਰ ਜਦੋਂ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡਦੇ ਹੋ ਤਾਂ ਗੁਬਾਰਾ ਫੁੱਲਦਾ ਹੈ।ਬੈਲੂਨ ਕਈ ਵਾਰ ਲੈਟੇਕਸ ਨੂੰ ਖਿੱਚਣ ਦਾ ਕਾਰਨ ਬਣਦਾ ਹੈ ਅਤੇ ਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਹੋ ਜਾਂਦਾ ਹੈ। \\n\\n ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਦੇਖ ਸਕਦੇ ਹੋ ਕਿ ਬੈਲੂਨਹਰ ਵਾਰ ਫੁੱਲਣਾ ਵਧੇਰੇ ਮੁਸ਼ਕਲ ਹੋ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਲੈਟੇਕਸ ਵਧੇਰੇ ਖਿੱਚਿਆ ਅਤੇ ਘੱਟ ਲਚਕੀਲਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਲੈਟੇਕਸ ਪਤਲਾ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਕਮਜ਼ੋਰ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਗੁਬਾਰੇ ਵਿੱਚ ਵਧੇਰੇ ਹਵਾ ਜੋਡ਼ਨਾ ਵਧੇਰੇ ਮੁਸ਼ਕਲ ਹੋ ਜਾਂਦਾ ਹੈ। \\n\\n ਗੁਬਾਰੇ ਨੂੰ ਕਈ ਗੁਣਾ ਵਧਾਉਣ ਅਤੇ ਘਟਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆਸਮਾਂ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਅਤੇ ਸੰਚਾਰ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਵਿੱਚ ਵੀ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਲਈ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਰਗਰਮ ਸਾਹ ਛੱਡਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਵਿਸ਼ੇਸ਼ ਤੌਰ \'ਤੇ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਉਹਨਾਂ ਲੋਕਾਂ ਲਈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਾਹ ਲੈਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆਉਂਦੀ ਹੈ ਜਾਂ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। \',\' ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਕਿਉਂ ਹੈ? \',\' ਇਹਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿਉਂਕਿ ਇਹ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਵਧੇਰੇ ਸਹੀ ਨੁਮਾਇੰਦਗੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਕਈ ਵਾਰ ਤੁਹਾਨੂੰ ਨਤੀਜਿਆਂ ਦੀ ਔਸਤ ਲੈਣ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ, ਜੋ ਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨਸ਼ੀਲਤਾ ਜਾਂ ਗਲਤੀ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦੀ ਹੈ ਜੋ ਇੱਕ ਸਮੇਂ ਦੌਰਾਨ ਹੋ ਸਕਦੀ ਹੈਇਸ ਤੋਂ ਇਲਾਵਾ, ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਕਿਸੇ ਵੀ ਰੁਝਾਨ ਜਾਂ ਤਬਦੀਲੀਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ।ਸਮੇਂ ਦੇ ਨਾਲ. ਉਦਾਹਰਣ ਵਜੋਂ, ਜੇ ਤੁਸੀਂ ਕਈ ਹਫ਼ਤਿਆਂ ਲਈ ਹਫ਼ਤੇ ਵਿੱਚ ਦੋ ਵਾਰ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਮਾਪਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਇਹ ਵੇਖਣ ਦੇ ਯੋਗ ਹੋ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਸੁਧਾਰ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਨਹੀਂ।ਜਾਂ ਘਟ ਰਿਹਾ ਹੈ। ਇਹ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਦੇ ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀ ਕਰਨ ਜਾਂ ਫੇਫਡ਼ਿਆਂ ਦੀ ਪ੍ਰਗਤੀ ਨੂੰ ਟਰੈਕ ਕਰਨ ਲਈ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਬਿਮਾਰੀ। ਕੁੱਲ ਮਿਲਾ ਕੇ, ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਬਾਰੇ ਕੀਮਤੀ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ ਅਤੇ ਕਿਸੇ ਵੀ ਬਿਮਾਰੀ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ।ਤਬਦੀਲੀਆਂ ਜਾਂ ਰੁਝਾਨ ਜੋ ਸਮੇਂ ਦੇ ਨਾਲ ਹੋ ਸਕਦੇ ਹਨ। \',\' ਇਸ \'ਤੇ ਵਿਆਖਿਆ ਕਰੋ। \\n ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿਉਂਕਿ ਇਹ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਵਧੇਰੇ ਸਹੀ ਨੁਮਾਇੰਦਗੀ। ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ ਤੁਹਾਨੂੰ ਨਤੀਜਿਆਂ ਦੀ ਔਸਤ ਲੈਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜੋ ਕਿਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨਸ਼ੀਲਤਾ ਜਾਂ ਗਲਤੀ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ ਜੋ ਇੱਕ ਸਿੰਗਲ ਮਾਪ ਦੌਰਾਨ ਹੋ ਸਕਦੀ ਹੈ। \\n\\n ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾਸਮੇਂ ਦੇ ਨਾਲ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਕਿਸੇ ਵੀ ਰੁਝਾਨ ਜਾਂ ਤਬਦੀਲੀਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ, ਜੇ ਤੁਸੀਂ ਹਫ਼ਤੇ ਵਿੱਚ ਦੋ ਵਾਰ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਦੇ ਹੋ।ਹਫ਼ਤਿਆਂ ਵਿੱਚ, ਤੁਸੀਂ ਇਹ ਵੇਖਣ ਦੇ ਯੋਗ ਹੋ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਸੁਧਾਰ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਘਟ ਰਿਹਾ ਹੈ। ਇਹ ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀ ਲਈ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਜਾਂ ਫੇਫਡ਼ਿਆਂ ਦੀ ਬਿਮਾਰੀ ਦੀ ਪ੍ਰਗਤੀ ਨੂੰ ਟਰੈਕ ਕਰਨ ਲਈ. \',\' ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਵਧੇਰੇ ਸਹੀ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।ਤੁਹਾਨੂੰ ਨਤੀਜਿਆਂ ਦੀ ਔਸਤ ਲੈਣ ਦੀ ਆਗਿਆ ਦੇ ਕੇ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਨੁਮਾਇੰਦਗੀ, ਜੋ ਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨ ਜਾਂ ਗਲਤੀ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦੀ ਹੈ ਜੋ ਹੋ ਸਕਦਾ ਹੈਇੱਕ ਸਿੰਗਲ ਮਾਪ ਦੌਰਾਨ ਵਾਪਰਦਾ ਹੈ। \\n\\n ਉਦਾਹਰਣ ਵਜੋਂ, ਜਦੋਂ ਤੁਸੀਂ ਆਪਣੀ ਜੀਵਨ ਸਮਰੱਥਾ ਨੂੰ ਮਾਪਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਇੱਕ ਡੂੰਘਾ ਸਾਹ ਲੈ ਸਕਦੇ ਹੋ ਅਤੇ ਜਿੰਨੀ ਤਾਕਤ ਨਾਲ ਸਾਹ ਛੱਡ ਸਕਦੇ ਹੋਸੰਭਵ ਹੈ, ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਇੱਕ ਉੱਚ ਮਾਪ ਹੋ ਸਕਦਾ ਹੈ। ਹਾਲਾਂਕਿ, ਜੇ ਤੁਸੀਂ ਪਹਿਲੇ ਮਾਪ ਤੋਂ ਤੁਰੰਤ ਬਾਅਦ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਦੁਬਾਰਾ ਮਾਪਣਾ ਚਾਹੁੰਦੇ ਹੋ,ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਤੁਸੀਂ ਇੰਨੇ ਡੂੰਘੇ ਸਾਹ ਨਾ ਲੈ ਸਕੋ, ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਾਪ ਘੱਟ ਹੋ ਸਕਦੀ ਹੈ। ਕਈ ਮਾਪਾਂ ਦੀ ਔਸਤ ਲੈ ਕੇ, ਤੁਸੀਂ ਘੱਟ ਸਾਹ ਲੈ ਸਕਦੇ ਹੋ।ਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨਸ਼ੀਲਤਾ ਜਾਂ ਗਲਤੀ ਦਾ ਪ੍ਰਭਾਵ ਜੋ ਇੱਕ ਸਿੰਗਲ ਮਾਪ ਦੌਰਾਨ ਹੋ ਸਕਦਾ ਹੈ। \\n\\n ਤੁਹਾਡੀ ਵਧੇਰੇ ਸਹੀ ਨੁਮਾਇੰਦਗੀ ਪ੍ਰਦਾਨ ਕਰਨ ਤੋਂ ਇਲਾਵਾਫੇਫਡ਼ਿਆਂ ਦਾ ਕੰਮ, ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ, ਸਮੇਂ ਦੇ ਨਾਲ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਕਿਸੇ ਵੀ ਰੁਝਾਨ ਜਾਂ ਤਬਦੀਲੀਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਵੀ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ, ਜੇ ਤੁਸੀਂ ਕਈ ਹਫ਼ਤਿਆਂ ਲਈ ਹਫ਼ਤੇ ਵਿੱਚ ਦੋ ਵਾਰ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਮਾਪਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਇਹ ਵੇਖਣ ਦੇ ਯੋਗ ਹੋ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਸੁਧਾਰ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਘਟ ਰਿਹਾ ਹੈ।ਇਹ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਦੇ ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀ ਕਰਨ ਜਾਂ ਫੇਫਡ਼ਿਆਂ ਦੀ ਬਿਮਾਰੀ ਦੀ ਪ੍ਰਗਤੀ ਨੂੰ ਟਰੈਕ ਕਰਨ ਲਈ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ। \\n\\nByਸਮੇਂ ਦੇ ਨਾਲ ਆਪਣੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਨਿਗਰਾਨੀ ਕਰਦੇ ਹੋਏ, ਤੁਸੀਂ ਕਿਸੇ ਵੀ ਸੰਭਾਵਿਤ ਮੁੱਦੇ ਦੀ ਜਲਦੀ ਪਛਾਣ ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਆਪਣੀ ਇਲਾਜ ਯੋਜਨਾ ਵਿੱਚ ਜ਼ਰੂਰੀ ਤਬਦੀਲੀਆਂ ਕਰ ਸਕਦੇ ਹੋ।ਇਹ ਪੇਚੀਦਗੀਆਂ ਨੂੰ ਰੋਕਣ ਅਤੇ ਤੁਹਾਡੀ ਸਮੁੱਚੀ ਸਿਹਤ ਅਤੇ ਜੀਵਨ ਦੀ ਗੁਣਵੱਤਾ ਵਿੱਚ ਸੁਧਾਰ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ। \',\' ਉਹਨਾਂ ਕਾਰਕਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ ਇਸ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਤ ਕਰ ਸਕਦੇ ਹਨ।ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ. \'] ', 'ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ?', ' [\'ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ?\', \'ਜੇ ਤੁਸੀਂ ਤਿੰਨ ਲਈ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ?ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਵਾਰ, ਤੁਸੀਂ ਸੰਭਵ ਤੌਰ \'ਤੇ ਵੇਖੋਗੇ ਕਿ ਹਰ ਵਾਰ ਜਦੋਂ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡਦੇ ਹੋ ਤਾਂ ਗੁਬਾਰਾ ਫੁੱਲ ਜਾਂਦਾ ਹੈ।ਹਰੇਕ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਨਾਲ ਗੁਬਾਰਾ ਫੈਲਦਾ ਹੈ ਅਤੇ ਸੰਕੁਚਿਤ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਹ ਸੰਭਾਵਤ ਤੌਰ \'ਤੇ ਇੱਕ "ਸੁਓਸ਼ਿੰਗ" ਆਵਾਜ਼ ਪੈਦਾ ਕਰੇਗਾ ਕਿਉਂਕਿ ਹਵਾ ਹਵਾ ਦੇ ਅੰਦਰ ਅਤੇ ਬਾਹਰ ਜਾਂਦੀ ਹੈ।ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ ਹਰੇਕ ਮਹਿੰਗਾਈ ਤੋਂ ਬਾਅਦ ਗੁਬਾਰਾ ਵੱਡਾ ਅਤੇ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਗੁਬਾਰੇ ਦਾ ਲੈਟੇਕਸਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ, ਇਸ ਨੂੰ ਵਧੇਰੇ ਟਿਕਾਊ ਬਣਾਉਂਦਾ ਹੈ ਅਤੇ ਘੱਟ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਘੱਟ ਹੁੰਦੀ ਹੈ। \\n\\n ਇੱਕ ਗੁਬਾਰੇ ਨੂੰ ਕਈ ਵਾਰ ਉਡਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੋ ਸਕਦੀ ਹੈਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਅਤੇ ਸੰਚਾਰ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਵਿੱਚ ਵੀ ਮਦਦ ਕਰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਲਈ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਰਗਰਮ ਸਾਹ ਛੱਡਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਲੋਕਾਂ ਲਈ ਵਿਸ਼ੇਸ਼ ਤੌਰ \'ਤੇ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਾਹ ਲੈਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆਉਂਦੀ ਹੈ ਜਾਂ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ. \',\' ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ,ਇਸ ਨੂੰ ਘਟਾਓ, ਅਤੇ ਫਿਰ ਇਸ ਨੂੰ ਦੋ ਵਾਰ ਹੋਰ ਕਰੋ? \',\' ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ, ਤਾਂ ਇਸ ਨੂੰ ਘਟਾਓ, ਅਤੇ ਫਿਰ ਇਸ ਨੂੰ ਦੁਬਾਰਾ ਕਰੋਦੋ ਵਾਰ ਹੋਰ, ਤੁਸੀਂ ਸ਼ਾਇਦ ਵੇਖੋਗੇ ਕਿ ਹਰ ਵਾਰ ਜਦੋਂ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡਦੇ ਹੋ ਤਾਂ ਗੁਬਾਰਾ ਫੁੱਲਦਾ ਹੈ।ਬੈਲੂਨ ਕਈ ਵਾਰ ਲੈਟੇਕਸ ਨੂੰ ਖਿੱਚਣ ਦਾ ਕਾਰਨ ਬਣਦਾ ਹੈ ਅਤੇ ਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਹੋ ਜਾਂਦਾ ਹੈ। \\n\\n ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਦੇਖ ਸਕਦੇ ਹੋ ਕਿ ਬੈਲੂਨਹਰ ਵਾਰ ਫੁੱਲਣਾ ਵਧੇਰੇ ਮੁਸ਼ਕਲ ਹੋ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਲੈਟੇਕਸ ਵਧੇਰੇ ਖਿੱਚਿਆ ਅਤੇ ਘੱਟ ਲਚਕੀਲਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਲੈਟੇਕਸ ਪਤਲਾ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਕਮਜ਼ੋਰ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਗੁਬਾਰੇ ਵਿੱਚ ਵਧੇਰੇ ਹਵਾ ਜੋਡ਼ਨਾ ਵਧੇਰੇ ਮੁਸ਼ਕਲ ਹੋ ਜਾਂਦਾ ਹੈ। \\n\\n ਗੁਬਾਰੇ ਨੂੰ ਕਈ ਗੁਣਾ ਵਧਾਉਣ ਅਤੇ ਘਟਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆਸਮਾਂ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਅਤੇ ਸੰਚਾਰ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਵਿੱਚ ਵੀ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਲਈ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਰਗਰਮ ਸਾਹ ਛੱਡਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਵਿਸ਼ੇਸ਼ ਤੌਰ \'ਤੇ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਉਹਨਾਂ ਲੋਕਾਂ ਲਈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਾਹ ਲੈਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆਉਂਦੀ ਹੈ ਜਾਂ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। \',\' ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਕਿਉਂ ਹੈ? \',\' ਇਹਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿਉਂਕਿ ਇਹ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਵਧੇਰੇ ਸਹੀ ਨੁਮਾਇੰਦਗੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਕਈ ਵਾਰ ਤੁਹਾਨੂੰ ਨਤੀਜਿਆਂ ਦੀ ਔਸਤ ਲੈਣ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ, ਜੋ ਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨਸ਼ੀਲਤਾ ਜਾਂ ਗਲਤੀ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦੀ ਹੈ ਜੋ ਇੱਕ ਸਮੇਂ ਦੌਰਾਨ ਹੋ ਸਕਦੀ ਹੈਇਸ ਤੋਂ ਇਲਾਵਾ, ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਕਿਸੇ ਵੀ ਰੁਝਾਨ ਜਾਂ ਤਬਦੀਲੀਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ।ਸਮੇਂ ਦੇ ਨਾਲ. ਉਦਾਹਰਣ ਵਜੋਂ, ਜੇ ਤੁਸੀਂ ਕਈ ਹਫ਼ਤਿਆਂ ਲਈ ਹਫ਼ਤੇ ਵਿੱਚ ਦੋ ਵਾਰ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਮਾਪਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਇਹ ਵੇਖਣ ਦੇ ਯੋਗ ਹੋ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਸੁਧਾਰ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਨਹੀਂ।ਜਾਂ ਘਟ ਰਿਹਾ ਹੈ। ਇਹ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਦੇ ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀ ਕਰਨ ਜਾਂ ਫੇਫਡ਼ਿਆਂ ਦੀ ਪ੍ਰਗਤੀ ਨੂੰ ਟਰੈਕ ਕਰਨ ਲਈ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਬਿਮਾਰੀ। ਕੁੱਲ ਮਿਲਾ ਕੇ, ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਬਾਰੇ ਕੀਮਤੀ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ ਅਤੇ ਕਿਸੇ ਵੀ ਬਿਮਾਰੀ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ।ਤਬਦੀਲੀਆਂ ਜਾਂ ਰੁਝਾਨ ਜੋ ਸਮੇਂ ਦੇ ਨਾਲ ਹੋ ਸਕਦੇ ਹਨ। \',\' ਇਸ \'ਤੇ ਵਿਆਖਿਆ ਕਰੋ। \\n ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿਉਂਕਿ ਇਹ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਵਧੇਰੇ ਸਹੀ ਨੁਮਾਇੰਦਗੀ। ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ ਤੁਹਾਨੂੰ ਨਤੀਜਿਆਂ ਦੀ ਔਸਤ ਲੈਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜੋ ਕਿਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨਸ਼ੀਲਤਾ ਜਾਂ ਗਲਤੀ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ ਜੋ ਇੱਕ ਸਿੰਗਲ ਮਾਪ ਦੌਰਾਨ ਹੋ ਸਕਦੀ ਹੈ। \\n\\n ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾਸਮੇਂ ਦੇ ਨਾਲ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਕਿਸੇ ਵੀ ਰੁਝਾਨ ਜਾਂ ਤਬਦੀਲੀਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ, ਜੇ ਤੁਸੀਂ ਹਫ਼ਤੇ ਵਿੱਚ ਦੋ ਵਾਰ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਦੇ ਹੋ।ਹਫ਼ਤਿਆਂ ਵਿੱਚ, ਤੁਸੀਂ ਇਹ ਵੇਖਣ ਦੇ ਯੋਗ ਹੋ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਸੁਧਾਰ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਘਟ ਰਿਹਾ ਹੈ। ਇਹ ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀ ਲਈ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਜਾਂ ਫੇਫਡ਼ਿਆਂ ਦੀ ਬਿਮਾਰੀ ਦੀ ਪ੍ਰਗਤੀ ਨੂੰ ਟਰੈਕ ਕਰਨ ਲਈ. \',\' ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਵਧੇਰੇ ਸਹੀ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।ਤੁਹਾਨੂੰ ਨਤੀਜਿਆਂ ਦੀ ਔਸਤ ਲੈਣ ਦੀ ਆਗਿਆ ਦੇ ਕੇ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਨੁਮਾਇੰਦਗੀ, ਜੋ ਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨ ਜਾਂ ਗਲਤੀ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦੀ ਹੈ ਜੋ ਹੋ ਸਕਦਾ ਹੈਇੱਕ ਸਿੰਗਲ ਮਾਪ ਦੌਰਾਨ ਵਾਪਰਦਾ ਹੈ। \\n\\n ਉਦਾਹਰਣ ਵਜੋਂ, ਜਦੋਂ ਤੁਸੀਂ ਆਪਣੀ ਜੀਵਨ ਸਮਰੱਥਾ ਨੂੰ ਮਾਪਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਇੱਕ ਡੂੰਘਾ ਸਾਹ ਲੈ ਸਕਦੇ ਹੋ ਅਤੇ ਜਿੰਨੀ ਤਾਕਤ ਨਾਲ ਸਾਹ ਛੱਡ ਸਕਦੇ ਹੋਸੰਭਵ ਹੈ, ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਇੱਕ ਉੱਚ ਮਾਪ ਹੋ ਸਕਦਾ ਹੈ। ਹਾਲਾਂਕਿ, ਜੇ ਤੁਸੀਂ ਪਹਿਲੇ ਮਾਪ ਤੋਂ ਤੁਰੰਤ ਬਾਅਦ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਦੁਬਾਰਾ ਮਾਪਣਾ ਚਾਹੁੰਦੇ ਹੋ,ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਤੁਸੀਂ ਇੰਨੇ ਡੂੰਘੇ ਸਾਹ ਨਾ ਲੈ ਸਕੋ, ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਾਪ ਘੱਟ ਹੋ ਸਕਦੀ ਹੈ। ਕਈ ਮਾਪਾਂ ਦੀ ਔਸਤ ਲੈ ਕੇ, ਤੁਸੀਂ ਘੱਟ ਸਾਹ ਲੈ ਸਕਦੇ ਹੋ।ਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨਸ਼ੀਲਤਾ ਜਾਂ ਗਲਤੀ ਦਾ ਪ੍ਰਭਾਵ ਜੋ ਇੱਕ ਸਿੰਗਲ ਮਾਪ ਦੌਰਾਨ ਹੋ ਸਕਦਾ ਹੈ। \\n\\n ਤੁਹਾਡੀ ਵਧੇਰੇ ਸਹੀ ਨੁਮਾਇੰਦਗੀ ਪ੍ਰਦਾਨ ਕਰਨ ਤੋਂ ਇਲਾਵਾਫੇਫਡ਼ਿਆਂ ਦਾ ਕੰਮ, ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ, ਸਮੇਂ ਦੇ ਨਾਲ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਕਿਸੇ ਵੀ ਰੁਝਾਨ ਜਾਂ ਤਬਦੀਲੀਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਵੀ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ, ਜੇ ਤੁਸੀਂ ਕਈ ਹਫ਼ਤਿਆਂ ਲਈ ਹਫ਼ਤੇ ਵਿੱਚ ਦੋ ਵਾਰ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਮਾਪਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਇਹ ਵੇਖਣ ਦੇ ਯੋਗ ਹੋ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਸੁਧਾਰ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਘਟ ਰਿਹਾ ਹੈ।ਇਹ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਦੇ ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀ ਕਰਨ ਜਾਂ ਫੇਫਡ਼ਿਆਂ ਦੀ ਬਿਮਾਰੀ ਦੀ ਪ੍ਰਗਤੀ ਨੂੰ ਟਰੈਕ ਕਰਨ ਲਈ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ। \\n\\nByਸਮੇਂ ਦੇ ਨਾਲ ਆਪਣੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਨਿਗਰਾਨੀ ਕਰਦੇ ਹੋਏ, ਤੁਸੀਂ ਕਿਸੇ ਵੀ ਸੰਭਾਵਿਤ ਮੁੱਦੇ ਦੀ ਜਲਦੀ ਪਛਾਣ ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਆਪਣੀ ਇਲਾਜ ਯੋਜਨਾ ਵਿੱਚ ਜ਼ਰੂਰੀ ਤਬਦੀਲੀਆਂ ਕਰ ਸਕਦੇ ਹੋ।ਇਹ ਪੇਚੀਦਗੀਆਂ ਨੂੰ ਰੋਕਣ ਅਤੇ ਤੁਹਾਡੀ ਸਮੁੱਚੀ ਸਿਹਤ ਅਤੇ ਜੀਵਨ ਦੀ ਗੁਣਵੱਤਾ ਵਿੱਚ ਸੁਧਾਰ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ। \',\' ਉਹਨਾਂ ਕਾਰਕਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ ਇਸ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਤ ਕਰ ਸਕਦੇ ਹਨ।ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ \',\' ਕਈ ਕਾਰਕ ਹਨ ਜੋ ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਤ ਕਰ ਸਕਦੇ ਹਨ, ਜਿਸ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨਃ \\n\\n1. ਅਭਿਆਸ ਪ੍ਰਭਾਵਃ ਜਿੰਨਾ ਜ਼ਿਆਦਾਤੁਸੀਂ ਮਾਪ ਪ੍ਰਕਿਰਿਆ ਤੋਂ ਜਾਣੂ ਹੋ ਜਾਂਦੇ ਹੋ, ਤੁਸੀਂ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਜ਼ੋਰ ਨਾਲ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਜਿੰਨੇ ਕੁਸ਼ਲ ਹੋ ਸਕਦੇ ਹੋ, ਜਿਸ ਨਾਲ ਤੁਸੀਂਉੱਚ ਮਾਪ। \\n2. ਸਾਹ ਲੈਣ ਦੀ ਦਰਃ ਜਿਸ ਦਰ ਨਾਲ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਉਹ ਤੁਹਾਡੀ ਜੀਵਨ ਸਮਰੱਥਾ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰ ਸਕਦੀ ਹੈ। ਜੇ ਤੁਸੀਂ ਬਹੁਤ ਤੇਜ਼ੀ ਨਾਲ ਸਾਹ ਲੈਂਦੇ ਹੋ।ਜਾਂ ਬਹੁਤ ਹੌਲੀ ਹੌਲੀ, ਇਹ ਹਵਾ ਦੀ ਮਾਤਰਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰ ਸਕਦਾ ਹੈ ਜੋ ਤੁਸੀਂ ਸਾਹ ਲੈ ਸਕਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡ ਸਕਦੇ ਹੋ। \\n3. ਸਾਹ ਲੈਣ ਦੀ ਕੋਸ਼ਿਸ਼ਃ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਤੁਸੀਂ ਕਿੰਨੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹੋਤੁਹਾਡੀ ਜੀਵਨ ਸਮਰੱਥਾ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ। ਜੇ ਤੁਸੀਂ ਕਾਫ਼ੀ ਜ਼ੋਰ ਨਾਲ ਸਾਹ ਨਹੀਂ ਛੱਡਦੇ, ਤਾਂ ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਾਪ ਘੱਟ ਹੋ ਸਕਦੀ ਹੈ। \\n4. ਸਾਹ ਲੈਣ ਵਾਲੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂਸ਼ਕਤੀਃ ਸਾਹ ਲੈਣ ਲਈ ਵਰਤੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਤਾਕਤ ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਤ ਕਰ ਸਕਦੀ ਹੈ।ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਹੋ ਸਕਦੀ ਹੈ, ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਘੱਟ ਮਾਪ ਹੋ ਸਕਦੀ ਹੈ। \\n5. ਛਾਤੀ ਦੀ ਕੰਧ ਉੱਤੇ ਪਾਬੰਦੀਃ ਸਾਹ ਲੈਣ ਵਿੱਚ ਕੋਈ ਵੀ ਪਾਬੰਦੀ ਜਾਂ ਸੀਮਾਤੁਹਾਡੀ ਛਾਤੀ ਦੀ ਕੰਧ ਦੀ ਗਤੀ ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਤ ਕਰ ਸਕਦੀ ਹੈ। ਇਹ ਫਾਈਬਰੋਸਿਸ, ਦਾਗ ਜਾਂ ਮਾਸਪੇਸ਼ੀ ਵਰਗੀਆਂ ਸਥਿਤੀਆਂ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ।ਕਮਜ਼ੋਰੀ। \\n6. ਲੀਕੇਜਃ ਮੂੰਹ ਜਾਂ ਨੱਕ ਦੇ ਦੁਆਲੇ ਹਵਾ ਦਾ ਲੀਕੇਜ ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਤ ਕਰ ਸਕਦਾ ਹੈ। ਇਹ ਅਜਿਹੀਆਂ ਸਥਿਤੀਆਂ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ।ਇੱਕ ਵਿਵਹਾਰਿਤ ਸੈਪਟਮ ਜਾਂ ਨੱਕ ਦੀ ਭੀਡ਼ ਦੇ ਰੂਪ ਵਿੱਚ। \\n\\n ਇਹਨਾਂ ਕਾਰਕਾਂ ਬਾਰੇ ਜਾਗਰੂਕ ਹੋਣਾ ਅਤੇ ਉਹਨਾਂ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਘੱਟ ਕਰਨ ਲਈ ਕਦਮ ਚੁੱਕਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ।ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਦਾ ਮਾਪ। ਇਸ ਵਿੱਚ ਸਾਹ ਲੈਣ ਦੀਆਂ ਸਹੀ ਤਕਨੀਕਾਂ ਦਾ ਅਭਿਆਸ ਕਰਨਾ, ਤੁਹਾਡੀ ਸਾਹ ਲੈਣ ਦੀ ਦਰ ਅਤੇ ਕੋਸ਼ਿਸ਼ ਦੀ ਨਿਗਰਾਨੀ ਕਰਨਾ ਸ਼ਾਮਲ ਹੋ ਸਕਦਾ ਹੈ, ਅਤੇਸਾਹ ਦੀਆਂ ਕਿਸੇ ਵੀ ਅੰਡਰਲਾਈੰਗ ਸਥਿਤੀਆਂ ਜਾਂ ਸੀਮਾਵਾਂ ਨੂੰ ਸੰਬੋਧਨ ਕਰਦੇ ਹੋਏ. \',\' ਇੱਕ ਡਾਕਟਰ ਜਵਾਰ ਦੀ ਮਾਤਰਾ ਜਾਂ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਿਉਂ ਨਿਰਧਾਰਤ ਕਰਨਾ ਚਾਹੇਗਾ?ਮਰੀਜ਼? \') ', 'ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ?', ' [\'ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ?\', \'ਜੇ ਤੁਸੀਂ ਤਿੰਨ ਲਈ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ?ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਵਾਰ, ਤੁਸੀਂ ਸੰਭਵ ਤੌਰ \'ਤੇ ਵੇਖੋਗੇ ਕਿ ਹਰ ਵਾਰ ਜਦੋਂ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡਦੇ ਹੋ ਤਾਂ ਗੁਬਾਰਾ ਫੁੱਲ ਜਾਂਦਾ ਹੈ।ਹਰੇਕ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਨਾਲ ਗੁਬਾਰਾ ਫੈਲਦਾ ਹੈ ਅਤੇ ਸੰਕੁਚਿਤ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਹ ਸੰਭਾਵਤ ਤੌਰ \'ਤੇ ਇੱਕ "ਸੁਓਸ਼ਿੰਗ" ਆਵਾਜ਼ ਪੈਦਾ ਕਰੇਗਾ ਕਿਉਂਕਿ ਹਵਾ ਹਵਾ ਦੇ ਅੰਦਰ ਅਤੇ ਬਾਹਰ ਜਾਂਦੀ ਹੈ।ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਵੇਖ ਸਕਦੇ ਹੋ ਕਿ ਹਰੇਕ ਮਹਿੰਗਾਈ ਤੋਂ ਬਾਅਦ ਗੁਬਾਰਾ ਵੱਡਾ ਅਤੇ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਗੁਬਾਰੇ ਦਾ ਲੈਟੇਕਸਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਖਿੱਚਿਆ ਜਾਂਦਾ ਹੈ, ਇਸ ਨੂੰ ਵਧੇਰੇ ਟਿਕਾਊ ਬਣਾਉਂਦਾ ਹੈ ਅਤੇ ਘੱਟ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਘੱਟ ਹੁੰਦੀ ਹੈ। \\n\\n ਇੱਕ ਗੁਬਾਰੇ ਨੂੰ ਕਈ ਵਾਰ ਉਡਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆ ਹੋ ਸਕਦੀ ਹੈਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਅਤੇ ਸੰਚਾਰ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਵਿੱਚ ਵੀ ਮਦਦ ਕਰਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਲਈ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਰਗਰਮ ਸਾਹ ਛੱਡਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਲੋਕਾਂ ਲਈ ਵਿਸ਼ੇਸ਼ ਤੌਰ \'ਤੇ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਾਹ ਲੈਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆਉਂਦੀ ਹੈ ਜਾਂ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ. \',\' ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ,ਇਸ ਨੂੰ ਘਟਾਓ, ਅਤੇ ਫਿਰ ਇਸ ਨੂੰ ਦੋ ਵਾਰ ਹੋਰ ਕਰੋ? \',\' ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ, ਤਾਂ ਇਸ ਨੂੰ ਘਟਾਓ, ਅਤੇ ਫਿਰ ਇਸ ਨੂੰ ਦੁਬਾਰਾ ਕਰੋਦੋ ਵਾਰ ਹੋਰ, ਤੁਸੀਂ ਸ਼ਾਇਦ ਵੇਖੋਗੇ ਕਿ ਹਰ ਵਾਰ ਜਦੋਂ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡਦੇ ਹੋ ਤਾਂ ਗੁਬਾਰਾ ਫੁੱਲਦਾ ਹੈ।ਬੈਲੂਨ ਕਈ ਵਾਰ ਲੈਟੇਕਸ ਨੂੰ ਖਿੱਚਣ ਦਾ ਕਾਰਨ ਬਣਦਾ ਹੈ ਅਤੇ ਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਵਧੇਰੇ ਮਜ਼ਬੂਤ ਹੋ ਜਾਂਦਾ ਹੈ। \\n\\n ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਸੀਂ ਦੇਖ ਸਕਦੇ ਹੋ ਕਿ ਬੈਲੂਨਹਰ ਵਾਰ ਫੁੱਲਣਾ ਵਧੇਰੇ ਮੁਸ਼ਕਲ ਹੋ ਜਾਂਦਾ ਹੈ, ਕਿਉਂਕਿ ਲੈਟੇਕਸ ਵਧੇਰੇ ਖਿੱਚਿਆ ਅਤੇ ਘੱਟ ਲਚਕੀਲਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਲੈਟੇਕਸ ਪਤਲਾ ਹੋ ਜਾਂਦਾ ਹੈ ਅਤੇਹਰੇਕ ਮਹਿੰਗਾਈ ਦੇ ਨਾਲ ਕਮਜ਼ੋਰ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਗੁਬਾਰੇ ਵਿੱਚ ਵਧੇਰੇ ਹਵਾ ਜੋਡ਼ਨਾ ਵਧੇਰੇ ਮੁਸ਼ਕਲ ਹੋ ਜਾਂਦਾ ਹੈ। \\n\\n ਗੁਬਾਰੇ ਨੂੰ ਕਈ ਗੁਣਾ ਵਧਾਉਣ ਅਤੇ ਘਟਾਉਣ ਦੀ ਪ੍ਰਕਿਰਿਆਸਮਾਂ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਅਤੇ ਸੰਚਾਰ ਨੂੰ ਬਿਹਤਰ ਬਣਾਉਣ ਵਿੱਚ ਵੀ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ, ਕਿਉਂਕਿ ਇਸ ਲਈ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਰਗਰਮ ਸਾਹ ਛੱਡਣ ਦੀ ਜ਼ਰੂਰਤ ਹੁੰਦੀ ਹੈ। ਇਹ ਵਿਸ਼ੇਸ਼ ਤੌਰ \'ਤੇ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਉਹਨਾਂ ਲੋਕਾਂ ਲਈ ਜਿਨ੍ਹਾਂ ਨੂੰ ਸਾਹ ਲੈਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਆਉਂਦੀ ਹੈ ਜਾਂ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। \',\' ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਕਿਉਂ ਹੈ? \',\' ਇਹਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿਉਂਕਿ ਇਹ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਵਧੇਰੇ ਸਹੀ ਨੁਮਾਇੰਦਗੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਕਈ ਵਾਰ ਤੁਹਾਨੂੰ ਨਤੀਜਿਆਂ ਦੀ ਔਸਤ ਲੈਣ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ, ਜੋ ਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨਸ਼ੀਲਤਾ ਜਾਂ ਗਲਤੀ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦੀ ਹੈ ਜੋ ਇੱਕ ਸਮੇਂ ਦੌਰਾਨ ਹੋ ਸਕਦੀ ਹੈਇਸ ਤੋਂ ਇਲਾਵਾ, ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਕਿਸੇ ਵੀ ਰੁਝਾਨ ਜਾਂ ਤਬਦੀਲੀਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ।ਸਮੇਂ ਦੇ ਨਾਲ. ਉਦਾਹਰਣ ਵਜੋਂ, ਜੇ ਤੁਸੀਂ ਕਈ ਹਫ਼ਤਿਆਂ ਲਈ ਹਫ਼ਤੇ ਵਿੱਚ ਦੋ ਵਾਰ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਮਾਪਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਇਹ ਵੇਖਣ ਦੇ ਯੋਗ ਹੋ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਸੁਧਾਰ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਨਹੀਂ।ਜਾਂ ਘਟ ਰਿਹਾ ਹੈ। ਇਹ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਦੇ ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀ ਕਰਨ ਜਾਂ ਫੇਫਡ਼ਿਆਂ ਦੀ ਪ੍ਰਗਤੀ ਨੂੰ ਟਰੈਕ ਕਰਨ ਲਈ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਬਿਮਾਰੀ। ਕੁੱਲ ਮਿਲਾ ਕੇ, ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਬਾਰੇ ਕੀਮਤੀ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ ਅਤੇ ਕਿਸੇ ਵੀ ਬਿਮਾਰੀ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ।ਤਬਦੀਲੀਆਂ ਜਾਂ ਰੁਝਾਨ ਜੋ ਸਮੇਂ ਦੇ ਨਾਲ ਹੋ ਸਕਦੇ ਹਨ। \',\' ਇਸ \'ਤੇ ਵਿਆਖਿਆ ਕਰੋ। \\n ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ ਕਿਉਂਕਿ ਇਹ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਵਧੇਰੇ ਸਹੀ ਨੁਮਾਇੰਦਗੀ। ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ ਤੁਹਾਨੂੰ ਨਤੀਜਿਆਂ ਦੀ ਔਸਤ ਲੈਣ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜੋ ਕਿਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨਸ਼ੀਲਤਾ ਜਾਂ ਗਲਤੀ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ ਜੋ ਇੱਕ ਸਿੰਗਲ ਮਾਪ ਦੌਰਾਨ ਹੋ ਸਕਦੀ ਹੈ। \\n\\n ਇਸ ਤੋਂ ਇਲਾਵਾ, ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾਸਮੇਂ ਦੇ ਨਾਲ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਕਿਸੇ ਵੀ ਰੁਝਾਨ ਜਾਂ ਤਬਦੀਲੀਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਣ ਲਈ, ਜੇ ਤੁਸੀਂ ਹਫ਼ਤੇ ਵਿੱਚ ਦੋ ਵਾਰ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਦੇ ਹੋ।ਹਫ਼ਤਿਆਂ ਵਿੱਚ, ਤੁਸੀਂ ਇਹ ਵੇਖਣ ਦੇ ਯੋਗ ਹੋ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਸੁਧਾਰ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਘਟ ਰਿਹਾ ਹੈ। ਇਹ ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀ ਲਈ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ।ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਜਾਂ ਫੇਫਡ਼ਿਆਂ ਦੀ ਬਿਮਾਰੀ ਦੀ ਪ੍ਰਗਤੀ ਨੂੰ ਟਰੈਕ ਕਰਨ ਲਈ. \',\' ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਇੱਕ ਤੋਂ ਵੱਧ ਵਾਰ ਮਾਪਣਾ ਵਧੇਰੇ ਸਹੀ ਜਾਣਕਾਰੀ ਪ੍ਰਦਾਨ ਕਰ ਸਕਦਾ ਹੈ।ਤੁਹਾਨੂੰ ਨਤੀਜਿਆਂ ਦੀ ਔਸਤ ਲੈਣ ਦੀ ਆਗਿਆ ਦੇ ਕੇ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਨੁਮਾਇੰਦਗੀ, ਜੋ ਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨ ਜਾਂ ਗਲਤੀ ਨੂੰ ਘਟਾਉਣ ਵਿੱਚ ਸਹਾਇਤਾ ਕਰ ਸਕਦੀ ਹੈ ਜੋ ਹੋ ਸਕਦਾ ਹੈਇੱਕ ਸਿੰਗਲ ਮਾਪ ਦੌਰਾਨ ਵਾਪਰਦਾ ਹੈ। \\n\\n ਉਦਾਹਰਣ ਵਜੋਂ, ਜਦੋਂ ਤੁਸੀਂ ਆਪਣੀ ਜੀਵਨ ਸਮਰੱਥਾ ਨੂੰ ਮਾਪਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਇੱਕ ਡੂੰਘਾ ਸਾਹ ਲੈ ਸਕਦੇ ਹੋ ਅਤੇ ਜਿੰਨੀ ਤਾਕਤ ਨਾਲ ਸਾਹ ਛੱਡ ਸਕਦੇ ਹੋਸੰਭਵ ਹੈ, ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਇੱਕ ਉੱਚ ਮਾਪ ਹੋ ਸਕਦਾ ਹੈ। ਹਾਲਾਂਕਿ, ਜੇ ਤੁਸੀਂ ਪਹਿਲੇ ਮਾਪ ਤੋਂ ਤੁਰੰਤ ਬਾਅਦ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਦੁਬਾਰਾ ਮਾਪਣਾ ਚਾਹੁੰਦੇ ਹੋ,ਹੋ ਸਕਦਾ ਹੈ ਕਿ ਤੁਸੀਂ ਇੰਨੇ ਡੂੰਘੇ ਸਾਹ ਨਾ ਲੈ ਸਕੋ, ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਾਪ ਘੱਟ ਹੋ ਸਕਦੀ ਹੈ। ਕਈ ਮਾਪਾਂ ਦੀ ਔਸਤ ਲੈ ਕੇ, ਤੁਸੀਂ ਘੱਟ ਸਾਹ ਲੈ ਸਕਦੇ ਹੋ।ਕਿਸੇ ਵੀ ਪਰਿਵਰਤਨਸ਼ੀਲਤਾ ਜਾਂ ਗਲਤੀ ਦਾ ਪ੍ਰਭਾਵ ਜੋ ਇੱਕ ਸਿੰਗਲ ਮਾਪ ਦੌਰਾਨ ਹੋ ਸਕਦਾ ਹੈ। \\n\\n ਤੁਹਾਡੀ ਵਧੇਰੇ ਸਹੀ ਨੁਮਾਇੰਦਗੀ ਪ੍ਰਦਾਨ ਕਰਨ ਤੋਂ ਇਲਾਵਾਫੇਫਡ਼ਿਆਂ ਦਾ ਕੰਮ, ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਈ ਵਾਰ ਮਾਪਣਾ, ਸਮੇਂ ਦੇ ਨਾਲ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਕਿਸੇ ਵੀ ਰੁਝਾਨ ਜਾਂ ਤਬਦੀਲੀਆਂ ਦੀ ਪਛਾਣ ਕਰਨ ਵਿੱਚ ਵੀ ਸਹਾਇਤਾ ਕਰ ਸਕਦਾ ਹੈ।ਉਦਾਹਰਣ ਵਜੋਂ, ਜੇ ਤੁਸੀਂ ਕਈ ਹਫ਼ਤਿਆਂ ਲਈ ਹਫ਼ਤੇ ਵਿੱਚ ਦੋ ਵਾਰ ਆਪਣੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਮਾਪਦੇ ਹੋ, ਤਾਂ ਤੁਸੀਂ ਇਹ ਵੇਖਣ ਦੇ ਯੋਗ ਹੋ ਸਕਦੇ ਹੋ ਕਿ ਤੁਹਾਡੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਸੁਧਾਰ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਘਟ ਰਿਹਾ ਹੈ।ਇਹ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਦੇ ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀ ਕਰਨ ਜਾਂ ਫੇਫਡ਼ਿਆਂ ਦੀ ਬਿਮਾਰੀ ਦੀ ਪ੍ਰਗਤੀ ਨੂੰ ਟਰੈਕ ਕਰਨ ਲਈ ਲਾਭਦਾਇਕ ਹੋ ਸਕਦਾ ਹੈ। \\n\\nByਸਮੇਂ ਦੇ ਨਾਲ ਆਪਣੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਦੀ ਨਿਗਰਾਨੀ ਕਰਦੇ ਹੋਏ, ਤੁਸੀਂ ਕਿਸੇ ਵੀ ਸੰਭਾਵਿਤ ਮੁੱਦੇ ਦੀ ਜਲਦੀ ਪਛਾਣ ਕਰ ਸਕਦੇ ਹੋ ਅਤੇ ਆਪਣੀ ਇਲਾਜ ਯੋਜਨਾ ਵਿੱਚ ਜ਼ਰੂਰੀ ਤਬਦੀਲੀਆਂ ਕਰ ਸਕਦੇ ਹੋ।ਇਹ ਪੇਚੀਦਗੀਆਂ ਨੂੰ ਰੋਕਣ ਅਤੇ ਤੁਹਾਡੀ ਸਮੁੱਚੀ ਸਿਹਤ ਅਤੇ ਜੀਵਨ ਦੀ ਗੁਣਵੱਤਾ ਵਿੱਚ ਸੁਧਾਰ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰ ਸਕਦਾ ਹੈ। \',\' ਉਹਨਾਂ ਕਾਰਕਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ ਇਸ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਤ ਕਰ ਸਕਦੇ ਹਨ।ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ \',\' ਕਈ ਕਾਰਕ ਹਨ ਜੋ ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਤ ਕਰ ਸਕਦੇ ਹਨ, ਜਿਸ ਵਿੱਚ ਸ਼ਾਮਲ ਹਨਃ \\n\\n1. ਅਭਿਆਸ ਪ੍ਰਭਾਵਃ ਜਿੰਨਾ ਜ਼ਿਆਦਾਤੁਸੀਂ ਮਾਪ ਪ੍ਰਕਿਰਿਆ ਤੋਂ ਜਾਣੂ ਹੋ ਜਾਂਦੇ ਹੋ, ਤੁਸੀਂ ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਜ਼ੋਰ ਨਾਲ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਜਿੰਨੇ ਕੁਸ਼ਲ ਹੋ ਸਕਦੇ ਹੋ, ਜਿਸ ਨਾਲ ਤੁਸੀਂਉੱਚ ਮਾਪ। \\n2. ਸਾਹ ਲੈਣ ਦੀ ਦਰਃ ਜਿਸ ਦਰ ਨਾਲ ਤੁਸੀਂ ਸਾਹ ਲੈਂਦੇ ਹੋ ਉਹ ਤੁਹਾਡੀ ਜੀਵਨ ਸਮਰੱਥਾ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰ ਸਕਦੀ ਹੈ। ਜੇ ਤੁਸੀਂ ਬਹੁਤ ਤੇਜ਼ੀ ਨਾਲ ਸਾਹ ਲੈਂਦੇ ਹੋ।ਜਾਂ ਬਹੁਤ ਹੌਲੀ ਹੌਲੀ, ਇਹ ਹਵਾ ਦੀ ਮਾਤਰਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰ ਸਕਦਾ ਹੈ ਜੋ ਤੁਸੀਂ ਸਾਹ ਲੈ ਸਕਦੇ ਹੋ ਅਤੇ ਸਾਹ ਛੱਡ ਸਕਦੇ ਹੋ। \\n3. ਸਾਹ ਲੈਣ ਦੀ ਕੋਸ਼ਿਸ਼ਃ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਤੁਸੀਂ ਕਿੰਨੀ ਕੋਸ਼ਿਸ਼ ਕਰਦੇ ਹੋਤੁਹਾਡੀ ਜੀਵਨ ਸਮਰੱਥਾ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦਾ ਹੈ। ਜੇ ਤੁਸੀਂ ਕਾਫ਼ੀ ਜ਼ੋਰ ਨਾਲ ਸਾਹ ਨਹੀਂ ਛੱਡਦੇ, ਤਾਂ ਇਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਾਪ ਘੱਟ ਹੋ ਸਕਦੀ ਹੈ। \\n4. ਸਾਹ ਲੈਣ ਵਾਲੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂਸ਼ਕਤੀਃ ਸਾਹ ਲੈਣ ਲਈ ਵਰਤੀਆਂ ਜਾਣ ਵਾਲੀਆਂ ਮਾਸਪੇਸ਼ੀਆਂ ਦੀ ਤਾਕਤ ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਤ ਕਰ ਸਕਦੀ ਹੈ।ਡੂੰਘੇ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਮੁਸ਼ਕਲ ਹੋ ਸਕਦੀ ਹੈ, ਜਿਸ ਦੇ ਨਤੀਜੇ ਵਜੋਂ ਘੱਟ ਮਾਪ ਹੋ ਸਕਦੀ ਹੈ। \\n5. ਛਾਤੀ ਦੀ ਕੰਧ ਉੱਤੇ ਪਾਬੰਦੀਃ ਸਾਹ ਲੈਣ ਵਿੱਚ ਕੋਈ ਵੀ ਪਾਬੰਦੀ ਜਾਂ ਸੀਮਾਤੁਹਾਡੀ ਛਾਤੀ ਦੀ ਕੰਧ ਦੀ ਗਤੀ ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਤ ਕਰ ਸਕਦੀ ਹੈ। ਇਹ ਫਾਈਬਰੋਸਿਸ, ਦਾਗ ਜਾਂ ਮਾਸਪੇਸ਼ੀ ਵਰਗੀਆਂ ਸਥਿਤੀਆਂ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ।ਕਮਜ਼ੋਰੀ। \\n6. ਲੀਕੇਜਃ ਮੂੰਹ ਜਾਂ ਨੱਕ ਦੇ ਦੁਆਲੇ ਹਵਾ ਦਾ ਲੀਕੇਜ ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਦੇ ਮਾਪ ਨੂੰ ਪ੍ਰਭਾਵਤ ਕਰ ਸਕਦਾ ਹੈ। ਇਹ ਅਜਿਹੀਆਂ ਸਥਿਤੀਆਂ ਕਾਰਨ ਹੋ ਸਕਦਾ ਹੈ।ਇੱਕ ਵਿਵਹਾਰਿਤ ਸੈਪਟਮ ਜਾਂ ਨੱਕ ਦੀ ਭੀਡ਼ ਦੇ ਰੂਪ ਵਿੱਚ। \\n\\n ਇਹਨਾਂ ਕਾਰਕਾਂ ਬਾਰੇ ਜਾਗਰੂਕ ਹੋਣਾ ਅਤੇ ਉਹਨਾਂ ਦੇ ਪ੍ਰਭਾਵ ਨੂੰ ਘੱਟ ਕਰਨ ਲਈ ਕਦਮ ਚੁੱਕਣਾ ਮਹੱਤਵਪੂਰਨ ਹੈ।ਤੁਹਾਡੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਦਾ ਮਾਪ। ਇਸ ਵਿੱਚ ਸਾਹ ਲੈਣ ਦੀਆਂ ਸਹੀ ਤਕਨੀਕਾਂ ਦਾ ਅਭਿਆਸ ਕਰਨਾ, ਤੁਹਾਡੀ ਸਾਹ ਲੈਣ ਦੀ ਦਰ ਅਤੇ ਕੋਸ਼ਿਸ਼ ਦੀ ਨਿਗਰਾਨੀ ਕਰਨਾ ਸ਼ਾਮਲ ਹੋ ਸਕਦਾ ਹੈ, ਅਤੇਸਾਹ ਦੀਆਂ ਕਿਸੇ ਵੀ ਅੰਡਰਲਾਈੰਗ ਸਥਿਤੀਆਂ ਜਾਂ ਸੀਮਾਵਾਂ ਨੂੰ ਸੰਬੋਧਨ ਕਰਦੇ ਹੋਏ. \',\' ਇੱਕ ਡਾਕਟਰ ਜਵਾਰ ਦੀ ਮਾਤਰਾ ਜਾਂ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਕਿਉਂ ਨਿਰਧਾਰਤ ਕਰਨਾ ਚਾਹੇਗਾ?ਮਰੀਜ਼? \',\' ਸਥਿਤੀਆਂ ਜਿਵੇਂ ਕਿ ਦਮਾ, ਪੁਰਾਣੀ ਰੁਕਾਵਟ ਵਾਲੀ ਪਲਮਨਰੀ ਬਿਮਾਰੀ (ਸੀ. ਓ. ਪੀ. ਡੀ.), ਅਤੇ ਨਮੂਨੀਆ। \\n2. ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀਃਨਿਯਮਤ ਅੰਤਰਾਲਾਂ \'ਤੇ ਜਵਾਰ ਦੀ ਮਾਤਰਾ ਜਾਂ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਮਾਪਣਾ, ਇੱਕ ਡਾਕਟਰ ਸਾਹ ਦੀਆਂ ਸਥਿਤੀਆਂ ਲਈ ਇਲਾਜ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲਤਾ ਦੀ ਨਿਗਰਾਨੀ ਕਰ ਸਕਦਾ ਹੈ।ਉਦਾਹਰਣ ਦੇ ਲਈ, ਜੇ ਕਿਸੇ ਮਰੀਜ਼ ਦਾ ਸੀ. ਓ. ਪੀ. ਡੀ. ਲਈ ਇਲਾਜ ਕੀਤਾ ਜਾ ਰਿਹਾ ਹੈ, ਤਾਂ ਉਹਨਾਂ ਦੀ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਨੂੰ ਮਾਪਣ ਨਾਲ ਇਹ ਨਿਰਧਾਰਤ ਕਰਨ ਵਿੱਚ ਮਦਦ ਮਿਲ ਸਕਦੀ ਹੈ ਕਿ ਕੀ ਉਹਨਾਂ ਦੇ ਫੇਫਡ਼ਿਆਂ ਦੇ ਕੰਮ ਵਿੱਚ ਸੁਧਾਰ ਹੋ ਰਿਹਾ ਹੈ ਜਾਂ ਨਹੀਂ।ਘੱਟ ਹੋ ਰਿਹਾ ਹੈ। \\n3. ਫੇਫਡ਼ਿਆਂ ਦੀਆਂ ਬਿਮਾਰੀਆਂ ਦੀ ਪਛਾਣਃ ਜਵਾਰ ਦੀ ਮਾਤਰਾ ਜਾਂ ਮਹੱਤਵਪੂਰਣ ਸਮਰੱਥਾ ਦਾ ਅਸਧਾਰਨ ਮਾਪ ਫੇਫਡ਼ਿਆਂ ਦੀਆਂ ਬਿਮਾਰੀਆਂ ਦੀ ਮੌਜੂਦਗੀ ਦਾ ਸੰਕੇਤ ਦੇ ਸਕਦਾ ਹੈ ਜਿਵੇਂ ਕਿਜਿਵੇਂ ਕਿ ਅੰਤਰਕਾਲੀ ਫੇਫਡ਼ਿਆਂ ਦੀ ਬਿਮਾਰੀ ਜਾਂ ਪਲਮਨਰੀ ਫਾਈਬਰੋਸਿਸ। \\n4. ਆਕਸੀਜਨ ਦੀਆਂ ਜ਼ਰੂਰਤਾਂ ਨੂੰ ਨਿਰਧਾਰਤ ਕਰਨਾਃ \',\' ਇੱਕ ਡਾਕਟਰ ਜਵਾਰ ਦੀ ਮਾਤਰਾ ਜਾਂ ਮਹੱਤਵਪੂਰਨ ਨੂੰ ਕਿਉਂ ਨਿਰਧਾਰਤ ਕਰਨਾ ਚਾਹੇਗਾ?ਇੱਕ ਮਰੀਜ਼ ਦੀ ਸਮਰੱਥਾ? ', 'ਜੇ ਤੁਸੀਂ ਇੱਕ ਆਮ ਸਾਹ ਲੈਣ ਅਤੇ ਸਾਹ ਛੱਡਣ ਵਿੱਚ ਲਗਾਤਾਰ ਤਿੰਨ ਵਾਰ ਇੱਕ ਗੁਬਾਰਾ ਉਡਾਉਂਦੇ ਹੋ ਤਾਂ ਤੁਸੀਂ ਕੀ ਵੇਖੋਗੇ? \n ']
punjabi
ಅಪ್ಪಅಮ್ಮ ಇಲ್ಲದ ಕಾಂಗ್ರೆಸ್ ಪಕ್ಷದಲ್ಲಿ ಜಾತಿಗೊಬ್ಬ ಮುಖ್ಯಮಂತ್ರಿ: ಈಶ್ವರಪ್ಪ ಲೇವಡಿ ಬೆಂಗಳೂರು: ಕಾಂಗ್ರೆಸ್ನಲ್ಲಿ ಜಾತಿಗೊಬ್ಬರಂತೆ ಐವರು ಮುಖ್ಯಮಂತ್ರಿಗಳನ್ನು ಘೋಷಣೆ ಮಾಡಿಕೊಂಡಿದ್ದಾರೆ. ಕಾಂಗ್ರೆಸ್ ಪಕ್ಷ ಈ ಮಟ್ಟಕ್ಕೆ ಇಳಿಯಬಾರದಿತ್ತು ಎಂದು ಸಚಿವ ಕೆ.ಎಸ್.ಈಶ್ವರಪ್ಪ ಲೇವಡಿ ಮಾಡಿದ್ದಾರೆ. ಬೆಂಗಳೂರಿನಲ್ಲಿ ಮಾತನಾಡಿದ ಅವರು, ಮುಂದಿನ ಮುಖ್ಯಮಂತ್ರಿ ಹೇಳಿಕೆ ಬಗ್ಗೆ ಬೆಂಬಲಿಗ ಶಾಸಕರ ಬಾಯಿ ಮುಚ್ಚಿಸಲು ಸಿದ್ದರಾಮಯ್ಯ ಮುಂದಾಗಿಲ್ಲ. ಡಿ.ಕೆ. ಶಿವಕುಮಾರ್ ಕೂಡಾ ಯಾರ ಬಾಯಿಯನ್ನೂ ಮುಚ್ಚಿಸಿಲ್ಲ. ಎಂ.ಬಿ. ಪಾಟೀಲ ನಾನು ಸನ್ಯಾಸಿ ಅಲ್ಲ ಅಂತಿದ್ದಾರೆ. ದಲಿತ ಮುಖ್ಯಮಂತ್ರಿ ಎಂದು ಜಿ. ಪರಮೇಶ್ವರ, ನಾನೂ ಮುಖ್ಯಮಂತ್ರಿ ಅಭ್ಯರ್ಥಿ ಎಂದು ತನ್ವೀರ್ ಸೇಠ್ ಹೇಳುತ್ತಿದ್ದಾರೆ. ಭಾವಿ ಮುಖ್ಯಮಂತ್ರಿ ವಿಷಯದಲ್ಲಿ ಕಾಂಗ್ರೆಸ್ನಲ್ಲಿ ಬಡಿದಾಟ ನಡೆಯುತ್ತಿದೆ ಎಂದರು. ಇಂದು ಕಾಂಗ್ರೆಸ್ ಎಲ್ಲಿದೆ ಎಂದು ಹುಡುಕುವಂತಾಗಿದೆ. ರಾಜಸ್ಥಾನ, ಪಂಜಾಬ್ನಲ್ಲಿ ಸರಕಾರವಿರುವುದು ಬಿಟ್ಟರೆ ಕರ್ನಾಟಕದಲ್ಲಿ ಗೆದ್ದಿದ್ದ 70ಕ್ಕೂ ಹೆಚ್ಚು ಮಂದಿಯಲ್ಲಿ ಒಂದಿಷ್ಟು ಜನ ಬಿಟ್ಟು ಹೋಗಿದ್ದಾರೆ. ಕಾಂಗ್ರೆಸ್ ಜೀವವೇ ಹೋಗುತ್ತಿರುವ ಪರಿಸ್ಥಿತಿಯಲ್ಲಿ ಮುಂದಿನ ಸಿಎಂ ನಾನು ಎಂಬಂತೆ ಬಡಿದಾಡುಕೊಳ್ಳುತ್ತಿದ್ದಾರೆ. ಸಾಯುತ್ತಿರುವ ಕಾಂಗ್ರೆಸ್ ಉಳಿಸಲು ಯಾರಿಂದಲೂ ಸಾಧ್ಯವಿಲ್ಲ. ಇನ್ನು ಸಿಎಂ ಸ್ಥಾನ ಕನಸೇ ಸರಿ ಎಂದು ಟೀಕಿಸಿದ್ದಾರೆ.
kannad
ಅನ್ಯಜಾತಿಯ ಯುವಕನೊಂದಿಗೆ ಪ್ರೀತಿ ಮಗಳ ಕುತ್ತಿಗೆ ಸೀಳಿ ಕೊಂದ ತಂದೆ ಪಿರಿಯಾಪಟ್ಟಣ ಮೈಸೂರು: ಬೇರೆ ಜಾತಿಯ ಯುವಕನನ್ನು ಪ್ರೀತಿಸುತ್ತಿದ್ದ ಮಗಳನ್ನು ತಂದೆಯೇ ಶುಕ್ರವಾರ ಕೊಲೆ ಮಾಡಿದ್ದು, ನಂತರ ಪೊಲೀಸರಿಗೆ ಶರಣಾಗಿದ್ದಾನೆ. ಪಟ್ಟಣದ ಜಯರಾಮ್ ಆರೋಪಿ. ಗಾಯತ್ರಿ 19, ಮೃತಪಟ್ಟ ಯುವತಿ. ಸುಮಾರು ಒಂದು ತಿಂಗಳಿನಿಂದಲೂ, ಮಗಳ ಪ್ರೀತಿಯ ವಿಚಾರದಲ್ಲಿ ಮನೆಯಲ್ಲಿ ಗಲಾಟೆ ನಡೆಯುತ್ತಿತ್ತು. ಶುಕ್ರವಾರ ಮಧ್ಯಾಹ್ನ, ಜಮೀನಿನಲ್ಲಿ ಕೆಲಸ ಮಾಡುತ್ತಿದ್ದ ತಂದೆಗೆ ಗಾಯತ್ರಿ ಊಟವನ್ನು ತಂದಿದ್ದಾಳೆ. ಈ ವೇಳೆ, ಬೇರೆ ಜಾತಿಯ ಯುವಕನನ್ನು ಪ್ರೀತಿಸುವುದು ಬೇಡ ಎಂದು ಜಯರಾಮ್ ಹೇಳಿದ್ದಾನೆ. ಈ ಮಾತಿಗೆ ಒಪ್ಪದ ಗಾಯತ್ರಿ, ತಂದೆಯೊಂದಿಗೆ ಮಾತಿನ ಚಕಮಕಿ ನಡೆಸಿದ್ದಾರೆ. ಜೊತೆಗೆ, ಪ್ರೀತಿಸುವುದನ್ನು ಮುಂದುವರಿಸಿದರೆ ಏನು ಮಾಡುತ್ತೀಯ? ಎಂದು ಕೇಳಿದ್ದಾರೆ. ಇದರಿಂದ ಕೋಪಗೊಂಡ ಜಯರಾಮ್, ಪಕ್ಕದಲ್ಲೇ ಇದ್ದ ಮಚ್ಚನ್ನು ತೆಗೆದು ಮಗಳತ್ತ ಬೀಸಿದ್ದಾನೆ. ಏಟಿನಿಂದ ತಪ್ಪಿಸಿಕೊಳ್ಳಲು, ಆಕೆ ಅಡ್ಡವಾಗಿ ಕೈಯನ್ನು ಹಿಡಿದುಕೊಂಡರೂ, ಮಚ್ಚು ಕುತ್ತಿಗೆಯನ್ನು ಸೀಳಿದೆ. ಸ್ಥಳದಲ್ಲೇ ಮೃತಪಟ್ಟ ಮಗಳನ್ನು ಕಂಡು ದಿಗ್ಭ್ರಾಂತನಾದ ಜಯರಾಮ್, ನೇರ ಪೊಲೀಸ್ ಠಾಣೆಗೆ ಬಂದು ಸಿಟ್ಟಿನ ಭರದಲ್ಲಿ ಆದ ಅನಾಹುತವನ್ನು ವಿವರಿಸಿ, ಶರಣಾಗಿದ್ದಾಗಿ ಪೊಲೀಸರು ತಿಳಿಸಿದ್ದಾರೆ. ಕೃತ್ಯ ನಡೆದ ಸ್ಥಳಕ್ಕೆ ಡಿವೈಎಸ್ಪಿ ರವಿಪ್ರಸಾದ್, ಇನ್ಸ್ಪೆಕ್ಟರ್ಗಳಾದ ಜಗದೀಶ್, ಬಿ.ಆರ್.ಪ್ರದೀಪ್, ಪಿಎಸ್ಐ ಸದಾಶಿವತಿಪರೆಡ್ಡಿ, ಪುಟ್ಟರಾಜು ಭೇಟಿ ನೀಡಿ ಪರಿಶೀಲನೆ ನಡೆಸಿದರು.
kannad
एसडी कालेज में पहुंच अपने छात्र जीवन की यादों में खोए गृह मंत्री अनिल विज चंडीगढ़ चन्द्रशेखर धरणी: राजनीति के गब्बर कहे जाने वाले हरियाणा के गृह मंत्री अनिल विज अपनी प्रभावी कार्यशैली और तेज तर्रार बयानों को लेकर अक्सर चर्चाओं में रहते हैं। आक्रामक अंदाज एवं एक्शन मोड में रहने वाले गृह मंत्री अनिल विज विरले ही सहज स्वभाव में नजर आते हैं। अम्बाला छावनी एसडी कालेज से शिक्षा उत्तीर्ण करने वाले गृह मंत्री अनिल विज जब एक समारोह में इसी कालेज में पहुंचे तो सहज अंदाज में पुरानी यादों को तरोंताजां कर गए। गृह मंत्री अनिल विज ने कहा कि उन्हें राजनीतिक में लाने वाले गणित के प्रोफेसर गोपाल कृष्ण ही थे जिनकी बदौलत आज वह राजनीति में आकर इस मुकाम पर पहुंच जनसेवा में जुटे हैं। उनके समय कालेज प्रिंसिपल गोपालदास कपूर को उनपर गहरा भरोसा था और वह यहां तक कहते थे कि अनिल विज ने जो कहना होगा सामने आकर कहेगा, कभी छिपकर वार नहीं करेगा। गृह मंत्री ने कालेज जीवन के अन्य पलों को सांझा भी किया।गृह मंत्री अनिल विज बीएससी उत्तीर्ण है और कालेज में गणित प्रो. गोपाल कृष्ण उनके गुरू थे। उन्होंने मंच से ही कहा कि आज मैं जो कुछ हूं, प्रोफेसर गोपाल कृष्ण की बदौलत हूं, मेरा राजनीतिक जीवन इसी एसडी कालेज में शुरू हुआ। सन् 196970 में विद्यार्थी परिषद में गोपाल कृष्ण जी ही उन्हें लेकर आए थे और राष्ट्रीय स्वयं सेवक संघ की शाखा में भी गोपाल कृष्ण जी ही लेकर गए थे। अगर वो मुझे इस रास्ते पर न लेकर जाते तो न जाने मैं भटककर किस रास्ते पर चला जाता और कहां होता, मैं जो कुछ हूं आज इन्हीं की बदौलत हूं।गृह मंत्री अनिल विज ने कालेज दिनों का किस्सा सुनाते हुए बताया कि उस समय कालेज प्रिंसिपल गोपालदास कपूर होते थे और वह उन्हें कभी नहीं भूला सकते। उनकी सोच और उनकी गहराई को वह कभी नहीं भूला सकते। गृह मंत्री विज ने बताया कि कालेज में एक बार एक हादसा हुआ और इल्जाम उनपर पर लगा कि अनिल विज ने यह किया है। बहुत लोग उनके पीछे पड़ गए, सारे प्रोफेसर इकट्ठा हो गए और वहां कहा गया कि जब तक जिसने शरारत की है उसे सजा नहीं दी जाती तब तक शिक्षण का कार्य कालेज में आगे नहीं बढ़ाएंगे। तब प्रिंसिपल गोपालदास कपूर ने कहा कि तो फिर आप बताओं यह शरारत किसने की, तो एक महोदय ने कहा कि यह शरारत अनिल विज ने की है।इसपर प्रिंसिपल गोपालदास ने छाती ठोककर कहा कि अनिल विज कभी झूठी शिकायत नहीं कर सकता, जिस दिन करेगा सच्ची करेगा और मैं यह दावे के साथ कह सकता हूं कि अनिल विज यह काम नहीं कर सकता। गृह मंत्री अनिल विज ने बताया कि यह बात कहकर प्रिंसिपल गोपालदास ने पूरा मामला डिफ्यूज कर दिया। इसके बाद जल्द ही पता चला कि किसी और ने यह झूठी शिकायत की थी। गृह मंत्री विज ने कहा कि मैं उनका सदा आभारी रहता हूं कि उन्होंने मेरी पहचान की और कहा कि अनिल विज ने जो कहना होगा मुंह पर आकर कहेगा छिपकर वार नहीं करेगा। उन्होंने कहा कि उनके शिक्षण संस्थान ने उन्हें संस्कार दिए उन्हीं की बदौलत वह कुछ कर सके हैं।
hindi
RussiaUkraine War: अब तक यूक्रेन ने किन इलाकों पर रूस ने किया हमला? आगे इन 5 संभावनाओं पर टिकी नजरें RussiaUkraine War: इस वक्त पूरी दुनिया में हलचल बहुत तेज है. यूक्रेन के कई इलाकों में रूसी सेना पहुंच चुकी है तो दूसरी तरफ यूक्रेनरूस संकट को लेकर आपातकात बैठकों का दौर जारी है.Click here to get the latest updates on Ukraine Russia conflict आज पूरी दुनिया इसी सवाल में उलझी हुई है कि रूस और यूक्रेन के बीच शुरू हुआ युद्ध क्या विश्वयुद्ध में बदल जाएगा? दरअसल, यूक्रेन पर रूस ताबड़तोड़ हमले कर रहा है. यूक्रेन की मीडिया के मुताबिक, रूसी सेना अबतक यूक्रेन के 30 से ज़्यादा शहरों पर हमला कर चुकी है. कभी मिसाइल दनदनाती हुई आती है, तो कभी टैंक से निकले गोले की गर्जना सुनाई पड़ती है. रूस और यूक्रेन की इस जंग से दुनिया हैरान है, परेशान है, हर कोई यही सोच रहा है, पता नहीं पुतिन के मन में क्या है, इस जंग में आगे क्या होने वाला है? इधर पुतिन ने ऑर्डर दिया और उधर रूसी सेना ने यूक्रेन बॉर्डर पर तबाही मचाना शुरू कर दिया. कई इलाकों में मिसाइल से लेकर रॉकेट से हमला बोला हुआ. पूरी दुनिया ने तबाही का मंजर देखा, लेकिन पुतिन की हिमाकत पर घुटने टेकने की बजाय यूक्रेन के राष्ट्रपति ने आखिरी सांस तक जंग लड़ने का एलान कर दिया. यूक्रेन सेना की तरफ रूसी सैनिकों और रूसी फाइटर प्लेन को मार गिराने का दावा किया गया .यानी जंग शुरू होने के बाद दोनों मुल्कों की तरफ से अपनेअपने दावे किए जा रहे हैं. लेकिन यूक्रेन अब दुनिया के लिए विश्व युद्ध का ट्रिगर प्वाइंट बन चुका है. यूक्रेन के मुताबिक, रूस ने तीन तरफ से हमला बोला है. कहांकहां से हुआ हमला... रूस, बेलारूस औऱ क्रीमिया बॉर्डर की तरफ से हमला हुआ है यूक्रेन की राजधानी कीव समेत लुहांस्क, खारकीव, चेरनीव, सुमी और जेटोमीर प्रांतों पर हमले जारी हैं. रूस की ग्राउंड फोर्सेस यूक्रेन में घुस गईं और वहां कई गांवों पर कब्जा कर लिया है. रूस के कमांडो पैराट्रूपर्स यूक्रेन के मिलिट्री इंस्टॉलेशन्स के करीब उतरकर इनको अपने कब्जे में ले रहे हैं. बॉर्डर गार्ड सर्विस के मुताबिक रूस का सैन्य दस्ता बेलारूस से यूक्रेन के उत्तरी चेरनीव इलाके और रूस से सुमी क्षेत्र में घुसा है. बेलारूस लंबे समय से रूस का सहयोगी रहा है, एक्सपर्ट इसे रूस का क्लाइंट देश बताते हैं. लुहांस्क और खारकीव के साथ ही क्रीमिया के खेरसन क्षेत्र में भी रूसी सैन्य दस्ता पहुंच गया है. रूस ने सबसे पहले अपने टैंक से हमले किए जिसमें बॉर्डर गार्ड्स जख़्मी हुए. दक्षिण बंदरगाह शहर ओडेसा के पास भी ट्रूप मूवमेंट की रिपोर्ट्स आई हैं. 48 घंटे बेहद अहम डिफेंस एक्सपर्ट मानते हैं कि पूरी दुनिया के लिए अगले 48 घंटे बहुत अहम हैं. अगर नाटो की तरफ से रूस के खिलाफ जवाबी कार्रवाई की गई तो कुछ भी हो सकता है. यानी अब रूस के एक्शन के बाद अब कई परिदृश्य सामने हैं: 1. रूस अपनी सैन्य कार्रवाई रोक दे, जिसकी संभावना न के बराबर है. 2. यूक्रेन नाटो में शामिल न हो और रूस की बात माने. 3. पाबंदी के बजाय नाटो की सेना यूक्रेन की मदद में उतरे. 4. नाटो की सेना जंग के मैदान में आई तो विश्वयुद्ध का खतरा. 5. महायुद्ध का खतरा टालने के लिए कूटनीतिक पहल हो. तमाम देशों ने की निंदा यूएन से लेकर तमाम मुल्कों ने पुतिन के मिलिट्री एक्शन की निंदा की है, तो वहीं दिल्ली में यूक्रेन के राजदूत की तरफ से नरेंद्र मोदी से दखल देने की अपील की गई. जिसके बाद पीएम मोदी ने रूसी राष्ट्रपति पुतिन से करीब 25 मिनट तक बातचीत की. सवाल यही है कि मौजूदा जंगी हालात पर अब अमेरिका क्या फैसला करता है? क्योंकि जंग के मैदान में पुतिन ने अपने पत्ते खोल दिए हैं, अब बारी अमेरिका की है, जिसने यूक्रेन का साथ निभाने का वादा किया है. यूक्रेन से गौरव सावंत का इनपुट Ukraine की राजधानी कीव को सुबह तक घेर सकता है रूस, जरूरी सामान की आपूर्ति रोकने की रणनीति रूस ने यूक्रेन में Chernobyl nuclear plant पर किया कब्जा, बन सकता है तबाही की वजह
hindi
കാലാവസ്ഥാ വ്യതിയാനം, ദുരന്തനിവാരണം: സമഗ്ര പാക്കേജും സ്ക്വാഡുമായി ദുരന്ത നിവാരണ അതോറിറ്റി തൃശൂര്: തദ്ദേശ സ്ഥാപനങ്ങളെ ഏകോപിപ്പിച്ച്, കാലാവസ്ഥാ വ്യതിയാനത്തിനും ദുരന്തനിവാരണത്തിനും സമഗ്രമായ പാക്കേജുമായി ജില്ലാ ദുരന്തനിവാരണ അതോറിറ്റി. പ്രളയം, വരള്ച്ച, വെള്ളക്കെട്ട്, ഉയര്ന്ന താപനില തടയല്, നദീതട മറ്റ് ജലാശയങ്ങളുടെ സംരക്ഷണം, മണ്ണൊലിപ്പ് തടയല്, കാര്ഷിക മേഖലയുടെ സംരക്ഷണം എന്നിവയാണ് ഉള്പ്പെടുത്തുക. ദുരന്ത നിവാരണ സംവിധാനങ്ങളെ ഏകോപിപ്പിക്കാന്, സ്ക്വാഡ് പ്രവര്ത്തനം കാര്യക്ഷമമാക്കാന് തദ്ദേശ സ്ഥാപനങ്ങളില് കൂടുതല് സംവിധാനമുണ്ടാകും. അടിയന്തര സാഹചര്യത്തില് ദുരന്ത മുന്നൊരുക്ക സംവിധാനവും സജ്ജീകരിക്കും. പഞ്ചായത്തുകള്, നഗരസഭകള്, കോര്പറേഷന് എന്നിവിടങ്ങളില് ദുരന്തനിവാരണത്തിന് കൃത്യമായ വിവരശേഖരണം നടത്താനും സംവിധാനം ഒരുക്കും. എമര്ജന്സി റെസ്പോണ്സ് ടീമിനെ ഇ.ആര്.ടി കൂടുതല് കാര്യക്ഷമമാക്കി ദുരന്തസാദ്ധ്യതകളെ കണ്ടറിയാനും സംവിധാനമൊരുക്കും. യുണൈറ്റഡ് നേഷന്സിന്റെ ഇന്റര് ഗവണ്മെന്റല് പാനല് ഓണ് ക്ലൈമറ്റ് ചേഞ്ച് ആറാം അസെസ്മെന്റ് റിപ്പോര്ട്ട് പുറത്തിറങ്ങിയ സാഹചര്യത്തിലാണ് ജില്ലാ ദുരന്ത നിവാരണ അതോറിറ്റിയും പ്ലാനിംഗ് ഓഫീസും ചേര്ന്ന് തദ്ദേശ സ്ഥാപങ്ങളിലെ വര്ക്കിംഗ് ഗ്രൂപ്പ് അംഗങ്ങള്ക്കും ഉദ്യോഗസ്ഥര്ക്കും കാലാവസ്ഥാ വ്യതിയാനവും ദുരന്ത നിവാരണവും എന്ന വിഷയത്തില് ഓണ്ലൈന് ക്ലാസ് സംഘടിപ്പിച്ചത്. ഇതിലാണ് പദ്ധതിയുടെ ഏകദേശ രൂപരേഖ തയ്യാറാക്കിയത്. പുഴകളും സമുദ്രതീരവുമേറെയുള്ള ജില്ലയില് സ്ഥിതിഗതി വിലയിരുത്താന് പ്രാദേശിക തലത്തില് പ്രവര്ത്തനം വിപുലപ്പെടുത്തും. പ്രളയം, വരള്ച്ച എന്നിവ സംഭവിക്കുന്ന സാഹചര്യം തടയുന്നതിന് തദ്ദേശ സ്ഥാപനങ്ങള് പൊതുജനങ്ങളെ ഉള്പ്പെടുത്തി നിരീക്ഷണ സംവിധാനം ഏര്പ്പെടുത്തും. മഴ പെയ്താല് വെള്ളം ഉയരുന്ന പ്രദേശങ്ങളുടെ വിവരശേഖരണവും നടത്തും. പദ്ധതിയുടെ പരിശീലന ഉദ്ഘാടനം കളക്ടര് ഹരിത വി കുമാര് നിര്വഹിച്ചു. പ്ലാനിംഗ് ഓഫീസര് എന്.കെ ശ്രീലത, കെ.എഫ്.ആര്.ഐയിലെ പ്രിന്സിപ്പല് സയന്റിസ്റ്റ് ഡോ. ടി.വി സജീവ്, എല്.എസ്.ജി.ഡി.എം പ്ലാന് കോര്ഡിനേറ്റര് നൗഷബ നാസ്, കില ഡയറക്ടര് ഡോ. ജോയ് ഇളമണ്, ദുരന്ത നിവാരണ ഡെപ്യൂട്ടി കളക്ടര് ഐ.ജെ മധുസൂദനന്, ഹസാര്ഡ് അനലിസ്റ്റ് സുസ്മി സണ്ണി തുടങ്ങിയവര് പങ്കെടുത്തു. മറികടക്കാന് ശാസ്ത്രീയ പഠനരീതി പ്രളയം, മറ്റ് ദുരന്ത സാഹചര്യം ഉണ്ടായതിനാല് ശാസ്ത്രീയമായ പഠനരീതി ആവിഷ്കരിക്കും പ്രളയ ഭൂപടം തദ്ദേശ സ്ഥാപനങ്ങള് രൂപപ്പെടുത്തണം 2018 ലെ പ്രളയം ബാധിച്ച പ്രദേശങ്ങളുടെ ഭൂപടം തദ്ദേശ സ്ഥാപനങ്ങള് ഓരോ വര്ഷവും വിശകലനം നടത്തി നിര്ദ്ദേശം നല്കും. കൃഷിയിടങ്ങളില് വരള്ച്ച ഉണ്ടാകുന്ന സാഹചര്യം കണ്ടറിഞ്ഞ് തരണം ചെയ്യാന് വാര്ഡ് തലത്തില് സജ്ജീകരണം. ആഗോളതാപനം തടയാന് തദ്ദേശ സ്ഥാപനങ്ങള് രൂപരേഖ തയ്യാറാക്കും അനധികൃതമായ ക്വാറികള്, മണ്ണെടുപ്പ് എന്നിവ പരിശോധിക്കാന് വാര്ഡ് മെമ്ബറുടെ നേതൃത്വത്തില് സ്ക്വാഡ് കുടുംബശ്രീ പ്രവര്ത്തകര്, എന്.എസ്.എസ്, എന്.സി.സി പ്രവര്ത്തകര് എന്നിവരെ ഉള്പ്പെടുത്തി ദുരന്തനിവാരണ പ്രവര്ത്തനം
malyali
Lynden Gooch can't wait to walk out at Wembley after Sunderland booked their place in the Checkatrade Trophy final this evening. Defeating Bristol Rovers at the Memorial Stadium, the Black Cats took the lead in the first 45 when Will Grigg slotted home Max Power's through ball. Lewis Morgan then doubled the Lads' advantage early in the second period to put the tie beyond doubt and seal Sunderland's date at Wembley.
english
ಸ್ಟಾಕ್ ಹೋಮ್: ಅಮೆರಿಕದ ಕವಯತ್ರಿಗೆ ಪ್ರತಿಷ್ಠಿತ ನೊಬೆಲ್ ಸಾಹಿತ್ಯ ಪ್ರಶಸ್ತಿ ವಾಷಿಂಗ್ಟನ್ನವದೆಹಲಿ: ಅಮೆರಿಕದ ಖ್ಯಾತ ಕವಯಿತ್ರಿ ಲೂಯಿಸ್ ಗ್ಲುಕ್ ಅವರಿಗೆ 2020ನೇ ಸಾಲಿನ ಪ್ರತಿಷ್ಠಿತ ನೊಬೆಲ್ ಸಾಹಿತ್ಯ ಪ್ರಶಸ್ತಿ ಗುರುವಾರ ಅಕ್ಟೋಬರ್ 08, 2020 ಘೋಷಿಸಲಾಗಿದೆ. ನೊಬೆಲ್ ಸಾಹಿತ್ಯ ಪ್ರಶಸ್ತಿಯನ್ನು ಜಗತ್ತಿನ ಶ್ರೇಷ್ಠ ಸಾಹಿತಿಗೆ ಪ್ರತಿ ವರ್ಷ ನೀಡಲಾಗುತ್ತದೆ. 1943ರಲ್ಲಿ ಲೂಯಿಸ್ ಗ್ಲುಕ್ ನ್ಯೂಯಾರ್ಕ್ ನಲ್ಲಿ ಜನಿಸಿದ್ದರು.ಮೆಸಾಚುಸೆಟ್ಸ್ ನ ಕೇಂಬ್ರಿಡ್ಜ್ ನಲ್ಲಿ ಲೂಯಿಸ್ ವಾಸವಾಗಿದ್ದಾರೆ. ಸ್ವೀಡಿಶ್ ಅಕಾಡೆಮಿಯ ಖಾಯಂ ಕಾರ್ಯದರ್ಶಿ ಮ್ಯಾಟ್ಸ್ ಮಾಲಮ್ ಈ ಪ್ರಶಸ್ತಿಯನ್ನು ಘೋಷಿಸಿದ್ದಾರೆ. ಅಮೆರಿಕದ ಯೇಲ್ ಯೂನಿರ್ವಸಿಟಿಯಲ್ಲಿ ಆಂಗ್ಲ ಪ್ರೊಫೆಸರ್ ಆಗಿ ಲೂಯಿಸ್ ಕಾರ್ಯನಿರ್ವಹಿಸುತ್ತಿದ್ದಾರೆ. 1968ರಲ್ಲಿ ಫಸ್ಟ್ ಬಾರ್ನ್ ಕವನ ಸಂಕಲನದ ಮೂಲಕ ಸಾಹಿತ್ಯ ಲೋಕಕ್ಕೆ ಕಾಲಿಟ್ಟಿದ್ದರು. ಅಮೆರಿಕದ ಸಮಕಾಲೀನ ಸಾಹಿತ್ಯದಲ್ಲಿನ ಪ್ರಮುಖ ಕವಿಗಳಲ್ಲಿ ಲೂಯಿಸ್ ಕೂಡಾ ಒಬ್ಬರಾಗಿದ್ದಾರೆ. ಲೂಯಿಸ್ 1993ರಲ್ಲಿ ಪುಲಿಟ್ಜೆರ್ ಪ್ರಶಸ್ತಿ, 2014ರಲ್ಲಿ ನ್ಯಾಷನಲ್ ಬುಕ್ ಅವಾರ್ಡ್ ಸೇರಿದಂತೆ ಹಲವಾರು ಪ್ರತಿಷ್ಠಿತ ಪ್ರಶಸ್ತಿಗಳಿಗೆ ಭಾಜನರಾಗಿದ್ದರು.
kannad
ಬನ್ನೇರುಘಟ್ಟದಲ್ಲಿ ಹೊಸ ಅತಿಥಿ: ಗಂಡು ಮರಿಗೆ ಜನ್ಮ ಕೊಟ್ಟ ನೀರಾನೆ..! ಬೆಂಗಳೂರುಜು.26: ಆನೇಕಲ್ ಬನ್ನೇರುಘಟ್ಟಉದ್ಯಾನವನಕ್ಕೆ ನೂತನ ಅತಿಥಿಯ ಆಗಮನವಾಗಿದ್ದು, ದಶ್ಯಾ11 ಎಂಬ ನೀರಾನೆ ಶನಿವಾರ ಮುದ್ದಾದ ಗಂಡು ಮರಿಯೊಂದಕ್ಕೆ ಜನ್ಮ ನೀಡಿದೆ. ನಾಗಾ 17 ಈ ಮರಿಯ ತಂದೆಯಾಗಿದೆ. ದಶ್ಯಾ 2018ರ ಜನವರಿಯಲ್ಲಿ ಅಲೋಕ್ ಎಂಬ ಮರಿಗೆ ಜನ್ಮ ನೀಡಿತ್ತು. ಇದೀಗ ಮತ್ತೊಂದು ಮರಿಗೆ ಜನ್ಮ ನೀಡಿದ್ದು, ಪಾರ್ಕ್ನಲ್ಲಿ ನೀರಾನೆಗಳ ಸಂಖ್ಯೆ 8ಕ್ಕೆ ಏರಿಕೆಯಾಗಿದೆ. ಬಲೆಗೆ ಬಿತ್ತು ಬೃಹತ್ ಹಕ್ಕಿ ತೊರ್ಕೆ ಮೀನು..! ಇಲ್ಲಿವೆ ಫೋಟೋಸ್ ನಮ್ಮಲ್ಲಿ ಅಗತ್ಯಕ್ಕಿಂತ ಹೆಚ್ಚು ನೀರಾನೆಗಳಿದ್ದು, ಪ್ರಾಣಿ ವಿನಿಮಯ ಆಧಾರದಲ್ಲಿ ಇತರೆ ಝೂಗಳೊಂದಿಗೆ ವ್ಯವಹರಿಸಿ ನಮಗೆ ಬೇಕಿರುವ ಪ್ರಾಣಿ ಪಕ್ಷಿಗಳನ್ನು ತರುವ ಆಲೋಚನೆ ಇದೆ ಎಂದು ಕಾರ್ಯ ನಿರ್ವಾಹಕ ನಿರ್ದೇಶಕಿ ವನಶ್ರೀ ವಿಪಿನ್ ಸಿಂಗ್ ತಿಳಿಸಿದ್ದಾರೆ. ಬೆಂಗಳೂರಿನ ಪ್ರಸಿದ್ಧ ಉದ್ಯಾನವನ ಬನ್ನೇರುಘಟ್ಟದಲ್ಲಿ ಪ್ರವಾಸಿಗರ ಪ್ರವೇಶ ಶುಲ್ಕವನ್ನು ಜನವರಿಯಲ್ಲಿ ಏರಿಕೆ ಮಾಡಲಾಗಿತ್ತು. ನೂತನ ದರ ಜಾರಿ ಮಾಡಲಾಗಿತ್ತಾದರೂ ನಂತರದಲ್ಲಿ ಕೊರೋನಾ ವ್ಯಾಪಿಸಿದ್ದರಿಂದ ಪ್ರವಾಸಿಗರನ್ನು ನಿರ್ಬಂಧಿಸಲಾಗಿದೆ.
kannad
Stachyris chrysaea, (Hodgs.), Jerd. B. Ind. ii, p. 22; Hume, Rough Draft N. & E. no. 394. There is no figure of either the nest or eggs of the Golden-headed Babbler amongst the drawings of Mr. Hodgson that I possess. From Sikkim Mr. Gammie writes: "I took a nest of this bird out of a large forest, at 5000 feet elevation, on the 15th May. It is of an oval shape, neatly made of small bamboo-leaves only, devoid of lining, and was fixed vertically between a few upright sprays, within two feet of the ground. It measures externally 5·25 inches in height by 4 in diameter; internally 1·5 in depth, from lip of egg-cavity, by 1·75 in diameter. The entrance is also 1·75 across. "The eggs were four in number; three of them well set and the fourth quite fresh. The set eggs were altogether pure white, but the fresh egg, unblown, was of a pinky-white colour with a pure white cap; when blown it exactly resembled the others." The eggs sent as pertaining to this species by Mr. Gammie are very regular ovals, pure white, and somewhat glossy, but they are so small that I can scarcely credit their really belonging to this species. Their cubit contents are not half those of the average eggs of S. nigriceps. They measure 0·63 by 0·48. Stachyris ruficeps, (Bl.,) Jerd. B. Ind. ii, p. 22; Hume, Rough Draft N. & E. no. 393. The Red-headed Babbler breeds in Nepal, according to Mr. Hodgson, from April to June, building a large massive cup-shaped nest amongst bamboos, as a rule, at heights of from 7 to 10 feet from the ground. The nest is wedged in between half a dozen or more creepers and shoots, and is composed almost exclusively of dry bamboo-leaves neatly, but rather loosely, interwoven, and lined also with these leaves. One which he measured was rather oval in shape, 5·25 inches in diameter one way, by 4 the other, and 3·6 in height. The leaves used in the rim of the cup were projected a little inwards, so as to make the mouth of the cavity a little smaller than the diameter of this latter within. The diameter of the mouth was 2 inches, that of the cavity 2·5, and the latter is about 1·5 deep. Four eggs are laid, a sort of brownish white, speckled and spotted with brown or reddish brown. The egg figured measures 0·7 by 0·52, and is a moderately broad, regular oval. Dr. Jerdon says: "A nest and eggs, said to be of this species, were brought to me at Darjeeling. The nest was a loose structure of grass and fibres, and contained two eggs of a greenish-white colour with some rusty spots." From Sikkim Mr. Gammie writes: "I took two nests of this Babbler in April; one of them at an elevation of 3500 feet, the other at 5000 feet, but it no doubt breeds also both lower and higher. They are of a neat egg-shape, with entrance at side, and were fixed vertically between a few upright sprays, within three feet of the ground, in open situations near large trees. Mr. Hodgson evidently did not take the one he describes with his own hands, for he places it horizontally, which gives a height of 3·6 inches only. The external dimensions are about 5·5 inches in height and 4 in diameter. Internally the diameter is 2 inches, and the depth, from roof, 3·25. The entrance is 2 across. They are composed of dry bamboo-leaves only, put neatly and firmly together, and are lined with a very few grassy fibres. They each contained four well-set eggs." Mr. Mandelli, however, took a nest of this species at Lebong on the 23rd June, in the middle of a tea-bush which grew at the side of a small ravine, which was neither hooded nor domed. The nest was about 18 inches from the ground and completely sheltered from above by tea-leaves. It was a deep cup composed externally chiefly of bamboo-leaves, but with a good many dead leaves of trees incorporated in the base, and lined with very fine grass-stems. It contained four fresh eggs. It is quite clear that this species, like S. nigriceps, only domes its nest in certain situations. The eggs obtained by Mr. Gammie and Mr. Mandelli are very regular, slightly elongated ovals. The shell is very fine and compact, but has only a faint gloss. The ground is white and round the larger end is a zone or imperfect cap of specks and spots of brownish red, generally intermingled with tiny spots, usually very faint, of pale purple. A few specks and spots brown, yellowish, or reddish brown, and sometimes also pale purple, are scattered about the rest of the egg. In length the eggs vary from 0·64 to 0·72, and in breadth from 0·50 to 0·53, but the average of eight eggs was 0·68 by 0·52 nearly. Stachyris pyrrhops, (Hodgs.) Jerd. B. Ind. ii, p. 21; Hume, Rough Draft N. & E. no. 392. Accounts differ somewhat as to the eggs of the Red-billed Babbler. From Murree, Colonel C. H. T. Marshall writes: "Nest found in low ground, about 100 yards from the River Jheelum, situated in a low bush, externally composed of broad dry reed-leaves, and interiorly of fine grass, cup-shaped. Eggs, four in number, long oval, white, with a few reddish specks at the larger end. Length ·7, breadth ·5. Lays in the latter end of June, 4000 feet up." The nest, which he kindly sent me, is a deep cup, coarsely made interiorly of grass-stems, externally of broad blades of grass, in which a few dead leaves are incorporated; there is no lining. Exteriorly the nest is about 3·5 inches in diameter, and about 3 in depth; the egg-cavity is a little more than 2 inches in diameter, and fully 1·75 in depth. Mr. Hodgson "found the nest" of this species in Nepal, "at an elevation of about 6000 feet, in shrubby upland." It was "placed in a small shrub about 2 feet from the ground." It was "a very deep cup, about 4 inches in length, and 2·5 in diameter externally, placed obliquely endwise upon cross-stems of the shrub, and opening, as it were obliquely, upwards at one end," the cavity being about 1·5 in diameter. The nest was made of "dry leaves and grass pretty compactly woven." The nest "contained four eggs," which are described as "whitish, with spare and faint fawn-colored spots," and are figured as measuring 0·65 by 0·47. Captain Hutton says: "This is a common species both in the Dhoon and in the hills, and may be found at all seasons, making known its presence among the brushwood by the utterance of a clear and musical note like the ringing of a tiny bell. In the winter time it is often mixed up with flocks composed of Siva strigula and Liothriae luteus, creeping among the bushes like the Pari and Phylloscopi. It constructs its nest at the base of bushes, the eggs being three in number, of a faint greenish grey, thickly irrorated with small reddish-brown specks. The nest is composed of dry grass-blades externally, within which is a layer of fine woody stalks and fibres, and lined with black hair. It is cup-shaped, and placed upon a thick bed of dried leaves, which are most probably accumulated beneath the bush by the wind. One nest was taken at Dehra, in a garden, on the 30th July, and others at Mussoorie about the same time." But the eggs sent by Captain Hutton clearly do not, I think, pertain to this species. Those taken by Colonel Marshall are certainly genuine, and are considerably larger and very differently colored eggs. In shape they are moderately broad ovals, some of them slightly compressed towards the small end. The shell is very fine and smooth, but with scarcely any gloss; the ground is pure white, and they are thinly speckled and spotted, the markings being much more numerous about the large end, where they have a tendency to form an ill-defined cap or zone with brownish red or pinky brown. In length they vary from 0·62 to 0·69, and in breadth from 0·5 to 0·52.
english
গ্র্যামিতে সেরা গান লিভ দ্য ডোর ওপেন, অ্যালবাম উই আর নেই বিটিএসএর জায়গা ODD বাংলা ডেস্ক: সঙ্গীত জগতের মর্যাদাপূর্ণ বিশেষ পুরস্কারগুলির মধ্যে অন্যতম হল গ্র্যামি অ্যাওয়ার্ডস সঙ্গীত শিল্পে অসামান্য অর্জনের জন্য দেয়া হয় এই অ্যাওয়ার্ড লস অ্যাঞ্জেলসের বদলে লাস ভেগাসে স্থানীয় সময় রোববার ৩ এপ্রিল রাত ৮টায় বসেছিল গ্র্যামির আসর এ বছর অ্যালবাম অব দ্য ইয়ার পুরষ্কারটি পেয়েছে জন বাতিস্তের উই আর অ্যালবামটি এবার সবচেয়ে বেশি মনোনয়ন পেয়েছিলেন এই শিল্পী বছরের সেরা গানের পুরস্কার জিতেছে লিভ দ্য ডোর ওপেন গানটি গানটির সুর করেছেন ব্রুনো মার্স এবং অ্যান্ডারসন পাক সেরা কান্ট্রি অ্যালবামের পুরস্কার পেয়েছে মার্কিং গীতিকার ও গায়ক ক্রিস স্ট্যাপলটনের স্টার্টিং ওভার অ্যালবামটি এবারের গ্র্যামিতে বিটিএস তাদের বাটার গানটি পারফর্ম করেছে বিলি আইলিশ গেয়েছেন নো টাইম টু ডাই গানটি অলিভিয়া রদ্রিগো জমকালোভাবে পরিবেশ করেছেন তার জনপ্রিয় রেড লাইট গানটি পারফর্ম করেছেন জাস্টিন বিবারও ১৯৫৯ সালে ন্যাশনাল একাডেমি অব রেকর্ডিং আর্টস অ্যান্ড সায়েন্সেস আয়োজন করেছিল প্রথম গ্র্যামি অ্যাওয়ার্ডস এর পর থেকে প্রতিবছর ৪টি সাধারণ বিভাগ, বছরের সেরা নতুন শিল্পী, সেরা গান, সেরা অ্যালবাম, সেরা রেকর্ডসহ ২৫টির বেশি শাখায় এ পুরস্কার দেওয়া হয়
bengali
YAMAHA YZF R1 SERVICE MANUAL Pdf Download. Yamaha YZF R1 YZFR 1000 R1 Electrical Wiring Diagram Schematics 2006 HERE. Yamaha YZF R1 YZFR 1000 R1 Electrical Wiring Diagram Schematics 2007 2008 HERE. MODIFIED BASIC 5PW YZF R1P YZF R1PC WIRING DIAGRAM Dark green Green Gray Black ... MAIN HARNESS WIRE SUB LEAD 4 G (BLACK) ... This is shown in the wiring diagram.
english
using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Threading.Tasks; namespace Microsoft.SharePoint.Client.NetCoreMime { internal class BufferedReadStream : Stream { private Stream stream; private byte[] storedBuffer; private int storedLength; private int storedOffset; private bool readMore; public override bool CanWrite { get { return false; } } public override bool CanSeek { get { return false; } } public override bool CanRead { get { return this.stream.CanRead; } } public override long Length { get { throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new NotSupportedException()); } } public override long Position { get { throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new NotSupportedException()); } set { throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new NotSupportedException()); } } public BufferedReadStream(Stream stream) : this(stream, false) { } public BufferedReadStream(Stream stream, bool readMore) { if (stream == null) { throw DiagnosticUtility.ExceptionUtility.ThrowHelperArgumentNull("stream"); } this.stream = stream; this.readMore = readMore; } //Edited for .NET Core //public override IAsyncResult BeginRead(byte[] buffer, int offset, int count, AsyncCallback callback, object state) //{ // if (!this.CanRead) // { // throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new NotSupportedException()); // } // return this.stream.BeginRead(buffer, offset, count, callback, state); //} //Edited for .NET Core //public override IAsyncResult BeginWrite(byte[] buffer, int offset, int count, AsyncCallback callback, object state) //{ // throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new NotSupportedException()); //} //Edited for .NET Core //public override void Close() public void Close() { //this.stream.Close(); this.stream.Dispose(); } //Edited for .NET Core //public override int EndRead(IAsyncResult asyncResult) //{ // if (!this.CanRead) // { // throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new NotSupportedException()); // } // return this.stream.EndRead(asyncResult); //} //Edited for .NET Core //public override void EndWrite(IAsyncResult asyncResult) //{ // throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new NotSupportedException()); //} public override void Flush() { this.stream.Flush(); } public override int Read(byte[] buffer, int offset, int count) { if (!this.CanRead) { throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new NotSupportedException()); } if (buffer == null) { throw DiagnosticUtility.ExceptionUtility.ThrowHelperArgumentNull("buffer"); } if (offset < 0) { throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new ArgumentOutOfRangeException("offset")); } if (offset > buffer.Length) { throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new ArgumentOutOfRangeException("offset")); } if (count < 0) { throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new ArgumentOutOfRangeException("count")); } if (count > buffer.Length - offset) { throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new ArgumentOutOfRangeException("count")); } int num = 0; if (this.storedOffset < this.storedLength) { num = Math.Min(count, this.storedLength - this.storedOffset); Buffer.BlockCopy(this.storedBuffer, this.storedOffset, buffer, offset, num); this.storedOffset += num; if (num == count || !this.readMore) { return num; } offset += num; count -= num; } return num + this.stream.Read(buffer, offset, count); } public override int ReadByte() { if (this.storedOffset < this.storedLength) { return (int)this.storedBuffer[this.storedOffset++]; } return base.ReadByte(); } public int ReadBlock(byte[] buffer, int offset, int count) { int num = 0; int num2; while (num < count && (num2 = this.Read(buffer, offset + num, count - num)) != 0) { num += num2; } return num; } public void Push(byte[] buffer, int offset, int count) { if (count == 0) { return; } if (this.storedOffset == this.storedLength) { if (this.storedBuffer == null || this.storedBuffer.Length < count) { this.storedBuffer = new byte[count]; } this.storedOffset = 0; this.storedLength = count; } else if (count <= this.storedOffset) { this.storedOffset -= count; } else if (count <= this.storedBuffer.Length - this.storedLength + this.storedOffset) { Buffer.BlockCopy(this.storedBuffer, this.storedOffset, this.storedBuffer, count, this.storedLength - this.storedOffset); this.storedLength += count - this.storedOffset; this.storedOffset = 0; } else { byte[] dst = new byte[count + this.storedLength - this.storedOffset]; Buffer.BlockCopy(this.storedBuffer, this.storedOffset, dst, count, this.storedLength - this.storedOffset); this.storedLength += count - this.storedOffset; this.storedOffset = 0; this.storedBuffer = dst; } Buffer.BlockCopy(buffer, offset, this.storedBuffer, this.storedOffset, count); } public override long Seek(long offset, SeekOrigin origin) { throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new NotSupportedException()); } public override void SetLength(long value) { throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new NotSupportedException()); } public override void Write(byte[] buffer, int offset, int count) { throw DiagnosticUtility.ExceptionUtility.ThrowHelperError(new NotSupportedException()); } } }
code
திராட்சை பழத்தில் இவ்வளவு நன்மைகளா ? திராட்சை பழம் பல நிறங்களில் காண்பவரின் கண்களுக்கு குளிர்ச்சியை கொடுக்கும். பழக் கிண்ணங்களில் திராட்சைக்கென்று ஒரு தனி இடம் உண்டு. இனிப்புகளிலும் ஐஸ்க்ரீம்களிலும் திராட்சையின் பங்கு முக்கியமானது. ஆகையால் இந்த பழத்தை பழங்களின் ராணி என்று அழைப்பர். அனைத்து வகை திராட்சைகளும் உடல் நலத்திற்கு மிக மிக நல்லது திராட்சையை தினமும் உண்ண வேண்டும். திராட்சையில் சர்க்கரைச் சத்து அதிகம் உள்ளது . திராட்சை பழத்தின் மருத்துவ குணங்கள்: திராட்சைக்கு ரத்த சோகை, ஜீரண கோளாறு, மலச்சிக்கல், சிறுநீரகக் கோளாறுகளைப் போக்கும் ஆற்றல் உண்டு. ஜீரணக் கோளாறு இருப்பவர்கள் திராட்சைப் பழத்தை சாப்பிட்டு வர நல்ல தீர்வு கிடைக்கும்.பசி இல்லாதவர்கள் அடிக்கடி திராட்சையை சாப்பிட வேண்டும். அது பசியைத் தூண்டி விடும். குடல் கோளாறுகளைக் குணப்படுத்தும். நமது தினசரி உணவில் திராட்சைகளை சேர்ப்பதன் மூலம் அதிக அளவிலான பாதுகாப்பு புரதங்கள் கண்களின் ரெடினாவிற்கு கிடைக்கிறது. செல்லுலார் அளவில் ஏற்படும் சிக்னல் மாற்றங்களினால் கண்களுக்கு அழுத்தம் ஏற்படாதவாறு பாதுகாக்கிறது திராட்சை என்று புளோரிடாவின் மியாமி பல்கலைக் கழகத்தால் நடத்தப்பட்ட ஒரு ஆய்வின்படி தெரியவந்துள்ளது. திராட்சைப் பழச் சாற்றை வெந்நீரில் கலந்து குடித்து வர சுரம், நாவறட்சி நீங்கும்.சொட்டு சொட்டாக நீர் பிரிதல், நீர் தாரை எரிச்சல் போன்றவை திராட்சைப் பழம் சாப்பிட்டு வந்தால் குணமாகும். உடல் அசதிக்கும், பயணத்தின் போது ஏற்படும் உஷ்ணத்திற்கும் திராட்சைப் பழம் மிக ஏற்றது.திராட்சைப் பழத்துடன் மிளகை அரைத்து சாப்பிட்டு வர சுரம், நாவறட்சி நீங்கும்.ரெஸ்வெரடால் மூளைக்கு செல்லும் ரத்த ஓட்டத்தை அதிகரிக்கிறது. இதன்மூலம் அது மனரீதியான பதில்களை வேகமாக அதிகரிக்க உதவுகிறது மற்றும் அல்சைமர் போன்ற மூளை சம்பந்தப்பட்ட வியாதிகளால் பாதிக்கப்பட்டவர்களுக்கான நன்மை பயக்க, மூளைக்கு சக்தியை கூட்ட உதவுகிறது. Are there so many benefits in grapes
tamil
Now: These are things that are really annoying me right now. And always. Number 1: I keep falling asleep on the couch at night. This is bad for several reasons. First of all, I miss the end of whatever program I’m watching, or, let’s face it, sometimes the whole show. Second, I am losing my motivation to exercise because I know that I will fall asleep soon after and I don’t want to “waste” my whole evening exercising. Third, it’s way too soon to fall asleep after eating my evening snack. Number 2: We got a really cool new camera this summer. Why is that annoying? Because I can’t bring my camera to work to upload pictures to my blog anymore because Tim won’t let me (which is understandable, but still annoying). And because I’m feeling that the blog is a lot less interesting without the pictures. Number 3: Why won’t Halloween just get here already? I am like a child. I am so excited to take the twins trick or treating for the first time. I am agonizing over what the weather will be like that night even though it’s over a week away. I am planning our route and prepping the kids to say “trick or treat” really loudly. I am lamenting over the fact that I haven’t found red pants for them to wear under their Elmo costumes and realizing that Elmo(s) might have to have black legs instead of red. Number 4: Conflicting emotions…..is it almost Halloween already? Where did October go? I feel like I’m constantly waiting for what’s next while simultaneously wondering why my days and weeks and months are going so fast. Probably a common problem, I know. Anyway. I’m not having a particularly bad day or crabby mood. Just thinking about thinking I guess. 🙂 This is now. THEN: I woke up early Sunday morning, August 30th. I spoke to Tim briefly on the phone – long enough for him to tell me he took off again and would be at the hospital soon. I tried to convince him it wasn’t necessary, but I was quite pleased that he would be coming back (obviously). While I was waiting a nurse came in. One of my favorite nurses so far. And a nurse-in-training. Also one of my favorite people there. They said a high-risk doctor would be in sometime this morning to talk to me about my test results. They both asked if there was anything else I needed. I only wanted to know if they could estimate the time the doctor would be in because I was hoping Tim would be here when the doctor came. They weren’t sure, but they seemed very sympathetic. I tried to seem like it didn’t really matter but I’m sure they saw through me. I called Tim back immediately. How soon could he be here? He was leaving right as I was calling, so about 20 minutes. I figured that was plenty of time. Then the doctor and my two nurses walked in. Where was my husband? I explained that he was on his way. They exchanged glances, and I knew that the high-risk doctor had a very busy schedule and would probably not be able to carve out another time to meet with me later. I told them it was ok. No husband, no problem. I was also still convinced that my worst-case-scenario was going to be hospital bedrest for a few weeks. Or maybe best-case…..bedrest at home. The doctor began his speech. And I mean SPEECH. He was easy to understand and follow…..but he took forever to say what the main point really was. Basically I was very very sick. My lack of knowledge about my gestational diabetes was very detrimental to my body. I was at a high risk of having a stroke, seizures, or a heart attack….or a combination of the three. Any of these three things could not only kill me, but possibly the children inside me. Unless it was taken care of immediately. So, again, the dillusional optimist in me asked about hospital bedrest. Through my sobs that were racking my body. No. Maybe if it was earlier in the pregnancy another 2 weeks would make a big difference. But as of right now, giving it another few days was really pushing my luck. What did that mean? Doctor’s recommendation was immediate delivery. Today. This afternoon they had an opening in the OR. I could not suppress my tears. I wouldn’t even have tried to, except I was afraid that crying would damage my already fragile body even more. I tried to calm myself down. I had tried to keep myself calm for the last 4 days. Trying to keep my blood pressure normal so that I could just go home and wait 9 more weeks until my babies could be born safetly. The nurses held my hands and gently rubbed my back. I was so grateful for them. I thanked the doctor and the nurses over and over through my tears. They offered to wait with me until Tim came, but I knew I could probably calm down better by myself for a minute. I had stopped sobbing, just a few stray tears running down my cheeks, so they felt comfortable with leaving. What would happen? What would happen to my babies that were going to be snatched from my body in less than 12 hours even though it was 9 weeks earlier than they should have been born? I felt helpless. I felt like I had failed them because it was MY body that was sick, not theirs. I kept telling them that. Whispering to my almost-born children. They needed to stay strong. They were healthy, they would be fine, their mama would be fine. The doctors were doing this because it was what was best. All of our best chance for survival. It sounds melodramatic typing it now. But it was reality. When Tim came in one of my nurses spotted him. She stood in my doorway while I explained what had to happen. I was crying again, but not uncontrollably. I pride myself in being very logical. I was definitely emotional – a rarity for me – but I knew, logically, that this was the best thing for everyone, and that nothing could be changed, so there was no point wishing for things that weren’t so or that couldn’t come true. I shouldn’t waste my energy on worrying, although I obviously was worried. I was using my energy to think positive thoughts for myself and to the children. What would happen? We were so scared. We had to call our families. We had to wait. And wait. And wait. What would happen? After everything we went through, why this now? What would happen? That was then. P.S. Thanks for sticking with me, or popping over to visit my blog. I am not gone…..and hopefully not forgotten! Also, I almost cried when reading about your hospital experience. You poor thing. I’m so glad I know everything worked out in the end, or I’d be a wreck right now, so I can only imagine how difficult it was for you at the time.
english
Tik Tok Durga Rao: టిక్ టాక్ దుర్గ రావు బిగ్ బాస్ ఎంట్రీ లేటెస్ట్ వైరల్ న్యూస్..!! Tik Tok Durga Rao: సోషల్ మీడియా వేదికగా సెలబ్రిటీ అయిన వారిలో టిక్ టాక్ దుర్గారావు ఒకరు. భార్యతో కలసి పాత పాటలకు అదే రీతిలో టాలీవుడ్ ఇండస్ట్రీలో టాప్ హీరోల సినిమాలకు సంబంధించిన డైలాగులు చెబుతూ బాగా పాపులర్ అయ్యారు. పాత కాలం మాదిరి రికార్డింగ్ డాన్స్ ట్రూప్ తరహాలో దుర్గారావు అతని భార్య వేసే స్టెప్పులు టెలివిజన్ రంగంలో.. పాపులర్ షోలు.. ఢీ జబర్దస్త్ వంటి చోట్ల కూడా కంటెస్టెంట్ లు వేసి టెలివిజన్ ప్రేక్షకులను అలరించడం జరిగింది. ఆ తర్వాత దుర్గారావు క్రేజ్ మరింతగా పెరగటంతో.. టెలివిజన్ రంగంలో షోలలో.. వచ్చి పెర్ఫామెన్స్ ఇవ్వటం జరిగింది. సుడిగాలి సుదీర్, హైపర్ ఆది గెటప్ శీను.. వారి అండతో మరింతగా ఎంటర్టైన్మెంట్ రంగానికి దుర్గాప్రసాద్ దగ్గరయ్యారు. ప్రస్తుతం టిక్ టాక్ లేకపోవడంతో.. ఇంస్టాగ్రామ్ లో వీడియోలు చేస్తూ వస్తున్నారు. ఇదిలా ఉంటే తెలుగు టెలివిజన్ ప్రేక్షకులకు ఎంతగానో ఎదురు చూస్తున్న బిగ్ బాస్ రియాల్టీ షోలో.. దుర్గారావు ని తీసుకున్నట్లు ఇటీవల వార్తలు రావడం తెలిసిందే. ఇప్పటికే ఈ షోకి సంబంధించి ప్రోమో ఇటీవల రిలీజ్ అవ్వడం జరిగింది. ఆగస్టు ఒకటవ తారీకు షో ప్రోమో.. రిలీజ్ చేసి.. నాగార్జున మళ్లీ హోస్ట్ గా వ్యవహరిస్తున్నట్లు క్లారిటీ ఇవ్వడం జరిగింది. సెప్టెంబర్ మాసం నుండి షో స్టార్ట్ అయ్యే అవకాశం ఉన్నట్లు తెలుస్తోంది. ఇదిలా ఉంటే ప్రస్తుతం దుర్గారావు జంట హైదరాబాద్ నగరంలోనే ఉండటం సంచలనంగా మారింది. ఇటీవల దుర్గారావు ఓ ప్రవేట్ వెబ్ ఛానల్ కి ఇంటర్వ్యూ ఇవ్వడం జరిగింది. ఈ సందర్బంగా తాను గాని లేకపోతే తన భార్య గాని ఇద్దరూ బిగ్ బాస్ షో లోకి వెళ్ళే అవకాశం ఉందని ఆల్రెడీ తమతో కొంతమంది సంప్రదిస్తున్నట్లు దుర్గారావు చెప్పుకొచ్చారు. మొదటిలో భార్యని విడిచి.. వెళ్ళడానికి కొంచెం టైం పట్టిందని ప్రజెంట్ మాత్రం అవకాశం వస్తే ఖచ్చితంగా వెళ్తాను అని గత కొన్ని రోజుల క్రితం తెలపడం జరిగింది. ఇదిలా ఉంటే ప్రస్తుతం దుర్గారావు జంట హైదరాబాద్ లోనే ఉండటంతో చాలావరకు దుర్గారావు బిగ్ బాస్ సీజన్ ఫైవ్ కి సెలక్ట్ అయినట్లు చాలామంది చెప్పుకొస్తున్నారు. గతంలో గంగవ్వ.. మాదిరిగా దుర్గారావు నీ హౌస్లో తీసుకురావటానికి షో నిర్వాహకులు రెడీ అవుతున్నట్లు టాక్. ఎంటర్టైన్మెంట్ పరంగా డాన్స్ పరంగా ఇంకా అనేక రీతులుగా.. దుర్గారావు బిగ్ బాస్ రియాల్టీ షోకి కరెక్ట్ అని తాజా వార్త పై సోషల్ మీడియాలో నెటిజనులు అంటున్నారు. కచ్చితంగా దుర్గారావు హౌస్ లో అడుగు పెడితే టాప్ ఫైవ్ లో కి వెళ్ళటం గ్యారెంటీ అని.. కల్లాకపటం లేని వ్యక్తి పైగా కల్మషం లేని వ్యక్తి తో పాటు.. అన్ని రకాలుగా బిగ్ బాస్ ఆడియన్స్ నీ ఆకట్టుకునే రీతిలో.. సరైన కంటెస్టెంట్ అని.. కచ్చితంగా ఓట్లు రికార్డు స్థాయిలో పడతాయని.. దుర్గారావు షోకే హైలెట్ అవుతాడని బిగ్బాస్ ఆడియన్స్ అంటున్నారు. సోలో పెర్ఫార్మెన్స్ పరంగా దుర్గారావు వ్యవహరిస్తే మిగతా సెలబ్రిటీల కంటే దుర్గారావు కి ఎక్కువ ఓట్లు పడే అవకాశం ఉందని అంచనా వేస్తున్నారు. ఏది ఏమైనా షోలో దుర్గారావు అడుగుపెడితే ఈసారి సీజన్ మరింత రసవత్తరంగా ఉంటుందని.. విశ్లేషణలు వస్తున్నాయి.The post Tik Tok Durga Rao: టిక్ టాక్ దుర్గ రావు బిగ్ బాస్ ఎంట్రీ లేటెస్ట్ వైరల్ న్యూస్..!! first appeared on News Orbit.
telegu
Rescheduled due to bad road conditions. Rescheduled due to poor weather. 9:30am Wrestling: Varsity Section Individual vs.
english
Roxannie DeJesus, twenty, with her daughter Naisha. Roxannie So, my name is Roxannie and I’m twenty years old now. My daughter is four. I had her when I was fifteen. Her name is Naisha. Naisha is from El Salvador and Peurto Rico. I’m from Peurto Rico. Her dad is El Salvadorian. Amanda Did any part of you want to get pregnant? Roxannie It was a surprise, but I can’t say that we didn’t know that something like that could happen because we weren’t using protection on either side, and we lived in the same house, and we slept in the same bed. So, we weren’t all that surprised. I was just overwhelmed by the news. Amanda Do you remember when you first held Naisha? Roxannie When I woke up (from the C-Section) what I saw was Alex changing her diaper and I was like, “Oh that’s my daughter, that’s my baby.” Just immediately you have this bond, like she’s not there no more. I’m not talking to the belly no more or trying to bother her. I used to poke my stomach just for her to hit back or something, and this time I was like touching her and it was nice. Amanda How were the first few months with Naisha? Roxannie It just felt natural. The doctors were surprised cause like I was only fifteen, but I didn’t ask the nurses for any help. Like I knew what I was doing it was something natural. That’s how I felt. Just immediately you have this bond, like she’s not there no more. I’m not talking to the belly no more or trying to bother her. I used to poke my stomach just for her to hit back or something, and this time I was like touching her and it was nice. Amanda What is your relationship with Alex like now? Roxannie I can’t say it’s a good relationship because really it’s not. Before, Alex used to hang out with Naisha because I was always pushing it like, “Hey, you gonna come pick up Naisha? Hey do you want to have her in the afternoon?” and I would go drop her off. I stopped doing that about like a year ago, because I wasn’t feeling me being after him all the time. I don’t have anything against him you know. I treat him with respect. It’s not a “Hi, how are you doing?” It’s just a simple “Hi. Ok, you’re taking her. Ok, what time are you going to bring her back? She needs to eat. Make sure that she’s covered.” Like that’s all. Amanda Do you want to have more children? Roxannie Eh, well I had her when I was fifteen. I’m only twenty. I’m just about to finish my GED. I like what I’m doing. I want to travel with Naisha. I want to go to Africa and Europe with her. South America, and have this road trip in the States. Now that I’m on my own, I don’t know. Not having that other someone there, the father there for her, it’s a lot harder for me. I don’t think I want to go through this again. I want to adopt orphans. So maybe I’ll just adopt orphans after I turn 25 or after I turn 30, and just you know give my love to other kids instead of having more kids. Who knows.
english
బూస్టర్ డోస్ కు రిజిస్ట్రేషన్ ప్రక్రియ ప్రారంభం కువైట్: బూస్టర్ డోస్ ప్రక్రియను కువైట్ ప్రభుత్వం ప్రారంభించింది. కరోనా వ్యాక్సిన్ రెండు డోస్ లు తీసుకున్నప్పటికీ కొంతమందికి మళ్లీ పాజిటివ్ వస్తోంది.అన్ని కోవిడ్ అప్డేట్స్ గురించి తెలుసుకునేందుకు ఇక్కడ చదవండి దీంతో బూస్టర్ డోస్ కూడా ఇవ్వాలన్న హెల్త్ ఎక్స్ ఫర్ట్స్ సూచనతో ప్రభుత్వం ఈ చర్యలు చేపట్టింది. ముందుగా 60 ఏళ్లు పైబడిన వారికి ప్రాధాన్యం ఇస్తారు. ఆ తర్వాత హెల్త్ వర్కర్స్, ఇమ్యూనిటీ తక్కువ గా ఉన్న అన్ని ఏజ్ గ్రూప్ ల వారికి బూస్టర్ డోస్ ఇవ్వనున్నారు. ఇందుకు సంబంధించిన రిజిస్ట్రేషన్ ప్రాసెస్ స్టార్ట్ చేసినట్లు హెల్త్ మినిస్టర్ అబ్దుల్లా అల్ సనద్ తెలిపారు. రెండో డోస్ తీసుకున్న వారు బూస్టర్ డోస్ తీసుకోవటానికి మధ్యలో 6 నెలల గ్యాప్ ఉండాలని ఆయన చెప్పారు. రిజిస్ట్రేషన్ ను https:cov19vaccine.moh.gov.kwSPCMSCVD_19_Vaccine_Booster_Registration.aspx......వెబ్ సైట్ లో చేసుకోవచ్చన్నాారు.
telegu
/******************************************************************************* * Bdi.hpp * Copyright (C) 2017 Mel McCalla <[email protected]> * * This file is part of html2LaTeX. * * html2LaTeX is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * html2LaTeX is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with html2LaTeX. If not, see <http://www.gnu.org/licenses/>. *******************************************************************************/ #ifndef SRC_HTML_ELEMENTS_NORMAL_BDI_HPP_ #define SRC_HTML_ELEMENTS_NORMAL_BDI_HPP_ #include "Normal.hpp" namespace HTML { namespace Elements { /* * */ class Bdi: public Normal { }; } /* namespace Elements */ } /* namespace HTML */ #endif /* SRC_HTML_ELEMENTS_NORMAL_BDI_HPP_ */
code
Funny Video: बच्चे को पढ़ाने की गलती कर बैठा मदरसा टीचर, पर जो हुआ सोच नहीं सकते आप देखिए Funny Video Today: इंटरनेट की दुनिया मजेदार वीडियो से भरी पड़ी है. यहां हर रोज बड़ी तादाद में ऐसे वीडियो अपलोड भी किए जाते हैं जो आते ही छा जाते हैं. मगर इनमें भी कुछ इतने मजेदार होते हैं जिन्हें देखकर हंसी तक कंट्रोल नहीं होती. अभी एक ऐसा ही वीडियो खूब देखा जा रहा है. वीडियो करीब तीन के बच्चे और मदरसा टीचर से जुड़ा है, जिसमें ऐसा कुछ होता है कि पेट पकड़कर हंसेंगे. मजेदार वीडियो कुछ ही समय हजारों बार देखा जा चुका है और पांच हजार से ज्यादा लोगों ने इसे लाइक किया है. बच्चे के सामने टीचर भी हार गया वायरल हो वीडियो किसी मदरसे का मालूम होता है जहां एक छोटा बच्चा भी तालीम लेने पहुंचा है. यहां टीचर और स्टूडेंट के बीच ऐसा संवाद होता है देखकर हंसी नहीं रुकती. दरअसल टीचर बच्चे को अपने साथ पढ़ने के लिए कहते हैं. वो शुरू में अलिफ बा, ता, सा कहते हैं और बच्चा भी इसे साथसाथ दोहराता है. फ्रेम में इसके बाद जो कुछ नजर आता है बड़ा मजेदार भी है. टीचर फिर बच्चे से कहते हैं अब सुना फिर बच्चा भी बोल पड़ता है सुना टीचर कहते हैं तू सना, फिर बच्चा भी यही दोहराता है. टीचर फिर कहते हैं अरे तू सुना. बच्चा इस बार भी यही दोहराता है. टीचर अब कहते हैं अच्छा पढ़ मजेदार है कि बच्चा एक बार फिर यही दोहराता है. फ्रेम में इसके बाद जो कुछ होता है सबसे ज्यादा मजेदार है. यहां वीडियो पिछले कुछ समय से सोशल मीडिया में जमकर देखा जा रहा है. इसे इंस्टाग्राम पर giedde नाम के पेज पर भी अपलोड किया गया है. वीडियो कब और कहां का है इसकी जानकारी नहीं है.
hindi
Bihar Teacher Recruitment : शिक्षक नियोजन में मेडिकल सर्टिफिकेट बनवाने के पहले अभ्यर्थियों को देना पड़ रहा है पैसा इंडिया न्यूज, बिहारशरीफ। Bihar Teacher Recruitment : बिहार में 42 हजार प्रारंभिक शिक्षकों को नियुक्ति पत्र देने की प्रक्रिया आज से शुरू हो गई है। इसी बीच नालंदा जिले से एक बड़ी खबर सामने आई है।मिली जानकारी के अनुसार बिहारशरीफ सदर अस्पताल में पैसा लेकर मेडिकल सर्टिफिकेट बनवाने का मामला सामने आया है। इसका वीडियो तेजी से सोशल मीडिया पर वायरल हो रहा है। इस वीडियो में मेडिकल सर्टिफिकेट के बदले अभ्यर्थियों को पैसे लेते दिख रहे हैं। गौरतलब है कि बिहार में 42 हजार प्रारंभिक शिक्षकों को 23 फरवरी से नियुक्ति पत्र दिया जा रहा है। Bihar Teacher Recruitment आज 25 से 30 हजार नियुक्ति पत्र बांटे जाने की हैं संभावना 23 फरवरी को 25 से 30 हजार अभ्यार्थियों को नियुक्ति पत्र बांटे जाने की संभावना है। एक नियोजित शिक्षक अभ्यार्थी ने बताया कि नालंदा में बिना पैसे दिए मेडिकल सर्टिफिकेट नहीं बनाया जा रहा है। उसने खुद यह वीडियो बनाकर वायरल किया है। उसने यह भी कहा है कि जितना अधिक पैसे देने पर उतना ही जल्दी मेडिकल सर्टिफिकेट बनाकर दिया जा रहा है। इस मामले में सिविल सर्जन से पूछे जाने पर उन्होंने कहा कि इस मामले उन्हें कोई जानकारी नहीं है। यदि ऐसा मामला सामने आएगा तो कार्रवाई की जाएगी। Bihar Teacher Recruitment जुलाई 2019 में शुरू हुई थी छठे चरण की शिक्षक नियोजन की प्रक्रिया Bihar Teacher Recruitment गौरतलब है कि छठे चरण में शिक्षक नियोजन की प्रक्रिया जुलाई 2019 में प्रारंभ हुई थी। वहीं, शिक्षा विभाग ने सभी जिला पदाधिकारियों को निर्देश दिया है कि हर हाल में 25 फरवरी तक नियुक्ति पत्र बांट दिया जाए। ताकि कोई भी अभ्यर्थी सर्टिफिकेट से वंचित न रह जाए। RussiaUkraine Tension Case: जानिए कैसे यूक्रेन से अपनों को वापस भारत बुलाएं? Russia And Ukraine Dispute: अमेरिका समेत कई देशों में भारी पड़ रहा रूस, जानिए कैसे? Russian Army will Camp in Donetsk and Luhansk : रूस की सेना डोनेत्स्क और लुहांस्क में डालेगी डेरा, दुनिया में हलचल Connect With Us : Twitter Facebook The post Bihar Teacher Recruitment : शिक्षक नियोजन में मेडिकल सर्टिफिकेट बनवाने के पहले अभ्यर्थियों को देना पड़ रहा है पैसा appeared first on India News.
hindi
पलामू : हेमजा गांव में सतचंडी महायज्ञ के तीसरे दिन कथा सुनने के लिये उमड़ी भीड़ Piyush panday Hussainabad Palamu : हैदरनगर प्रखंड के हेमजा गांव में देवी मंदिर जीर्णोद्धार प्रतिष्ठा सह सतचंडी महायज्ञ के तीसरे दिन सुबह से ही यज्ञ मंडप के परिक्रमा करने के लिए प्रखंड क्षेत्र के काफी संख्या में श्रद्धालु जुटे. यज्ञ की आहुति के बाद शाम में कई विद्ववानों ने भक्तिमय प्रवचन कर लोगों को मंत्रमुग्ध कर दिया.इस कार्यक्रम में मुख्य यजमान के रूप में पंकज सिंह, नीरज सिंह, दया सिंह, योगेंद्र सिंह, बसंत सिंह सहित हेमजा ग्राम वाषियों का पूर्ण सहयोग मिल रहा है. यह यज्ञ 22 फरवरी तक चलेगा. जहां भंडारे के साथ संत की विदाई की जाएगी. वसंत सिंह ने कहा कि काफी पुराना मंदिर का जीर्णोद्धार ग्रामीणों के सहयोग से किया गया है. जिसमें गांव सहित आस पास के ग्रामीणों का भी सहयोग मिल रहा है.
hindi
jsonp({"cep":"32687360","logradouro":"Rua Nova Jerusal\u00e9m","bairro":"Renascer","cidade":"Betim","uf":"MG","estado":"Minas Gerais"});
code
శభాష్..సెలబ్రిటీలు అయినా సరే.. ఎయిర్పోర్ట్ లో అంతే..! బాలీవుడ్ స్టార్ కపుల్ కరీనా, సైఫ్ అలీఖాన్ లు తమ పిల్లలతో కలిసి పర్యటనకు బయలుదేరారు. కాగా.. వీరికి ముంబై ఎయిర్పోర్ట్ లో చేదు అనుభవం ఎదురైంది. ముందుగా సైఫ్, తైమూర్ లు వెళ్లిపోగా.. వెనకాల కరీనా, కుమారుడు జహంగీర్, కేర్ టేకర్లు వస్తున్నారు. కాగా. కరీనా వెనక వస్తున్న కేర్ టేకర్ ను సీఐఎస్ఎఫ్ అధికారులు అడ్డుకున్నారు. పాస్ పోర్ట్ ను చూపించాలని కోరారు. వెనక్కు వచ్చిన కరీనా ను కూడా పాస్ పోర్ట్ ను చూపించాలని అడగ్గా.. కరీనా కూడా చూపించారు. ప్రస్తుతం ఈ వీడియో నెట్టింట్లో చక్కర్లు కొడుతోంది. స్టార్ లు అయినప్పటికీ.. సీఐఎస్ఎఫ్ అధికారులు తమ బాధ్యత చక్కగా నిర్వర్తించారంటూ నెటిజన్లు కితాబిస్తున్నారు.
telegu
ट्रेन की टिकट पर लिखा 5 डिजिट का नंबर है बहुत खास जान लीजिए फायदे जनता से रिश्ता वेबडेस्क अगर आप ट्रेन में सफर करते हैं तो ये खबर आपके लिए बड़े काम ही है. क्या आपने काभी ट्रेन की टिकट पर मौजूद 5 डिजिट के नंबर पर गौर किया है? टिकट में मौजूद ये 5 डिजिट का नंबर आपको कई बड़ी जानकारियां देता है. ये ट्रेन नंबर आपको बताता है कि आप कहां जा रहे हैं और कहां से आ रहे हैं. इतना ही नहीं यह नंबर आपके ट्रेन की स्थिति और कैटेगरी भी बताता है. आइए बताते हैं कि सिर्फ 5 डिजिट का यह नंबर इतना सब कुछ कैसे बता सकता है.क्या होता है इस 5 डिजिट के नंबर का मतलबगौरतलब है कि हर ट्रेन का अपना एक विशेष नंबर होता है, जो उसकी पहचान होता है. ये डिजिट 0 से लेकर 9 तक के हो सकते हैं. आइए जानते हैं इन पाँच डिजिट के नंबर के बारे में.किस डिजिट का क्या है मतलब?5 डिजिट में पहले डिजिट 09 के अलगअलग मतलब होते हैं.0 का मतलब है कि ये ट्रेन स्पेशल ट्रेन है. समर स्पेशल, हॉलीडे स्पेशल या अन्य स्पेशल1 से 4 तक डिजिट का मतलब अगर पहला डिजिट 1 है यानी यह ट्रेन लंबी दूरी तक जाती है. साथ ही यह ट्रेन राजधानी, शताब्दी, जन साधारण, संपर्क क्रांति, गरीब रथ, दूरंतो होगी. पहला डिजिट 2 है यानी यह ट्रेन लंबी दूरी की है. 12 दोनों ही डिजिट की ट्रेनें एक ही श्रेणी में आती हैं. अगर पहला डिजिट 3 है तो यह ट्रेन कोलकाता सब अरबन ट्रेन है. अगर पहला डिजिट 4 है तो यह नई दिल्ली, चेन्नई, सिकंदराबाद और अन्य मेट्रो सिटी की सब अरबन ट्रेन है.5 से 9 तक डिजिट का मतलब अगर पहला डिजिट 5 है तो यह सवारी गाड़ी है. अगर पहला डिजिट 6 है तो ये मेमू ट्रेन है. अगर पहला डिजिट 7 है तो यह डेमू ट्रेन है. अगर पहला डिजिट 8 है तो यह आरक्षित ट्रेन है. अगर पहला डिजिट 9 है तो यह मुंबई की सब अरबन ट्रेन है.दूसरा और उसके बाद का डिजिटआपको बता दें कि इसमें दूसरा और उसके बाद का डिजिट पहले डिजिट के अनुसार ही होता है. जैसे अगर किसी ट्रेन के पहले लेटर 0, 1 और 2 से शुरू होते हैं तो बाकी के चार लेटर रेलवे जोन और डिजिवन को दर्शाते हैं. यह 2011 4डिजिट स्कीम के अनुसार होता है. आइए जानते हैं इनके नंबर.0 कोंकण रेलवे1 सेंट्रल रेलवे, वेस्टसेंट्रल रेलवे, नॉर्थ सेंट्रल रेलवे2 सुपरफास्ट, शताब्दी, जन शताब्दी को दिखाता है. इन ट्रेन के अगले डिजिट जोन कोड को दर्शाते हैं.3 ईस्टर्न रेलवे और ईस्ट सेंट्रल रेलवे4 नॉर्थ रेलवे, नॉर्थ सेंट्रल रेलवे, नॉर्थ वेस्टर्न रेलवे5 नेशनल ईस्टर्न रेलवे, नॉर्थ ईस्ट फ्रंटियर रेलवे6 साउथर्न रेलवे और साउथर्न वेस्टर्न रेलवे7 साउथर्न सेंट्रल रेलवे और साउथर्न वेस्टर्न रेलवे8 साउथर्न ईस्टर्न रेलवे और ईस्ट कोस्टल रेलवे9 वेस्टर्न रेलवे, नार्थ वेस्टर्न रेलवे और वेस्टर्न सेंट्रल रेलवेइसके साथ ही आपको बता दें कि जिस ट्रेन का पहला डिजिट 5,6,7 में से एक होता है उनका दूसरा डिजिट जोन को दिखाता है और बाकी डिजिट उनके डिविजन कोड को बताता है. यानी ये नंबर आपके बड़े काम का है.
hindi
Guests are looking for your hotel, but can they find you? Blue Magnet Interactive offers marketing services for hotels. Our philosophy is these services need to work in concert. Each element assisting the other to achieve greater results for our clients. Take a look below to see more detail on each of our hotel marketing services. Blue Magnet's holistic digital marketing services strike the perfect balance of SEO, social media marketing, OTA management, and targeted content creation to grow your hotel's overall online presence. Based upon your hotel's unique strengths and goals, your customized digital marketing strategy will attract your ideal customers from across a variety of digital channels. Blue Magnet's search engine optimization services will give your hotel increased exposure in the ever-competitive search engine results pages. By creating good content, generating strong referral traffic, and maintaining a technically sound website structure, your improved visibility in organic search results will translate to increased bookings and revenue for your hotel. Blue Magnet's social media services will allow your hotel to directly engage with recent and potential guests, build brand awareness, and grow your online community. Based upon your hotel's unique strengths and goals, we'll help you to decide which channels will be most effective in connecting with your ideal guest. Blue Magnet's website design and development services will help your property to shine in the digital world. Our unique, easy-to-navigate, hotel website templates will highlight the strengths and uniqueness of your property and will help you to attract your ideal guests. With the ability to track how users engage with your website, Blue Magnet can optimize your content for maximum bookings. Blue Magnet's paid digital advertising services will allow you to target specific search terms and help you to drive highly qualified visits to your hotel's website. By running pay-per-click advertisements, your hotel will see increased visibility on Google's highly-competitive search results pages and added traffic to your website. Blue Magnet's email marketing services allow your hotel to deliver unique content directly to the inboxes of potential and returning customers. An effective email marketing campaign gives you a customizable platform to promote on-property specials, connect with your audience, inform your guests of the latest news, and drive bookings to your hotel.
english
സ്വകാര്യ ലാബുകളിലെ ആന്റിജന് പരിശോധന നിര്ത്തലാക്കും ഇനി പരിശോധന ഡോക്ടറുടെ നിര്ദേശപ്രകാരം മാത്രം തിരുവനന്തപുരം: സംസ്ഥാനത്ത് സ്വകാര്യ ലാബുകളിലെ ആന്റിജന് പരിശോധന നിര്ത്തലാക്കാന് തീരുമാനിച്ചു. ഇനി മുതല് അടിയന്തര ഘട്ടങ്ങളില് ഡോക്ടറുടെ നിര്ദേശപ്രകാരം മാത്രമായിരിക്കും ആന്റിജന് പരിശോധന നടത്തുക.കോവിഡിനെക്കുറിച്ചുളള ഏറ്റവും പുതിയ അപ്ഡേറ്റുകള് ഇവിടെ വായിക്കൂ ആദ്യ ഡോസ് വാക്സിനേഷന് നിരക്ക് 90 ശതമാനത്തില് എത്തുന്നതിനാലാണ് ആന്റിജന് പരിശോധന നിര്ത്തലാക്കാന് തീരുമാനിച്ചത്. ഇന്ന് മുഖ്യമന്ത്രിയുടെ അധ്യക്ഷതയില് ചേര്ന്ന കോവിഡ് അവലോകന യോഗത്തിലാണ് തീരുമാനം.65 വയസിനു മുകളിലുള്ള വാക്സിന് സ്വീകരിക്കാത്തവരെ കണ്ടെത്തി വാക്സിന് നല്കാന് പ്രത്യേക ഡ്രൈവ് നടത്താനും ഇന്നത്തെ യോഗത്തില് തീരുമാനിച്ചു. വാക്സിന് സ്വീകരിക്കാത്തവരിലാണ് മരണ നിരക്ക് കൂടുതലെന്ന് കണ്ടെത്തിയിരുന്നു. ഇക്കാര്യത്തില് പൊതു ബോധവത്കരണ നടപടികള് ശക്തമാക്കും.കോവിഡ് 19 വിശകലന റിപ്പോര്ട്ട് കോവിഡ് 19 വാക്സിനുകള് ആളുകളെ അണുബാധയില് നിന്നും ഗുരുതരമായ അസുഖത്തില് നിന്നും സംരക്ഷിക്കുകയും ആശുപത്രി വാസത്തിന്റെയും മരണത്തിന്റെയും സാധ്യത ഗണ്യമായി കുറയ്ക്കുകയും ചെയ്യുന്നു. സെപ്റ്റംബര് 18 വരെ വാക്സിനേഷന് എടുക്കേണ്ട ജനസംഖ്യയുടെ 88.94 ശതമാനം പേര്ക്ക് ഒരു ഡോസ് വാക്സിനും 2,37,55,055, 36.67 ശതമാനം പേര്ക്ക് രണ്ട് ഡോസ് വാക്സിനും 97,94,792 നല്കി. ഇന്ത്യയില് ഏറ്റവും കൂടുതല് വാക്സിനേഷന് ദശലക്ഷം ഉള്ള സംസ്ഥാനം കേരളമാണ് 9,38,371 45 വയസില് കൂടുതല് പ്രായമുള്ള 95 ശതമാനത്തിലധികം ആളുകള്ക്ക് ഒറ്റ ഡോസും 55 ശതമാനം പേര്ക്ക് രണ്ട് ഡോസും വാക്സിനേഷന് സംസ്ഥാനം നല്കിയിട്ടുണ്ട്. കോവിഷീല്ഡ് കോവാക്സിന് എന്നിവയുടെ രണ്ടാമത്തെ ഡോസ് കാലതാമസം കൂടാതെ എടുക്കേണ്ടതാണ്. രണ്ട് വാക്സിനുകളും ഫലപ്രദമാണ്. ഹോട്ടലില് ഇരുന്ന് കഴിക്കാന് അനുമതിയില്ല തീയറ്ററുകള് തുറക്കില്ല നിലവിലെ ലോക്ക്ഡൗണ് തുടരും സെപ്റ്റംബര് 8 മുതല് 14 വരെ കാലയളവില്, ശരാശരി 2,25,022 കേസുകള് ചികിത്സയിലുണ്ടായിരുന്നതില് 2 ശതമാനം പേര്ക്ക് മാത്രമാണ് ഓക്സിജന് കിടക്കകളും ഒരു ശതമാനം പേര്ക്ക് മാത്രമാണ് ഐസിയുവും ആവശ്യമായി വന്നത്. ഈ കാലയളവില്, കഴിഞ്ഞ ആഴ്ചയുമായി താരതമ്യം ചെയ്യുമ്ബോള് റിപ്പോര്ട്ട് ചെയ്യപ്പെടുന്ന പുതിയ കേസുകളില് ഏകദേശം 42,998 കുറവ് ഉണ്ടായി. ടിപിആര്, പുതിയ കേസുകള് എന്നിവയുടെ വളര്ച്ചാ നിരക്കില് മുന് ആഴ്ചയുമായി താരതമ്യപ്പെടുത്തുമ്ബോള് യഥാക്രമം 6 ശതമാനവും 21.9 ശതമാനവും കുറവ് ഉണ്ടായിട്ടുണ്ട്. നിലവില് 1,80,842 കോവിഡ് കേസുകളില്, 13.2 ശതമാനം വ്യക്തികള് മാത്രമാണ് ആശുപത്രിഫീല്ഡ് ആശുപത്രികളിലോ പ്രവേശിപ്പിക്കപ്പെട്ടിട്ടുള്ളത്. ഈ ശതമാനം ഏറെക്കുറെ സ്ഥിരമായി തുടരുന്നുമുണ്ട്. കോമോര്ബിഡിറ്റികളുള്ള അനുബന്ധ രോഗങ്ങള് കോവിഡ് പോസിറ്റീവ് വ്യക്തി ആശുപത്രിയില് എത്തുന്നത് വൈകിക്കരുത്, മാത്രമല്ല ട്രീറ്റ്മെന്റ് പ്രോട്ടോക്കോളുകള് അനുസരിച്ച് ചികിത്സ എടുക്കുകയും ചെയ്യണം. ജൂണ്, ജൂലൈ, ആഗസ്റ്റ് മാസങ്ങളില് കോവിഡ് ബാധിതരായ വ്യക്തികളില് 6 ശതമാനം പേര് കോവിഡ് വാക്സിന്റെ ഒരു ഡോസ് എടുക്കുകയും, 3.6 ശതമാനം കോവിഡ് വാക്സിന്റെ രണ്ട് ഡോസുകള് എടുക്കുകയും ചെയ്തിരുന്നു. അണുബാധ തടയാന് വാക്സിനേഷന് ശേഷമുള്ള രോഗപ്രതിരോധശേഷി ഫലപ്രദമാണെന്നും, എന്നാല് വാക്സിനേഷന് എടുത്ത ആളുകള്ക്ക് കുറഞ്ഞ അളവിലെങ്കിലും രോഗബാധ ഉണ്ടായേക്കാം എന്നുമാണ് ഇത് സൂചിപ്പിക്കുന്നത്. അതിനാല് അനുബന്ധ രോഗങ്ങള് ഉള്ളവര് രോഗം വരാതിരിക്കാന് വേണ്ട മുന്കരുതലുകള് സ്വീകരിക്കേണ്ടതാണ്. വാക്സിനേഷന് എടുത്തവരില്, രോഗലക്ഷണമുള്ളവര് മാത്രം ഡോക്ടറെ സമീപിച്ചാല് മതിയാകും. വാക്സിനേഷന് എടുക്കാത്ത ആളുകള്, രോഗലക്ഷണമുണ്ടെങ്കില്, ആര്ടിപിസിആര് പരിശോധന നടത്തേണ്ടതാണ്. ആന്റിജന് പരിശോധന അടിയന്തിര ആവശ്യങ്ങള്ക്ക് മാത്രമാണ്. കഴിഞ്ഞ 2 മാസങ്ങളില് കോവിഡ് പോസിറ്റീവ് ആയ ആളുകള് ആര്ടിപിസിആര് പരിശോധന നടത്തേണ്ടതില്ല. ഗൃഹ നിരീക്ഷണത്തില് തുടരുന്ന കോവിഡ് പോസിറ്റീവ് ആയ എല്ലാ യുവാക്കളും പ്രമേഹ പരിശോധന ചെയ്യേണ്ടതാണ്.
malyali
A. Smith Harrison means business. Smith resonates with audiences. Since the turn of the millennium, entertainment and branding creatives have commissioned him to engage, enrich and sell. I've had the privilege of hiring Smith Harrison to do several voice-overs for a number of projects. Each time he has proven to be a real asset. He's got a great voice and tremendous command of his instrument. He injects the nuanced performance required. He's an extremely talented guy with a killer voice and great vocal chops. I can't recommend him enough. © 2010-2019 Sonoreco, LC. All rights reserved.
english
نڈال کیریئرمیں تیسری مرتبہ سیزن کا اختتام بطور نمبرون پلیئر کرنے کی بھی ارزو رکھتے ہیںفوٹوفائل شنگھائینئے ورلڈ نمبرون پلیئر رافیل نڈال کی نگاہیں شنگھائی ماسٹرز جیت کر ریکارڈ پر مرکوز ہیں وہ ایک سیزن میں6 ماسٹرز ٹرافیاں جیت کر جوکووک کو پیچھے چھوڑ سکتے ہیں اسپینش اسٹار نے رواں برس اگست میں سنسناٹی ماسٹرز اپنے نام کر کے سرب پلیئر کے سیزن میں پانچ ماسٹرز ٹائٹلز جیتنے کا ریکارڈ برابر کیا تھا نڈال کیریئرمیں تیسری مرتبہ سیزن کا اختتام بطور نمبرون پلیئر کرنے کی بھی ارزو رکھتے ہیں اس سے قبل وہ 2008 اور 2010 میں بھی ایسا کر چکے ہیں شنگھائی ماسٹرز میں ان کے دیرینہ حریف راجرفیڈرر بھی ایکشن میں دکھائی دیں گے وہ موجودہ سیزن میں اب تک خاص پرفارم نہیں کرپائے ہیں یقینی طور پر سوئس اسٹار بھی ایونٹ میں عمدہ کارکردگی کے ذریعے ساکھ بحال کرنے کی کوشش کریں گے سات ماہ کی انجری کے بعد نڈال رواں برس فروری میں واپس ائے تب سے ان کیلیے حالات انتہائی موافق رہے ہیں وہ فرنچ اور یوایس اوپن کی صورت میں2گرینڈ سلم ٹرافیز بھی اپنے نام کرنے میں کامیاب ہوئے اتوار کو چائنا اوپن کے فائنل میں انھیں نووک جوکووک کے ہاتھوں شکست ہوئی لیکن اس سے قبل وہ ایونٹ کے فائنل میں رسائی پر ان کی جگہ نمبرون پوزیشن پر قبضہ یقینی بناچکے تھے نڈال کا کہنا ہے کہ سیزن کا اختتام بطور نمبرون پلیئر کرنے کا ہدف میرے لیے شنگھائی میں بہترین کارکردگی پیش کرنے میں معاون ثابت ہوگا اگر میں ایسا کرپایا تو یہ میرے لیے اہم کامیابی ہوگی کیونکہ رواں برس میرے لیے واقعی بہت شاندار رہا نڈال اب تک سیزن میں مجموعی طور پر 10 ٹائٹلز جیت چکے دوسری جانب راجرفیڈرر کو سیزن کے اختتامی اے ٹی پی فائنل ایونٹ سے بھی باہر ہونے کا خطرہ درپیش ہےاس سے بچنے کیلیے شنگھائی میں ٹائٹل جیتنا بہت اہم ہوگا فیڈرر حالیہ رینکنگ میں ساتویں نمبر پر ہیں وہ رواں برس صرف ایک ٹائٹل ہی اپنے نام کرپائے اور چاروں میں سے کسی بھی گرینڈ سلم کے فائنل میں نہیں پہنچ سکے
urdu
టీ కాంగ్రెస్ మరో ప్రజా కార్యక్రమం.!ఈ నెల14నుంచి జనజాగరణ ప్రజాచైతన్య యాత్రలు.! హైదరాబాద్: తెలంగాణ కాంగ్రెస్ పార్టీ ఆధ్యర్యంలో నవంబర్ 14 నుంచి 21 వరకు కాంగ్రెస్ జన జాగరణ ప్రజా చైతన్య పాదయాత్ర ఉంటుందని ఏఐసీసీ కార్యనిర్వహణ కమిటీ చైర్మన్ మహేశ్వర్ రెడ్డి తెలిపారు. అన్ని చోట్ల కాంగ్రెస్ నేతలు జిల్లా కలెక్టర్ల పర్మిషన్లు తీసుకొని యాత్రలు చేయాలన్నారు. ఎమ్మెల్సీ ఎన్నికల కోడ్కు లోబడి ఈ యాత్ర ఉంటుందని ఆయన పేర్కొన్నారు. జిల్లా కలెక్టర్లు అనుమతులు ఇవ్వకుంటే గాంధీ భవన్లో ఫిర్యాదు చేయాలని మహేశ్వర్ రెడ్డి సూచించారు. అధికార పార్టీ చేపట్టిన ధర్నాకు కొవిడ్ నిబంధనలు ఉండవా అని మహేశ్వర్ రెడ్డి ప్రశ్నించారు. 31 జిల్లాలకు 50 నుంచి 60 మంది కాంగ్రెస్ సీనియర్ నాయకులు ఇంఛార్జిలుగా, డీసీసీ ప్రెసిడెంట్లు కన్వీనర్లుగా ఉంటారని మహేశ్వర్ రెడ్డి తెలిపారు. ఖమ్మం జిల్లాలో భట్టి , రేణుకా చౌదరి, వికారాబాద్లో టీపీసీసీ అధ్యక్షుడు రేవంత్ రెడ్డి పాదయాత్రలో పాల్గొంటారన్నారు. మెదక్ జిల్లాలో దామోదర్ రాజనర్సింహ, దాసోజు, వరంగల్లో కొండా దంపతులు, సిరిసిల్ల జిల్లాలో మాజీ ఎంపీ రాజయ్య పాల్గొంటారని మహేశ్వర్ రెడ్డి పేర్కొన్నారు. కొత్తగూడెంలో పొడెం వీరయ్య, నిర్మల్ జిల్లాలో మహేశ్వర్ రెడ్డి, జనగాం జిల్లాలో పొన్నాల, ములుగు జిల్లాలో ఎమ్మెల్యే సీతక్క పాదయాత్రలో పాల్గొంటారని మహేశ్వర్ రెడ్డి పేర్కొన్నారు. అధికార టీఆర్ఎస్ పార్టీ ధర్నాలకు లేని అడ్డంకులు కాంగ్రెస్ ప్రజా చైతన్యయాత్రకు ఏంటని ప్రశ్నించారు ఏలేటి మహేశ్వర్ రెడ్డి. ప్రజా చైతన్యయాత్రకు కూడా పోలీసులు ఇబ్బందులు కలిగించొద్దని కోరారు. కేంద్ర, రాష్ట్ర ప్రభుత్వాల ప్రజావ్యతిరేక విధానాలపై కాంగ్రెస్ అవిశ్రాంత పోరాటం కొనసాగిస్తోందని తెలిపారు. గాంధీ భవన్ లో మీడియాతో మాట్లాడిన మహేశ్వర్ రెడ్డి ఈ సందర్భంగా జిల్లాల వారీగా ప్రజా చైతన్య యాత్ర ఇంచార్జుల వివరాలు వెల్లడించారు. source: oneindia.com
telegu
package trendli.me.makhana.common.net; import java.util.ArrayList; import java.util.HashMap; import java.util.Iterator; import java.util.logging.Level; import java.util.logging.Logger; import com.jme3.network.HostedConnection; /** * DataManager contains a hash map of client connections and the user data * objects that they have been associated with. Data is stored in memory to * lower database overhead. * * @author Elliott Butler */ public class DataManager< T > { /** * The logger for this class. */ private final static Logger logger = Logger.getLogger( DataManager.class.getName( ) ); /** * Maps a client connection to T. */ private HashMap< HostedConnection, T > db; /** * Default constructor initializes the hash map and associates to a server. * */ public DataManager( ) { db = new HashMap<>( ); } /** * Checks if the supplied object is currently in the database * * @param t * the object to be checked * @return true if the object is currently in the database */ public boolean contains( T t ) { logger.log( Level.FINE, "Checking if object is in the session database." ); return db.containsValue( t ); } /** * Checks if the supplied HostedConnection is currently in the database * * @param conn * the HostedConnection to be checked * @return true if the conn is currently in the database */ public boolean containsConnection( HostedConnection conn ) { logger.log( Level.FINE, "Checking if connection is in the session database." ); return db.containsKey( conn ); } /** * Gets an associated Session from the client's connection. * * @param conn * the client connection to get the UserAccount for * @return the Session associated with the client connection */ public T get( HostedConnection conn ) { logger.log( Level.FINE, "Retrieving user session from session database." ); if ( db.containsKey( conn ) ) { return db.get( conn ); } return null; } /** * Returns all currently active objects. * * @return all currently active objects */ public ArrayList< T > getAll( ) { logger.log( Level.FINE, "Retrieving all currently active sessions." ); ArrayList< T > list = new ArrayList<>( ); Iterator< T > it = db.values( ).iterator( ); while ( it.hasNext( ) ) { list.add( it.next( ) ); } return list; } /** * Returns all currently authenticated sessions. * * @return all currently authenticated sessions */ public ArrayList< HostedConnection > getConnections( ) { logger.log( Level.FINE, "Retrieving all currently active connections." ); ArrayList< HostedConnection > list = new ArrayList<>( ); Iterator< HostedConnection > it = db.keySet( ).iterator( ); while ( it.hasNext( ) ) { list.add( it.next( ) ); } return list; } /** * Adds a session to the hash map given a client connection and a session. * * @param conn * the client connection that has successfully authenticated * @param session * the session associated with the client */ public void put( HostedConnection conn, T session ) { logger.log( Level.FINE, "Adding user session to session database." ); db.put( conn, session ); } /** * Removes the session associated with the specified connection from the * hash bi-map. * * @param conn * the connection to remove the session for */ public void remove( HostedConnection conn ) { logger.log( Level.FINE, "Removing user session from session database." ); db.remove( conn ); } /** * Removes all sessions associated with the specified user account from the * hash map. * * @param session * the session to remove the connections for */ public void removeConnections( T session ) { logger.log( Level.FINE, "Removing all user sessions associated with an account from session database." ); Iterator< HostedConnection > it = db.keySet( ).iterator( ); while ( it.hasNext( ) ) { HostedConnection conn = it.next( ); if ( db.get( conn ).equals( session ) ) { db.remove( conn ); } } } }
code
ಕಳ್ಳಭಟ್ಟಿ ಸೇವಿಸಿ 36 ಜನ ಸಾವು.. ಹಲವರ ಸ್ಥಿತಿ ಗಂಭೀರ ಗುಜರಾತ್ನ ಎರಡು ಜಿಲ್ಲೆಗಳಲ್ಲಿ ಕಳ್ಳಭಟ್ಟಿ ಸೇವಿಸಿ ಕನಿಷ್ಠ 36 ಜನರು ಸಾವನ್ನಪ್ಪಿದ್ದಾರೆ ಮತ್ತು 56 ಜನರು ಅಸ್ವಸ್ಥರಾಗಿದ್ದಾರೆ ಎಂದು ಪೊಲೀಸರು ಮಂಗಳವಾರ ತಿಳಿಸಿದ್ದಾರೆ. ಈ ಸಂಬಂಧ ಹದಿಮೂರು ಜನರನ್ನು ಬಂಧಿಸಿದ ಪೊಲೀಸರು, ಇವರು ಸೇವಿಸಿದ ಕಳ್ಳಭಟ್ಟಿಯಲ್ಲಿ ಮೀಥೈಲ್ ಆಲ್ಕೋಹಾಲ್ ಅಥವಾ ಮೆಥನಾಲ್ ಕೈಗಾರಿಕಾ ದ್ರಾವಕ ನೀರಿನೊಂದಿಗೆ ಮಿಶ್ರಣವಾಗಿದೆ ಎಂದು ಹೇಳಿದ್ದಾರೆ. ಈ ರೂಪದಲ್ಲಿ ಆಲ್ಕೋಹಾಲ್ ಹೆಚ್ಚು ವಿಷಕಾರಿಯಾಗಿರುತ್ತದೆ. ಮೂರನೇ ಸುತ್ತಿನ ವಿಚಾರಣೆಗೆ ಸೋನಿಯಾ ಗಾಂಧಿಗೆ ಇಡಿ ಸಮನ್ಸ್! ತಿಂಗಳ ಹಿಂದೆಯೇ ಅಕ್ರಮ ಕಳ್ಳಭಟ್ಟಿ ಮಾರಾಟದ ಬಗ್ಗೆ ಪೊಲೀಸರಿಗೆ ಸುಳಿವು ನೀಡಿದ್ದಾಗಿ ಬೊಟಾಡ್ ಜಿಲ್ಲೆಯ ಗ್ರಾಮ ಪಂಚಾಯತ್ ಮುಖ್ಯಸ್ಥರು ತಿಳಿಸಿದ್ದಾರೆ. ಮಂಗಳವಾರ, ಪ್ರಾಥಮಿಕ ತನಿಖೆಗಳು ಬೋಟಾಡ್ನ ವಿವಿಧ ಗ್ರಾಮಗಳಲ್ಲಿ ಕಾಳಧನಿಕರನ್ನು ಗುರುತಿಸಿದ್ದು, ಅವರು ಕೈಗಾರಿಕಾ ಘಟಕಗಳಿಂದ ಬರುವ ನೀರನ್ನು ಮೆಥೆನಾಲ್ನೊಂದಿಗೆ ಬೆರೆಸಿ ತಯಾರಿಸಿದ ಕಳ್ಳಭಟ್ಟಿಯನ್ನು ಮಾರಾಟ ಮಾಡುತ್ತಾರೆ ಎಂದು ಪೊಲೀಸರು ತಿಳಿಸಿದ್ದಾರೆ. ಸುದ್ದಿಗಾರರೊಂದಿಗೆ ಮಾತನಾಡಿದ ಡಿಜಿಪಿ ಆಶಿಶ್ ಭಾಟಿಯಾ, ಸೋಮವಾರ ಎರಡರಿಂದ ಮೂರು ಜನರು ಅಸ್ವಸ್ಥರಾಗಿ ಆಸ್ಪತ್ರೆಗೆ ದಾಖಲಾದ ನಂತರ ಘಟನೆ ಬೆಳಕಿಗೆ ಬಂದಿದೆ, ನಂತರ ಅವರ ಸ್ಥಿತಿ ಹದಗೆಡಲು ಪ್ರಾರಂಭಿಸಿತು. ಮೃತರು ಸೇವಿಸಿದ ಕಳ್ಳಭಟ್ಟಿಯಲ್ಲಿ ಶೇ.99 ರಷ್ಟು ಮೀಥೈಲ್ ಅಲ್ಕೋಹಾಲ್ ಇತ್ತು ಎಂದು ವಿಧಿವಿಜ್ಞಾನ ವರದಿಗಳು ತೋರಿಸಿವೆ ಎಂದು ಹೇಳಿದ್ದಾರೆ. ಮಂಗಳವಾರದ ವೇಳೆಗೆ ಒಟ್ಟು ಮೃತರ ಸಂಖ್ಯೆ 36, ಅದರಲ್ಲಿ 25 ಬೊಟಾಡ್ ಜಿಲ್ಲೆಯವರು, ಉಳಿದ 11 ಮಂದಿ ಅಹಮದಾಬಾದ್ ಜಿಲ್ಲೆಯ ಹಳ್ಳಿಗಳ ನಿವಾಸಿಗಳು ಎಂದು ತಿಳಿದುಬಂದಿದೆ. ಬಿಜೆಪಿಯ ಒಂದು ವರ್ಷದ ಸಾಧನೋತ್ಸವ ಅಲ್ಲ, ಭ್ರಷ್ಟೋತ್ಸವ: ಸಿದ್ದರಾಮಯ್ಯ ಈ 13 ಜನರ ವಿರುದ್ಧ ಮೂರು ಎಫ್ಐಆರ್ಗಳನ್ನು ದಾಖಲಿಸಲಾಗಿದೆ ಎಂದು ಅಧಿಕಾರಿ ಹೇಳಿದ್ದಾರೆ. ಗುಜರಾತ್ ಗೃಹ ಇಲಾಖೆಯು ಭಾರತೀಯ ಪೊಲೀಸ್ ಸೇವೆಯ ಹಿರಿಯ ಅಧಿಕಾರಿ ಸುಭಾಷ್ ತ್ರಿವೇದಿ ನೇತೃತ್ವದಲ್ಲಿ ಮೂವರು ಸದಸ್ಯರ ಸಮಿತಿಯನ್ನು ರಚಿಸಿದ್ದು, ಘಟನೆಯ ಬಗ್ಗೆ ವಿವರವಾದ ತನಿಖೆ ನಡೆಸಿ ಮೂರು ದಿನಗಳಲ್ಲಿ ವರದಿಯನ್ನು ಸಲ್ಲಿಸಲು ಆದೇಶಿಸಿದೆ ಎಂದು ರಾಜ್ಯ ಸರ್ಕಾರದ ಪ್ರಕಟಣೆ ತಿಳಿಸಿದೆ. ಲಿಂಕ್ ಗಳ ಮೇಲೆ ಕ್ಲಿಕ್ ಮಾಡಿ.
kannad
Carrollton is located in Virginia. Carrollton, Virginia has a population of 4,693. Carrollton is more family-centric than the surrounding county with 33.05% of the households containing married families with children. The county average for households married with children is 31.09%. The median household income in Carrollton, Virginia is $91,705. The median household income for the surrounding county is $65,910 compared to the national median of $53,482. The median age of people living in Carrollton is 42.3 years. The average high temperature in July is 89.6 degrees, with an average low temperature in January of 31.8 degrees. The average rainfall is approximately 47.1 inches per year, with 4.9 inches of snow per year.
english
Sabyasachi Dutta Exclusive Interview : জানতামই না ওইদিন তৃণমূলের ঘরে ফিরব, সবটাই কাকতালীয় কলকাতা : গত বিধানসভা নির্বাচনে ধরাশায়ী হয় ভারতীয় জনতা পার্টি কেন্দ্রীয় নেতামন্ত্রীদের দাবি অনুযায়ী ২০০ পার করতে পারেনি বিজেপি তবে অনেকগুলো আসনই নিজেদের নামে লিখিয়েছিল বিজেপি তবে ২০০ পার না করে মমতা বন্দ্যোপাধ্যায়ের ক্য়ারিশমার কাছে হার মানতে বাধ্য হয়েছিলেন বিজেপি নেতৃত্বরাClick here to get the latest updates on State Elections 2022 হাওয়া বিজেপির দিকে ভেবে একে একে দল ঘাসফুল শিবির ছেড়ে পদ্ম শিবিরে নাম লিখিয়েছিলেন যেসব নেতারা তাঁদের আবার ঘাসফুলে ফেরত যাওয়াক হিরিক ওঠে বিধানসভা নির্বাচনে বিজেপির আশানুরূপ ফল না করার পরই মুকুল রায় ফুল বদল করেন বিজেপি ছেড়ে তৃণমূলে যোগ দেন তাঁর তৃণমূলে ফিরে যাওয়ার পর পরই সব্যসাচী দত্তেরও তৃণমূলে ফিরে যাওয়া নিয়ে জল্পনা শুরু হয় এইবার টিভি৯ বাংলা কথাবার্তা অনুষ্ঠানে অংশগ্রহণ করে জানালেন তাঁর তৃণমূল পরিবারে পুনরায় যোগ দেওয়ার গল্প খবরের শিরোনামে দেখা গিয়েছিল বিধানসভায় পুনরায় তৃণমূলের পতাকা হাতে তুলে নিয়েছেন একদা বিধাননগরের মেয়র সব্যসাচী দত্ত তিনি জানান যে, তৃণমূলে যোগ দেওয়ার দিনটি একেবারে কাকতালীয় ছিল সেদিন তৃণমূলে যোগ দেওয়ার উদ্দেশ্য় নিয়েই কোনওভাবে বিধানসভায় উপস্থিত হননি বিধানসভায় কোনও তৃণমূলের পতাকাও ছিল না হাইকোর্টের সামনে থেকে তৃণমূলের পতাকা খুলে আনা হয়েছিল টিভি৯ কে এরকমই জানালেন সব্য়সাচী দত্ত তিনি বলছেন, আমি বিধানসভায় গিয়েছিলাম পেনশনের কাগজ জমা দিতে আর সেদিনই যে মমতা দির শপথ গ্রহণ, আমি জানতাম না তাঁর তৃণমূলের পুনরায় যোগাদানের দিনের বর্ণনা দিতে গিয়ে বলেছেন, আমি বিধানসভায় ঢুকে পড়েছি আর কেউ খবর দিয়ে দিয়েছে সেই সময় মমতা দি প্রেস করছিল আমি জানি যে আমি দোতলায় যাব পেনশনের কাজ করব এবং চলে যাব তিনি আরও বলেন, ববি দা হঠাত্ করে ফোন করে বলছেন, কোথায় আছিস রে! আমি বললাম বিধানসভায় এসেছি কিছু কাগজ দিতে তিনি জানিয়েছেন ববি দা এবং ইন্দ্রনীল দা ইয়ার্কি ও হাসি ঠাট্ট করছিলেন তারপর হঠাত্ মমতা দি এসে বলেন, এই ববি সব্যসাচী এসেছে রে! আমি ওকে ডেকেছিলাম সব্য়সাচী দত্ত টিভি৯ কে জানিয়েছেন যে, সেদিনই তাঁর পুজোর জামা ট্রায়াল দিত যাওয়ার কথা ছিল তাই তিনি প্যান্ট, শার্ট, জুতো পরে বেরিয়েছিলেন তিনি বলছেন, হঠাত্ করে মমতা দি আমার দিকে তাকিয়ে বলেন, তুই অনেক বিপ্লব করেছিস পার্থ দা একে জয়েন করাও তো তিনি আরও বলেন, আমি এরপর আর কোনও কথা বলিনি কথা বলার সুযোগও পাইনি তৃণমূলে পুনরায় ফিরে আসার স্মৃতিচারণা করতে গিয়ে হাসতে হাসতে তিনি বলেন, আসামী যেমনভাবে নিয়ে যায় ঠিক সেরকমভাবে পার্থ দা সামনে, ববি দা পিছনে আর মাঝখানে আমি হাসতে হাসতে তৃণমূলের পতাকা খুঁজে পাওয়ার অন্য ইতিহাস বললেন সব্য়সাচী দত্ত তিনি জানান যে, পতাকা বিধানসভায় পাওয়া যায়নি নিরাপত্তারক্ষীরা বেরিয়ে গিয়ে হাইকোর্টের উল্টোদিক থেকে একটি পতাকা খুঁজে এনেছে মমতার শপথ গ্রহণ, সেদিনই সব্যসাচী দত্তের বিধানসভায় পেনশনের কাগজ জমা দিতে যাওয়া, এবং রীতিমতো ড্রেসড আপ থাকা সবটাই যেন এক সূত্রে বাধা পড়েছে সব্যসাচীর তৃণমূলে যোগদানকে ঘিরে সবটাই কাকতালীয় আরও পড়ুন : Sabyasachi Dutta Exclusive Interview : অকপট স্বীকারোক্তি : সুজিতের কাছে কেন হারলেন সব্যসাচী?
bengali
## EXAMINATION: ANKLE (AP, MORTISE AND LAT) RIGHT ## INDICATION: year old woman with right ankle pain// right ankle pain right ankle pain ## FINDINGS: There is healing with callus formation and bridging of the distal fibular fracture and medial malleolus. There is persistent posterior angulation of the fibular fracture. There is fibular fixation hardware exhibiting fracture of the 2 syndesmotic screws, the remaining hardware including percutaneous pins and wire is without visualized complications. The mortise is congruent, with no widening of the syndesmosis. The tibial talar joint space is preserved and no talar dome osteochondral lesion is identified. ## IMPRESSION: 1. Fracture of the 2 medial syndesmotic screws. 2. Healing of the fibular and medial malleolar fractures. ## NOTIFICATION: The impression and recommendation above was entered by Dr. on at 11: 28 into the Department of Radiology critical communications system for direct communication to the referring provider.
medical
اسلام اباد اردو پوائنٹ اخبارتازہ ترین اے پی پی 23 مئی2018ء قومی ٹیم ورلڈ جونیئر سکواش ٹورنامنٹ میں شرکت کیلئے 13 جولائی کو بھارت روانہ ہوگی پاکستان سکواش فیڈریشن کے گیم ڈویلپمنٹ افیسر فلائٹ لیفٹیننٹ عامر اقبال کے مطابق ورلڈ جونیئر سکواش ٹورنامنٹ 17 سے 29 جولائی تک بھارت میں کھیلا جائے گا جس میں جونیئر کھلاڑی جن میں عباس زیب عزیر رشید حارث قاسم عزیر شوکت اسداللہ اور فرخان ہاشمی شامل ہیں پاکستان کی نمائندگی کریں گے ایونٹ کی تیاری کیلئے قومی کھلاڑیوں کا تربیتی کیمپ مصحف علی سکواش کمپلیکس اسلام اباد میں جاری ہے تربیتی کیمپ میںکوچز جدید اور اعلی معیار کی تربیت دے رہے ہیں ورلڈ جونیئر سکواش ٹورنامنٹ میں24 سے زائد ممالک کے کھلاڑی ایکشن میں نظر ائیں گے انہوں نے کہا کہ ایونٹ کیلئے باصلاحیت کھلاڑیوں کا انتخاب کیا ہے توقع ہے کہ قومی ٹیم ورلڈ جونیئر سکواش ٹورنامنٹ میں شاندارن کار کردگی کا مظاہرہ کرکے کامیابی حاصل کرے گی
urdu
काला ताजमहल की मरम्मत का काम रुका बुरहानपुर नईदुनिया प्रतिनिधि। अपनी बनावट और नक्काशी के कारण नायाब ऐतिहासिक इमारतों में शामिल आजाद नगर स्थित काला ताजमहल की मरम्मत का काम फिलहाल रोक दिया गया है। इसका कारण टेंडर जारी करने में विलंब होना बताया जा रहा है। पुरातत्व विभाग नए सिरे से इसके लिए टेंडर जारी कर रहा है। इसके साथ ही इसकी मरम्मत में सैकड़ों साल पुरानी इमारतों के निर्माण में इस्तेमाल होने वाले खास तरह का मसाला बनाने के लिए गड्ढे भी खुदवाए जा रहे हैं। अब तक हुई मरम्मत के लिए ताप्ती तट पर स्थित शाही किला परिसर में मसाला तैयार कराया जा रहा था। इसे काला ताजमहल तक पहुंचाने में कठिनाई हो रही थी। जिसके कारण अब यह खास तरह का मसाला यहीं बनाने का निर्णय लिया है। कर्मचारियों के मुताबिक मसाला तैयार होने में एक माह का समय लग सकता है।उल्लेखनीय है कि पुरातत्व विभाग ने जिले की जर्जर हो रही ऐतिहासिक इमारतों को पहले की तरह बनाने के लिए मरम्मत का काम शुरू कराया है। इसके लिए बाहर से खास तरह के कारीगर बुलाए गए हैं। इन ऐतिहासिक धरोहरों की मरम्मत में सीमेंट व रेत की जगह प्राचीनकाल जैसे मसाले का उपयोग किया जाता है। इसलिए इसे बनाने में काफी वक्त लगता है। काला ताजमहल परिसर में मसाला तैयार करने के लिए छह से सात फीट गहरे गड्ढे खोदे जा रहे हैं। इनमें पकाकर मसाला तैयार किया जाएगा। इससे इमारत की ऊपरी परत का प्लास्टर व अन्य काम होगा। चूने व गुड़ का होता है उपयोगकारीगरों और पुरातत्वविदों के मुताबिक इस मसाले को तैयार करने में चूना, गुड़, उड़द, ईंट का चूरा आदि सामग्री का उपयोग किया जाता है। ईंट के चूरे को बैल से चलने वाली पत्थर की चक्की में पीसा जाता है। फिर गड्ढों में इसका चूरा व अन्य सामग्री डालकर पकाया जाता है। इसमें भी दो तरह के मसाले तैयार होते हैं। लाल मसाला जुड़ाई में उपयोग किया जाता है और चूने से बनने वाला सफेद मसाला प्लास्टर के लिए उपयोग किया जाता है। इसी तरह के मसाले का इस्तेमाल करीब चार सौ साल पहले बने काला ताजमहल के निर्माण में किया गया था। गत दिनों पुरातत्व विभाग ने खास तरह के केमिकल से काला ताजमहल की सफाई कराई थी और खास किस्म का लेप लगवाया था। जिसके बाद इसकी खूबसूरती निखर आई है। यह है काला ताजमहल का इतिहासकाला ताजमहल देखने में आगरा के ताजमहल जैसा नजर आता है। इसका निर्माण 162223 ईस्वी में मुगल बादशाह शाहजहां ने कराया था। वास्तव में यह मुगल बादशाह के खास रहे अब्दुल रहीम खानेखाना के बड़े पुत्र शाहनवाज खान और उसकी पत्नी का मकबरा है। शाहनवाज की बहादुरी को देखते हुए उसे मुगल सेना का सेनापति बनाया गया था। महज 44 साल की उम्र में उसकी मृत्यु हो गई थी। जिसके बाद उसे सम्मान देने के लिए इस खूबसूरत मकबरे का निर्माण कराया गया था। बाद में इसी मकबरे की डिजाइन से मेल खाती आकृति वाला ताजमहल तैयार हुआ था। काला ताजमहल के अंदरूनी हिस्से में शानदार नक्काशी की गई है। फिलहाल मरम्मत का काम रोक दिया गया है। इसके लिए नए सिरे से टेंडर बुलाए जा रहे हैं। जल्द काम शुरू किया जाएगा। विपुल कुमार, जिला पुरातत्व अधिकारी।
hindi
ರಾಜ್ಯದಲ್ಲಿ ತುಘಲಕ್ ಸರ್ಕಾರ ನಡೆಯುತ್ತಿದೆ: ಬಿಎಸ್ವೈ ಆಡಳಿತ ವಿರುದ್ಧ ಡಿ.ಕೆ ಶಿವಕುಮಾರ್ ವಾಗ್ದಾಳಿ ಬೆಂಗಳೂರು: ರಾಜ್ಯದಲ್ಲಿ ತುಘಲಕ್ ಸರ್ಕಾರ ನಡೆಯುತ್ತಿದೆ. ಕೊರೊನಾ ಸಮಯದಲ್ಲಿ ಸರ್ಕಾರವೇ ಲಾಕ್ ಡೌನ್, ಸೀಲ್ಡೌನ್ ಮಾಡಿ ಈಗ ಜನ ಸಾಮಾನ್ಯರ ಮೇಲೆ ತೆರಿಗೆ ಹೊರೆ ಹಾಕುತ್ತಿದೆ ಎಂದು ಕೆಪಿಸಿಸಿ ಅಧ್ಯಕ್ಷ ಡಿ.ಕೆ. ಶಿವಕುಮಾರ್ ವಾಗ್ದಾಳಿ ನಡೆಸಿದ್ದಾರೆ. ಕೊರೊನಾ ಮತ್ತು ಆರ್ಥಿಕ ಸಂಕಷ್ಟ ಸಂದರ್ಭದಲ್ಲಿ ರಾಜ್ಯ ಸರಕಾರವು ಜನರ ಮೇಲೆ ನಾನಾ ತೆರಿಗೆ ವಿಧಿಸಿರುವುದನ್ನು ಖಂಡಿಸಿ ಬೆಂಗಳೂರಿನ ಮೈಸೂರು ಬ್ಯಾಂಕ್ ವೃತ್ತದಲ್ಲಿ ಕಾಂಗ್ರೆಸ್ ಪ್ರತಿಭಟನೆ ನಡೆಸಿತು. ಪ್ರತಿಭಟನೆಯಲ್ಲಿ ಪಾಲ್ಗೊಂಡು ಮಾತನಾಇದ ಡಿ.ಕೆ. ಶಿವಕುಮಾರ್, ಈ ವರ್ಷವನ್ನು ಎಲ್ಲ ಕ್ಷೇತ್ರಗಳ ಸ್ಥಳೀಯ ಸಮಸ್ಯೆಗಳನ್ನು ಗಮನದಲ್ಲಿಟ್ಟುಕೊಂಡು ಹೋರಾ ಟ ಹಾಗೂ ಸಂಘಟನೆ ವರ್ಷವಾಗಿ ಕಾಂಗ್ರೆಸ್ ಘೋಷಣೆ ಮಾಡಿದೆ. ರಾಜ್ಯದ ಸಮಸ್ಯೆ ಬೇರೆ. ಸ್ಥಳೀಯ ಸಮಸ್ಯೆಗಳೇ ಬೇರೆ ಎಂದರು. ಕೊರೊನಾದಿಂದಾಗಿ ಜನ ತತ್ತರಿಸಿದ್ದಾರೆ. ವ್ಯಾಪಾರ ವಹಿವಾಟು ಇಲ್ಲ. ಆದರೂ ಪಾಲಿಕೆ ಹೆಚ್ಚಿನ ತೆರಿಗೆ ಹಾಕಿದೆ. ನಾವು ತೆರಿಗೆ ಮನ್ನಾ ಮಾಡಿ ಎಂದು ಆಗ್ರಹಿಸಿದರೆ, ಇವರು ಹೆಚ್ಚು ಮಾಡುತ್ತಿದ್ದಾರೆ ಎಂದು ಲೇವಡಿ ಮಾಡಿದರು. ಹೈದರಾಬಾದ್ ನಲ್ಲಿ ತೆರಿಗೆ ಶೇ.50ರಷ್ಟು ಕಡಿಮೆ ಮಾಡಿದ್ದು, ನಾವು ಇಲ್ಲಿ ಪೂರ್ಣ ಪ್ರಮಾಣದಲ್ಲಿ ಕಡಿಮೆ ಮಾಡಿ ಎಂದು ಹೇಳಿದ್ದೆವು. ಲಾಕ್ಡೌನ್, ಸೀಲ್ಡೌನ್ ಎಲ್ಲವನ್ನು ಮಾಡಿದ್ದು ಸರ್ಕಾರವೇ. ಇಲ್ಲಿ ಜನರ ತಪ್ಪಿಲ್ಲ. ಯಾರಿಗೂ ವ್ಯಾಪಾರ ಇಲ್ಲದೆ ಆದಾಯವಿಲ್ಲ. ಈ ಸಮಯದಲ್ಲಿ ತೆರಿಗೆ ಹೆಚ್ಚಿಸಿದ್ದಾರೆ. ಕೊರೊನಾ ಸಮಯದಲ್ಲಿ ಸೋಂಕಿತರು ಲಕ್ಷಾಂತರ ರೂಪಾಯಿ ವೆಚ್ಚ ಮಾಡಿದ್ದಾರೆ. ಈ ಅವಧಿಯಲ್ಲಿ ಒಂದು ಕೆಲಸವೂ ಆಗಿಲ್ಲ. ಅನೇಕ ಗುತ್ತಿಗೆದಾರರು ಬಿಲ್ ಬಾಕಿಯಿಂದ ಸಂಕಷ್ಟಕ್ಕೆ ಸಿಲುಕಿದ್ದಾರೆ. ಮನೆ ಕಟ್ಟುವ ಯೋಜನೆ ಶುಲ್ಕವನ್ನು 3 ಪಟ್ಟು ಹೆಚ್ಚಿಸಲಾಗಿದ್ದು ಸಾಮಾನ್ಯ ಜನರಿಗೆ ತೊಂದರೆಯಾಗುತ್ತಿದೆ ಎಂದು ತಿಳಿಸಿದರು.. ಕಸ ವಿಲೇವಾರಿ ಬಗ್ಗೆ ನಮ್ಮ ಸರ್ಕಾರ ಇದ್ದಾಗ ಮಾತನಾಡುತ್ತಿದ್ದವರು ಈಗೇನು ಮಾಡುತ್ತಿದ್ದೀರಿ. ರಸ್ತೆಗಳಲ್ಲಿ ಕಸ ತುಂಬಿ ತುಳುಕುತ್ತಿದೆ. ಇದು ಪಕ್ಷದ ವಿಚಾರ ಅಲ್ಲ. ನಾಕರೀಕರ ಬದುಕಿನ ವಿಚಾರ. ಸರ್ಕಾರ ಕಸ ವಿಲೇವಾರಿ ಸರಿಯಾಗಿ ಮಾಡುತ್ತಿಲ್ಲ. ಕೇವಲ ಜಾಹೀರಾತು ಮೂಲಕ ಪ್ರಚಾರ ಪಡೆಯುತ್ತಿದ್ದೀರಿ ಎಂದು ಡಿಕೆಶಿ ಆರೋಪಿಸಿದ್ದಾರೆ. ಸರ್ಕಾರಕ್ಕೆ ನಗರ ಪಾಲಿಕೆ ಚುನಾವಣೆ ಮಾಡಲು, ನಾಗರೀಕರ ಸಮಸ್ಯೆ ಕೇಳುವ ಮನಸ್ಥಿತಿ ಇಲ್ಲ. ಹೀಗಾಗಿ ನಾವು ಇಂದು ನಮ್ಮ ಬೇಡಿಕೆಗಳನ್ನು ನಿಮ್ಮ ಮುಂದಿಟ್ಟು ಹೋರಾಟ ಮಾಡಲು ಬಂದಿದ್ದೇವೆ. ಬೀದಿ ವ್ಯಾಪಾರಿಗಳಿಗೆ, ಅಸಂಘಟಿತ ಕಾರ್ಮಿಕರು, ಸಾಂಪ್ರದಾಯಿಕ ವೃತ್ತಿ ಮಾಡುತ್ತಿರುವವರಿಗೆ 5 ಸಾವಿರ ನೀಡುವುದಾಗಿ ತಿಳಿಸಿದ್ದೀರಿ. ಅವರಿಗೆ ಕೇವಲ ಒಂದು ತಿಂಗಳಲ್ಲ. ಕನಿಷ್ಠ 6 ತಿಂಗಳು ಅವರಿಗೆ ನೀಡಬೇಕು. ರಾತ್ರೋರಾತ್ರಿ ಕಫ್ರ್ಯು ಮಾಡಲು ಹೊರಟಿದ್ದಿರಿ. ರಾಜ್ಯದಲ್ಲಿ ತುಘಲಕ್ ದರ್ಬಾರ್ ನಡೆಯುತ್ತಿದೆ. ಇದನ್ನು ಪ್ರತಿಭಟಿಸಿ, ಜನರ ಧ್ವನಿಯಾಗಿ, ಜನರ ಭಾವನೆ ನಿಮಗೆ ತಿಳಿಸಲು ಇಂದು ನಿಮ್ಮ ಬಾಗಿಲಿಗೆ ಬಂದಿದ್ದೇವೆ. ಈ ವಿಚಾರದಲ್ಲಿ ಸರ್ಕಾರ ಕೂಡಲೇ ಎಚ್ಚೆತ್ತುಕೊಂಡು ತೆರಿಗೆ ಮನ್ನಾ ಮಾಡಿ ನಮ್ಮ ಬೇಡಿಕೆ ಈಡೇರಿಸಬೇಕು. ಈ ಬಗ್ಗೆ ನಿರ್ಲಕ್ಷ್ಯ ವಹಿಸಿದರೆ ಉಗ್ರ ಹೋರಾಟ ಮಾಡಬೇಕಾಗುತ್ತದೆ ಎಂದು ಡಿ.ಕೆ ಶಿವಕುಮಾರ್ ಎಚ್ಚರಿಸಿದ್ದಾರೆ. ಪ್ರತಿಭಟನೆಯಲ್ಲಿ ಮಾಜಿ ಸಚಿವ ರಾಮಲಿಂಗಾರೆಡ್ಡಿ, ಶಾಸಕ ರಿಜ್ವಾನ್ ಅರ್ಶದ್, ವಿಧಾನ ಪರಿಷತ್ ಸದಸ್ಯ ಹರಿಪ್ರಸಾದ್, ಡಿಸಿಸಿ ಅಧ್ಯಕ್ಷರಾದ ಕೃಷ್ಣಪ್ಪ, ರಾಜಕುಮಾರ್ ಮತ್ತಿತರರು ಭಾಗವಹಿಸಿದ್ದರು. Our Website : https:saakshatv.com Subscribe Now on YouTube Like us on Facebook Follow us on Twitter Follow us on Instagram Subscribe to our Telegram Channel Kariyappa N ಸೀನಿಯರ್ ಕಂಟೆಂಟ್ ಎಡಿಟರ್
kannad
#!/usr/bin/env python # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """This is a simple HTTP/FTP/TCP/UDP/BASIC_AUTH_PROXY/WEBSOCKET server used for testing Chrome. It supports several test URLs, as specified by the handlers in TestPageHandler. By default, it listens on an ephemeral port and sends the port number back to the originating process over a pipe. The originating process can specify an explicit port if necessary. It can use https if you specify the flag --https=CERT where CERT is the path to a pem file containing the certificate and private key that should be used. """ import base64 import BaseHTTPServer import cgi import hashlib import logging import minica import os import json import random import re import select import socket import SocketServer import ssl import struct import sys import threading import time import urllib import urlparse import zlib BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(BASE_DIR))) # Temporary hack to deal with tlslite 0.3.8 -> 0.4.6 upgrade. # # TODO(davidben): Remove this when it has cycled through all the bots and # developer checkouts or when http://crbug.com/356276 is resolved. try: os.remove(os.path.join(ROOT_DIR, 'third_party', 'tlslite', 'tlslite', 'utils', 'hmac.pyc')) except Exception: pass # Append at the end of sys.path, it's fine to use the system library. sys.path.append(os.path.join(ROOT_DIR, 'third_party', 'pyftpdlib', 'src')) # Insert at the beginning of the path, we want to use our copies of the library # unconditionally. sys.path.insert(0, os.path.join(ROOT_DIR, 'third_party', 'pywebsocket', 'src')) sys.path.insert(0, os.path.join(ROOT_DIR, 'third_party', 'tlslite')) import mod_pywebsocket.standalone from mod_pywebsocket.standalone import WebSocketServer # import manually mod_pywebsocket.standalone.ssl = ssl import pyftpdlib.ftpserver import tlslite import tlslite.api import echo_message import testserver_base SERVER_HTTP = 0 SERVER_FTP = 1 SERVER_TCP_ECHO = 2 SERVER_UDP_ECHO = 3 SERVER_BASIC_AUTH_PROXY = 4 SERVER_WEBSOCKET = 5 # Default request queue size for WebSocketServer. _DEFAULT_REQUEST_QUEUE_SIZE = 128 class WebSocketOptions: """Holds options for WebSocketServer.""" def __init__(self, host, port, data_dir): self.request_queue_size = _DEFAULT_REQUEST_QUEUE_SIZE self.server_host = host self.port = port self.websock_handlers = data_dir self.scan_dir = None self.allow_handlers_outside_root_dir = False self.websock_handlers_map_file = None self.cgi_directories = [] self.is_executable_method = None self.allow_draft75 = False self.strict = True self.use_tls = False self.private_key = None self.certificate = None self.tls_client_auth = False self.tls_client_ca = None self.tls_module = 'ssl' self.use_basic_auth = False self.basic_auth_credential = 'Basic ' + base64.b64encode('test:test') class RecordingSSLSessionCache(object): """RecordingSSLSessionCache acts as a TLS session cache and maintains a log of lookups and inserts in order to test session cache behaviours.""" def __init__(self): self.log = [] def __getitem__(self, sessionID): self.log.append(('lookup', sessionID)) raise KeyError() def __setitem__(self, sessionID, session): self.log.append(('insert', sessionID)) class HTTPServer(testserver_base.ClientRestrictingServerMixIn, testserver_base.BrokenPipeHandlerMixIn, testserver_base.StoppableHTTPServer): """This is a specialization of StoppableHTTPServer that adds client verification.""" pass class OCSPServer(testserver_base.ClientRestrictingServerMixIn, testserver_base.BrokenPipeHandlerMixIn, BaseHTTPServer.HTTPServer): """This is a specialization of HTTPServer that serves an OCSP response""" def serve_forever_on_thread(self): self.thread = threading.Thread(target = self.serve_forever, name = "OCSPServerThread") self.thread.start() def stop_serving(self): self.shutdown() self.thread.join() class HTTPSServer(tlslite.api.TLSSocketServerMixIn, testserver_base.ClientRestrictingServerMixIn, testserver_base.BrokenPipeHandlerMixIn, testserver_base.StoppableHTTPServer): """This is a specialization of StoppableHTTPServer that add https support and client verification.""" def __init__(self, server_address, request_hander_class, pem_cert_and_key, ssl_client_auth, ssl_client_cas, ssl_client_cert_types, ssl_bulk_ciphers, ssl_key_exchanges, npn_protocols, record_resume_info, tls_intolerant, tls_intolerance_type, signed_cert_timestamps, fallback_scsv_enabled, ocsp_response, alert_after_handshake, disable_channel_id, disable_ems, token_binding_params): self.cert_chain = tlslite.api.X509CertChain() self.cert_chain.parsePemList(pem_cert_and_key) # Force using only python implementation - otherwise behavior is different # depending on whether m2crypto Python module is present (error is thrown # when it is). m2crypto uses a C (based on OpenSSL) implementation under # the hood. self.private_key = tlslite.api.parsePEMKey(pem_cert_and_key, private=True, implementations=['python']) self.ssl_client_auth = ssl_client_auth self.ssl_client_cas = [] self.ssl_client_cert_types = [] self.npn_protocols = npn_protocols self.signed_cert_timestamps = signed_cert_timestamps self.fallback_scsv_enabled = fallback_scsv_enabled self.ocsp_response = ocsp_response if ssl_client_auth: for ca_file in ssl_client_cas: s = open(ca_file).read() x509 = tlslite.api.X509() x509.parse(s) self.ssl_client_cas.append(x509.subject) for cert_type in ssl_client_cert_types: self.ssl_client_cert_types.append({ "rsa_sign": tlslite.api.ClientCertificateType.rsa_sign, "ecdsa_sign": tlslite.api.ClientCertificateType.ecdsa_sign, }[cert_type]) self.ssl_handshake_settings = tlslite.api.HandshakeSettings() # Enable SSLv3 for testing purposes. self.ssl_handshake_settings.minVersion = (3, 0) if ssl_bulk_ciphers is not None: self.ssl_handshake_settings.cipherNames = ssl_bulk_ciphers if ssl_key_exchanges is not None: self.ssl_handshake_settings.keyExchangeNames = ssl_key_exchanges if tls_intolerant != 0: self.ssl_handshake_settings.tlsIntolerant = (3, tls_intolerant) self.ssl_handshake_settings.tlsIntoleranceType = tls_intolerance_type if alert_after_handshake: self.ssl_handshake_settings.alertAfterHandshake = True if disable_channel_id: self.ssl_handshake_settings.enableChannelID = False if disable_ems: self.ssl_handshake_settings.enableExtendedMasterSecret = False self.ssl_handshake_settings.supportedTokenBindingParams = \ token_binding_params if record_resume_info: # If record_resume_info is true then we'll replace the session cache with # an object that records the lookups and inserts that it sees. self.session_cache = RecordingSSLSessionCache() else: self.session_cache = tlslite.api.SessionCache() testserver_base.StoppableHTTPServer.__init__(self, server_address, request_hander_class) def handshake(self, tlsConnection): """Creates the SSL connection.""" try: self.tlsConnection = tlsConnection tlsConnection.handshakeServer(certChain=self.cert_chain, privateKey=self.private_key, sessionCache=self.session_cache, reqCert=self.ssl_client_auth, settings=self.ssl_handshake_settings, reqCAs=self.ssl_client_cas, reqCertTypes=self.ssl_client_cert_types, nextProtos=self.npn_protocols, signedCertTimestamps= self.signed_cert_timestamps, fallbackSCSV=self.fallback_scsv_enabled, ocspResponse = self.ocsp_response) tlsConnection.ignoreAbruptClose = True return True except tlslite.api.TLSAbruptCloseError: # Ignore abrupt close. return True except tlslite.api.TLSError, error: print "Handshake failure:", str(error) return False class FTPServer(testserver_base.ClientRestrictingServerMixIn, pyftpdlib.ftpserver.FTPServer): """This is a specialization of FTPServer that adds client verification.""" pass class TCPEchoServer(testserver_base.ClientRestrictingServerMixIn, SocketServer.TCPServer): """A TCP echo server that echoes back what it has received.""" def server_bind(self): """Override server_bind to store the server name.""" SocketServer.TCPServer.server_bind(self) host, port = self.socket.getsockname()[:2] self.server_name = socket.getfqdn(host) self.server_port = port def serve_forever(self): self.stop = False self.nonce_time = None while not self.stop: self.handle_request() self.socket.close() class UDPEchoServer(testserver_base.ClientRestrictingServerMixIn, SocketServer.UDPServer): """A UDP echo server that echoes back what it has received.""" def server_bind(self): """Override server_bind to store the server name.""" SocketServer.UDPServer.server_bind(self) host, port = self.socket.getsockname()[:2] self.server_name = socket.getfqdn(host) self.server_port = port def serve_forever(self): self.stop = False self.nonce_time = None while not self.stop: self.handle_request() self.socket.close() class TestPageHandler(testserver_base.BasePageHandler): # Class variables to allow for persistence state between page handler # invocations rst_limits = {} fail_precondition = {} def __init__(self, request, client_address, socket_server): connect_handlers = [ self.RedirectConnectHandler, self.ServerAuthConnectHandler, self.DefaultConnectResponseHandler] get_handlers = [ self.NoCacheMaxAgeTimeHandler, self.NoCacheTimeHandler, self.CacheTimeHandler, self.CacheExpiresHandler, self.CacheProxyRevalidateHandler, self.CachePrivateHandler, self.CachePublicHandler, self.CacheSMaxAgeHandler, self.CacheMustRevalidateHandler, self.CacheMustRevalidateMaxAgeHandler, self.CacheNoStoreHandler, self.CacheNoStoreMaxAgeHandler, self.CacheNoTransformHandler, self.DownloadHandler, self.DownloadFinishHandler, self.EchoHeader, self.EchoHeaderCache, self.EchoAllHandler, self.ZipFileHandler, self.FileHandler, self.SetCookieHandler, self.SetManyCookiesHandler, self.ExpectAndSetCookieHandler, self.SetHeaderHandler, self.AuthBasicHandler, self.AuthDigestHandler, self.SlowServerHandler, self.ChunkedServerHandler, self.NoContentHandler, self.ServerRedirectHandler, self.CrossSiteRedirectHandler, self.ClientRedirectHandler, self.GetSSLSessionCacheHandler, self.SSLManySmallRecords, self.GetChannelID, self.GetTokenBindingEKM, self.GetClientCert, self.ClientCipherListHandler, self.CloseSocketHandler, self.DefaultResponseHandler] post_handlers = [ self.EchoTitleHandler, self.EchoHandler, self.PostOnlyFileHandler, self.EchoMultipartPostHandler] + get_handlers put_handlers = [ self.EchoTitleHandler, self.EchoHandler] + get_handlers head_handlers = [ self.FileHandler, self.DefaultResponseHandler] self._mime_types = { 'crx' : 'application/x-chrome-extension', 'exe' : 'application/octet-stream', 'gif': 'image/gif', 'jpeg' : 'image/jpeg', 'jpg' : 'image/jpeg', 'js' : 'application/javascript', 'json': 'application/json', 'pdf' : 'application/pdf', 'txt' : 'text/plain', 'wav' : 'audio/wav', 'xml' : 'text/xml' } self._default_mime_type = 'text/html' testserver_base.BasePageHandler.__init__(self, request, client_address, socket_server, connect_handlers, get_handlers, head_handlers, post_handlers, put_handlers) def GetMIMETypeFromName(self, file_name): """Returns the mime type for the specified file_name. So far it only looks at the file extension.""" (_shortname, extension) = os.path.splitext(file_name.split("?")[0]) if len(extension) == 0: # no extension. return self._default_mime_type # extension starts with a dot, so we need to remove it return self._mime_types.get(extension[1:], self._default_mime_type) def NoCacheMaxAgeTimeHandler(self): """This request handler yields a page with the title set to the current system time, and no caching requested.""" if not self._ShouldHandleRequest("/nocachetime/maxage"): return False self.send_response(200) self.send_header('Cache-Control', 'max-age=0') self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def NoCacheTimeHandler(self): """This request handler yields a page with the title set to the current system time, and no caching requested.""" if not self._ShouldHandleRequest("/nocachetime"): return False self.send_response(200) self.send_header('Cache-Control', 'no-cache') self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def CacheTimeHandler(self): """This request handler yields a page with the title set to the current system time, and allows caching for one minute.""" if not self._ShouldHandleRequest("/cachetime"): return False self.send_response(200) self.send_header('Cache-Control', 'max-age=60') self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def CacheExpiresHandler(self): """This request handler yields a page with the title set to the current system time, and set the page to expire on 1 Jan 2099.""" if not self._ShouldHandleRequest("/cache/expires"): return False self.send_response(200) self.send_header('Expires', 'Thu, 1 Jan 2099 00:00:00 GMT') self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def CacheProxyRevalidateHandler(self): """This request handler yields a page with the title set to the current system time, and allows caching for 60 seconds""" if not self._ShouldHandleRequest("/cache/proxy-revalidate"): return False self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Cache-Control', 'max-age=60, proxy-revalidate') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def CachePrivateHandler(self): """This request handler yields a page with the title set to the current system time, and allows caching for 3 seconds.""" if not self._ShouldHandleRequest("/cache/private"): return False self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Cache-Control', 'max-age=3, private') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def CachePublicHandler(self): """This request handler yields a page with the title set to the current system time, and allows caching for 3 seconds.""" if not self._ShouldHandleRequest("/cache/public"): return False self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Cache-Control', 'max-age=3, public') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def CacheSMaxAgeHandler(self): """This request handler yields a page with the title set to the current system time, and does not allow for caching.""" if not self._ShouldHandleRequest("/cache/s-maxage"): return False self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Cache-Control', 'public, s-maxage = 60, max-age = 0') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def CacheMustRevalidateHandler(self): """This request handler yields a page with the title set to the current system time, and does not allow caching.""" if not self._ShouldHandleRequest("/cache/must-revalidate"): return False self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Cache-Control', 'must-revalidate') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def CacheMustRevalidateMaxAgeHandler(self): """This request handler yields a page with the title set to the current system time, and does not allow caching event though max-age of 60 seconds is specified.""" if not self._ShouldHandleRequest("/cache/must-revalidate/max-age"): return False self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Cache-Control', 'max-age=60, must-revalidate') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def CacheNoStoreHandler(self): """This request handler yields a page with the title set to the current system time, and does not allow the page to be stored.""" if not self._ShouldHandleRequest("/cache/no-store"): return False self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Cache-Control', 'no-store') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def CacheNoStoreMaxAgeHandler(self): """This request handler yields a page with the title set to the current system time, and does not allow the page to be stored even though max-age of 60 seconds is specified.""" if not self._ShouldHandleRequest("/cache/no-store/max-age"): return False self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Cache-Control', 'max-age=60, no-store') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def CacheNoTransformHandler(self): """This request handler yields a page with the title set to the current system time, and does not allow the content to transformed during user-agent caching""" if not self._ShouldHandleRequest("/cache/no-transform"): return False self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Cache-Control', 'no-transform') self.end_headers() self.wfile.write('<html><head><title>%s</title></head></html>' % time.time()) return True def EchoHeader(self): """This handler echoes back the value of a specific request header.""" return self.EchoHeaderHelper("/echoheader") def EchoHeaderCache(self): """This function echoes back the value of a specific request header while allowing caching for 16 hours.""" return self.EchoHeaderHelper("/echoheadercache") def EchoHeaderHelper(self, echo_header): """This function echoes back the value of the request header passed in.""" if not self._ShouldHandleRequest(echo_header): return False query_char = self.path.find('?') if query_char != -1: header_name = self.path[query_char+1:] self.send_response(200) self.send_header('Content-Type', 'text/plain') if echo_header == '/echoheadercache': self.send_header('Cache-control', 'max-age=60000') else: self.send_header('Cache-control', 'no-cache') # insert a vary header to properly indicate that the cachability of this # request is subject to value of the request header being echoed. if len(header_name) > 0: self.send_header('Vary', header_name) self.end_headers() if len(header_name) > 0: self.wfile.write(self.headers.getheader(header_name)) return True def ReadRequestBody(self): """This function reads the body of the current HTTP request, handling both plain and chunked transfer encoded requests.""" if self.headers.getheader('transfer-encoding') != 'chunked': length = int(self.headers.getheader('content-length')) return self.rfile.read(length) # Read the request body as chunks. body = "" while True: line = self.rfile.readline() length = int(line, 16) if length == 0: self.rfile.readline() break body += self.rfile.read(length) self.rfile.read(2) return body def EchoHandler(self): """This handler just echoes back the payload of the request, for testing form submission.""" if not self._ShouldHandleRequest("/echo"): return False _, _, _, _, query, _ = urlparse.urlparse(self.path) query_params = cgi.parse_qs(query, True) if 'status' in query_params: self.send_response(int(query_params['status'][0])) else: self.send_response(200) self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write(self.ReadRequestBody()) return True def EchoTitleHandler(self): """This handler is like Echo, but sets the page title to the request.""" if not self._ShouldHandleRequest("/echotitle"): return False self.send_response(200) self.send_header('Content-Type', 'text/html') self.end_headers() request = self.ReadRequestBody() self.wfile.write('<html><head><title>') self.wfile.write(request) self.wfile.write('</title></head></html>') return True def EchoAllHandler(self): """This handler yields a (more) human-readable page listing information about the request header & contents.""" if not self._ShouldHandleRequest("/echoall"): return False self.send_response(200) self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write('<html><head><style>' 'pre { border: 1px solid black; margin: 5px; padding: 5px }' '</style></head><body>' '<div style="float: right">' '<a href="/echo">back to referring page</a></div>' '<h1>Request Body:</h1><pre>') if self.command == 'POST' or self.command == 'PUT': qs = self.ReadRequestBody() params = cgi.parse_qs(qs, keep_blank_values=1) for param in params: self.wfile.write('%s=%s\n' % (param, params[param][0])) self.wfile.write('</pre>') self.wfile.write('<h1>Request Headers:</h1><pre>%s</pre>' % self.headers) self.wfile.write('</body></html>') return True def EchoMultipartPostHandler(self): """This handler echoes received multipart post data as json format.""" if not (self._ShouldHandleRequest("/echomultipartpost") or self._ShouldHandleRequest("/searchbyimage")): return False content_type, parameters = cgi.parse_header( self.headers.getheader('content-type')) if content_type == 'multipart/form-data': post_multipart = cgi.parse_multipart(self.rfile, parameters) elif content_type == 'application/x-www-form-urlencoded': raise Exception('POST by application/x-www-form-urlencoded is ' 'not implemented.') else: post_multipart = {} # Since the data can be binary, we encode them by base64. post_multipart_base64_encoded = {} for field, values in post_multipart.items(): post_multipart_base64_encoded[field] = [base64.b64encode(value) for value in values] result = {'POST_multipart' : post_multipart_base64_encoded} self.send_response(200) self.send_header("Content-type", "text/plain") self.end_headers() self.wfile.write(json.dumps(result, indent=2, sort_keys=False)) return True def DownloadHandler(self): """This handler sends a downloadable file with or without reporting the size (6K).""" if self.path.startswith("/download-unknown-size"): send_length = False elif self.path.startswith("/download-known-size"): send_length = True else: return False # # The test which uses this functionality is attempting to send # small chunks of data to the client. Use a fairly large buffer # so that we'll fill chrome's IO buffer enough to force it to # actually write the data. # See also the comments in the client-side of this test in # download_uitest.cc # size_chunk1 = 35*1024 size_chunk2 = 10*1024 self.send_response(200) self.send_header('Content-Type', 'application/octet-stream') self.send_header('Cache-Control', 'max-age=0') if send_length: self.send_header('Content-Length', size_chunk1 + size_chunk2) self.end_headers() # First chunk of data: self.wfile.write("*" * size_chunk1) self.wfile.flush() # handle requests until one of them clears this flag. self.server.wait_for_download = True while self.server.wait_for_download: self.server.handle_request() # Second chunk of data: self.wfile.write("*" * size_chunk2) return True def DownloadFinishHandler(self): """This handler just tells the server to finish the current download.""" if not self._ShouldHandleRequest("/download-finish"): return False self.server.wait_for_download = False self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Cache-Control', 'max-age=0') self.end_headers() return True def _ReplaceFileData(self, data, query_parameters): """Replaces matching substrings in a file. If the 'replace_text' URL query parameter is present, it is expected to be of the form old_text:new_text, which indicates that any old_text strings in the file are replaced with new_text. Multiple 'replace_text' parameters may be specified. If the parameters are not present, |data| is returned. """ query_dict = cgi.parse_qs(query_parameters) replace_text_values = query_dict.get('replace_text', []) for replace_text_value in replace_text_values: replace_text_args = replace_text_value.split(':') if len(replace_text_args) != 2: raise ValueError( 'replace_text must be of form old_text:new_text. Actual value: %s' % replace_text_value) old_text_b64, new_text_b64 = replace_text_args old_text = base64.urlsafe_b64decode(old_text_b64) new_text = base64.urlsafe_b64decode(new_text_b64) data = data.replace(old_text, new_text) return data def ZipFileHandler(self): """This handler sends the contents of the requested file in compressed form. Can pass in a parameter that specifies that the content length be C - the compressed size (OK), U - the uncompressed size (Non-standard, but handled), S - less than compressed (OK because we keep going), M - larger than compressed but less than uncompressed (an error), L - larger than uncompressed (an error) Example: compressedfiles/Picture_1.doc?C """ prefix = "/compressedfiles/" if not self.path.startswith(prefix): return False # Consume a request body if present. if self.command == 'POST' or self.command == 'PUT' : self.ReadRequestBody() _, _, url_path, _, query, _ = urlparse.urlparse(self.path) if not query in ('C', 'U', 'S', 'M', 'L'): return False sub_path = url_path[len(prefix):] entries = sub_path.split('/') file_path = os.path.join(self.server.data_dir, *entries) if os.path.isdir(file_path): file_path = os.path.join(file_path, 'index.html') if not os.path.isfile(file_path): print "File not found " + sub_path + " full path:" + file_path self.send_error(404) return True f = open(file_path, "rb") data = f.read() uncompressed_len = len(data) f.close() # Compress the data. data = zlib.compress(data) compressed_len = len(data) content_length = compressed_len if query == 'U': content_length = uncompressed_len elif query == 'S': content_length = compressed_len / 2 elif query == 'M': content_length = (compressed_len + uncompressed_len) / 2 elif query == 'L': content_length = compressed_len + uncompressed_len self.send_response(200) self.send_header('Content-Type', 'application/msword') self.send_header('Content-encoding', 'deflate') self.send_header('Connection', 'close') self.send_header('Content-Length', content_length) self.send_header('ETag', '\'' + file_path + '\'') self.end_headers() self.wfile.write(data) return True def FileHandler(self): """This handler sends the contents of the requested file. Wow, it's like a real webserver!""" prefix = self.server.file_root_url if not self.path.startswith(prefix): return False return self._FileHandlerHelper(prefix) def PostOnlyFileHandler(self): """This handler sends the contents of the requested file on a POST.""" prefix = urlparse.urljoin(self.server.file_root_url, 'post/') if not self.path.startswith(prefix): return False return self._FileHandlerHelper(prefix) def _FileHandlerHelper(self, prefix): request_body = '' if self.command == 'POST' or self.command == 'PUT': # Consume a request body if present. request_body = self.ReadRequestBody() _, _, url_path, _, query, _ = urlparse.urlparse(self.path) query_dict = cgi.parse_qs(query) expected_body = query_dict.get('expected_body', []) if expected_body and request_body not in expected_body: self.send_response(404) self.end_headers() self.wfile.write('') return True expected_headers = query_dict.get('expected_headers', []) for expected_header in expected_headers: header_name, expected_value = expected_header.split(':') if self.headers.getheader(header_name) != expected_value: self.send_response(404) self.end_headers() self.wfile.write('') return True sub_path = url_path[len(prefix):] entries = sub_path.split('/') file_path = os.path.join(self.server.data_dir, *entries) if os.path.isdir(file_path): file_path = os.path.join(file_path, 'index.html') if not os.path.isfile(file_path): print "File not found " + sub_path + " full path:" + file_path self.send_error(404) return True f = open(file_path, "rb") data = f.read() f.close() data = self._ReplaceFileData(data, query) old_protocol_version = self.protocol_version # If file.mock-http-headers exists, it contains the headers we # should send. Read them in and parse them. headers_path = file_path + '.mock-http-headers' if os.path.isfile(headers_path): f = open(headers_path, "r") # "HTTP/1.1 200 OK" response = f.readline() http_major, http_minor, status_code = re.findall( 'HTTP/(\d+).(\d+) (\d+)', response)[0] self.protocol_version = "HTTP/%s.%s" % (http_major, http_minor) self.send_response(int(status_code)) for line in f: header_values = re.findall('(\S+):\s*(.*)', line) if len(header_values) > 0: # "name: value" name, value = header_values[0] self.send_header(name, value) f.close() else: # Could be more generic once we support mime-type sniffing, but for # now we need to set it explicitly. range_header = self.headers.get('Range') if range_header and range_header.startswith('bytes='): # Note this doesn't handle all valid byte range_header values (i.e. # left open ended ones), just enough for what we needed so far. range_header = range_header[6:].split('-') start = int(range_header[0]) if range_header[1]: end = int(range_header[1]) else: end = len(data) - 1 self.send_response(206) content_range = ('bytes ' + str(start) + '-' + str(end) + '/' + str(len(data))) self.send_header('Content-Range', content_range) data = data[start: end + 1] else: self.send_response(200) self.send_header('Content-Type', self.GetMIMETypeFromName(file_path)) self.send_header('Accept-Ranges', 'bytes') self.send_header('Content-Length', len(data)) self.send_header('ETag', '\'' + file_path + '\'') self.end_headers() if (self.command != 'HEAD'): self.wfile.write(data) self.protocol_version = old_protocol_version return True def SetCookieHandler(self): """This handler just sets a cookie, for testing cookie handling.""" if not self._ShouldHandleRequest("/set-cookie"): return False query_char = self.path.find('?') if query_char != -1: cookie_values = self.path[query_char + 1:].split('&') else: cookie_values = ("",) self.send_response(200) self.send_header('Content-Type', 'text/html') for cookie_value in cookie_values: self.send_header('Set-Cookie', '%s' % cookie_value) self.end_headers() for cookie_value in cookie_values: self.wfile.write('%s' % cookie_value) return True def SetManyCookiesHandler(self): """This handler just sets a given number of cookies, for testing handling of large numbers of cookies.""" if not self._ShouldHandleRequest("/set-many-cookies"): return False query_char = self.path.find('?') if query_char != -1: num_cookies = int(self.path[query_char + 1:]) else: num_cookies = 0 self.send_response(200) self.send_header('', 'text/html') for _i in range(0, num_cookies): self.send_header('Set-Cookie', 'a=') self.end_headers() self.wfile.write('%d cookies were sent' % num_cookies) return True def ExpectAndSetCookieHandler(self): """Expects some cookies to be sent, and if they are, sets more cookies. The expect parameter specifies a required cookie. May be specified multiple times. The set parameter specifies a cookie to set if all required cookies are preset. May be specified multiple times. The data parameter specifies the response body data to be returned.""" if not self._ShouldHandleRequest("/expect-and-set-cookie"): return False _, _, _, _, query, _ = urlparse.urlparse(self.path) query_dict = cgi.parse_qs(query) cookies = set() if 'Cookie' in self.headers: cookie_header = self.headers.getheader('Cookie') cookies.update([s.strip() for s in cookie_header.split(';')]) got_all_expected_cookies = True for expected_cookie in query_dict.get('expect', []): if expected_cookie not in cookies: got_all_expected_cookies = False self.send_response(200) self.send_header('Content-Type', 'text/html') if got_all_expected_cookies: for cookie_value in query_dict.get('set', []): self.send_header('Set-Cookie', '%s' % cookie_value) self.end_headers() for data_value in query_dict.get('data', []): self.wfile.write(data_value) return True def SetHeaderHandler(self): """This handler sets a response header. Parameters are in the key%3A%20value&key2%3A%20value2 format.""" if not self._ShouldHandleRequest("/set-header"): return False query_char = self.path.find('?') if query_char != -1: headers_values = self.path[query_char + 1:].split('&') else: headers_values = ("",) self.send_response(200) self.send_header('Content-Type', 'text/html') for header_value in headers_values: header_value = urllib.unquote(header_value) (key, value) = header_value.split(': ', 1) self.send_header(key, value) self.end_headers() for header_value in headers_values: self.wfile.write('%s' % header_value) return True def AuthBasicHandler(self): """This handler tests 'Basic' authentication. It just sends a page with title 'user/pass' if you succeed.""" if not self._ShouldHandleRequest("/auth-basic"): return False username = userpass = password = b64str = "" expected_password = 'secret' realm = 'testrealm' set_cookie_if_challenged = False _, _, url_path, _, query, _ = urlparse.urlparse(self.path) query_params = cgi.parse_qs(query, True) if 'set-cookie-if-challenged' in query_params: set_cookie_if_challenged = True if 'password' in query_params: expected_password = query_params['password'][0] if 'realm' in query_params: realm = query_params['realm'][0] auth = self.headers.getheader('authorization') try: if not auth: raise Exception('no auth') b64str = re.findall(r'Basic (\S+)', auth)[0] userpass = base64.b64decode(b64str) username, password = re.findall(r'([^:]+):(\S+)', userpass)[0] if password != expected_password: raise Exception('wrong password') except Exception, e: # Authentication failed. self.send_response(401) self.send_header('WWW-Authenticate', 'Basic realm="%s"' % realm) self.send_header('Content-Type', 'text/html') if set_cookie_if_challenged: self.send_header('Set-Cookie', 'got_challenged=true') self.end_headers() self.wfile.write('<html><head>') self.wfile.write('<title>Denied: %s</title>' % e) self.wfile.write('</head><body>') self.wfile.write('auth=%s<p>' % auth) self.wfile.write('b64str=%s<p>' % b64str) self.wfile.write('username: %s<p>' % username) self.wfile.write('userpass: %s<p>' % userpass) self.wfile.write('password: %s<p>' % password) self.wfile.write('You sent:<br>%s<p>' % self.headers) self.wfile.write('</body></html>') return True # Authentication successful. (Return a cachable response to allow for # testing cached pages that require authentication.) old_protocol_version = self.protocol_version self.protocol_version = "HTTP/1.1" if_none_match = self.headers.getheader('if-none-match') if if_none_match == "abc": self.send_response(304) self.end_headers() elif url_path.endswith(".gif"): # Using chrome/test/data/google/logo.gif as the test image test_image_path = ['google', 'logo.gif'] gif_path = os.path.join(self.server.data_dir, *test_image_path) if not os.path.isfile(gif_path): self.send_error(404) self.protocol_version = old_protocol_version return True f = open(gif_path, "rb") data = f.read() f.close() self.send_response(200) self.send_header('Content-Type', 'image/gif') self.send_header('Cache-control', 'max-age=60000') self.send_header('Etag', 'abc') self.end_headers() self.wfile.write(data) else: self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Cache-control', 'max-age=60000') self.send_header('Etag', 'abc') self.end_headers() self.wfile.write('<html><head>') self.wfile.write('<title>%s/%s</title>' % (username, password)) self.wfile.write('</head><body>') self.wfile.write('auth=%s<p>' % auth) self.wfile.write('You sent:<br>%s<p>' % self.headers) self.wfile.write('</body></html>') self.protocol_version = old_protocol_version return True def GetNonce(self, force_reset=False): """Returns a nonce that's stable per request path for the server's lifetime. This is a fake implementation. A real implementation would only use a given nonce a single time (hence the name n-once). However, for the purposes of unittesting, we don't care about the security of the nonce. Args: force_reset: Iff set, the nonce will be changed. Useful for testing the "stale" response. """ if force_reset or not self.server.nonce_time: self.server.nonce_time = time.time() return hashlib.md5('privatekey%s%d' % (self.path, self.server.nonce_time)).hexdigest() def AuthDigestHandler(self): """This handler tests 'Digest' authentication. It just sends a page with title 'user/pass' if you succeed. A stale response is sent iff "stale" is present in the request path. """ if not self._ShouldHandleRequest("/auth-digest"): return False stale = 'stale' in self.path nonce = self.GetNonce(force_reset=stale) opaque = hashlib.md5('opaque').hexdigest() password = 'secret' realm = 'testrealm' auth = self.headers.getheader('authorization') pairs = {} try: if not auth: raise Exception('no auth') if not auth.startswith('Digest'): raise Exception('not digest') # Pull out all the name="value" pairs as a dictionary. pairs = dict(re.findall(r'(\b[^ ,=]+)="?([^",]+)"?', auth)) # Make sure it's all valid. if pairs['nonce'] != nonce: raise Exception('wrong nonce') if pairs['opaque'] != opaque: raise Exception('wrong opaque') # Check the 'response' value and make sure it matches our magic hash. # See http://www.ietf.org/rfc/rfc2617.txt hash_a1 = hashlib.md5( ':'.join([pairs['username'], realm, password])).hexdigest() hash_a2 = hashlib.md5(':'.join([self.command, pairs['uri']])).hexdigest() if 'qop' in pairs and 'nc' in pairs and 'cnonce' in pairs: response = hashlib.md5(':'.join([hash_a1, nonce, pairs['nc'], pairs['cnonce'], pairs['qop'], hash_a2])).hexdigest() else: response = hashlib.md5(':'.join([hash_a1, nonce, hash_a2])).hexdigest() if pairs['response'] != response: raise Exception('wrong password') except Exception, e: # Authentication failed. self.send_response(401) hdr = ('Digest ' 'realm="%s", ' 'domain="/", ' 'qop="auth", ' 'algorithm=MD5, ' 'nonce="%s", ' 'opaque="%s"') % (realm, nonce, opaque) if stale: hdr += ', stale="TRUE"' self.send_header('WWW-Authenticate', hdr) self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write('<html><head>') self.wfile.write('<title>Denied: %s</title>' % e) self.wfile.write('</head><body>') self.wfile.write('auth=%s<p>' % auth) self.wfile.write('pairs=%s<p>' % pairs) self.wfile.write('You sent:<br>%s<p>' % self.headers) self.wfile.write('We are replying:<br>%s<p>' % hdr) self.wfile.write('</body></html>') return True # Authentication successful. self.send_response(200) self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write('<html><head>') self.wfile.write('<title>%s/%s</title>' % (pairs['username'], password)) self.wfile.write('</head><body>') self.wfile.write('auth=%s<p>' % auth) self.wfile.write('pairs=%s<p>' % pairs) self.wfile.write('</body></html>') return True def SlowServerHandler(self): """Wait for the user suggested time before responding. The syntax is /slow?0.5 to wait for half a second.""" if not self._ShouldHandleRequest("/slow"): return False query_char = self.path.find('?') wait_sec = 1.0 if query_char >= 0: try: wait_sec = float(self.path[query_char + 1:]) except ValueError: pass time.sleep(wait_sec) self.send_response(200) self.send_header('Content-Type', 'text/plain') self.end_headers() self.wfile.write("waited %.1f seconds" % wait_sec) return True def ChunkedServerHandler(self): """Send chunked response. Allows to specify chunks parameters: - waitBeforeHeaders - ms to wait before sending headers - waitBetweenChunks - ms to wait between chunks - chunkSize - size of each chunk in bytes - chunksNumber - number of chunks Example: /chunked?waitBeforeHeaders=1000&chunkSize=5&chunksNumber=5 waits one second, then sends headers and five chunks five bytes each.""" if not self._ShouldHandleRequest("/chunked"): return False query_char = self.path.find('?') chunkedSettings = {'waitBeforeHeaders' : 0, 'waitBetweenChunks' : 0, 'chunkSize' : 5, 'chunksNumber' : 5} if query_char >= 0: params = self.path[query_char + 1:].split('&') for param in params: keyValue = param.split('=') if len(keyValue) == 2: try: chunkedSettings[keyValue[0]] = int(keyValue[1]) except ValueError: pass time.sleep(0.001 * chunkedSettings['waitBeforeHeaders']) self.protocol_version = 'HTTP/1.1' # Needed for chunked encoding self.send_response(200) self.send_header('Content-Type', 'text/plain') self.send_header('Connection', 'close') self.send_header('Transfer-Encoding', 'chunked') self.end_headers() # Chunked encoding: sending all chunks, then final zero-length chunk and # then final CRLF. for i in range(0, chunkedSettings['chunksNumber']): if i > 0: time.sleep(0.001 * chunkedSettings['waitBetweenChunks']) self.sendChunkHelp('*' * chunkedSettings['chunkSize']) self.wfile.flush() # Keep in mind that we start flushing only after 1kb. self.sendChunkHelp('') return True def NoContentHandler(self): """Returns a 204 No Content response.""" if not self._ShouldHandleRequest("/nocontent"): return False self.send_response(204) self.end_headers() return True def ServerRedirectHandler(self): """Sends a server redirect to the given URL. The syntax is '/server-redirect?http://foo.bar/asdf' to redirect to 'http://foo.bar/asdf'""" test_name = "/server-redirect" if not self._ShouldHandleRequest(test_name): return False query_char = self.path.find('?') if query_char < 0 or len(self.path) <= query_char + 1: self.sendRedirectHelp(test_name) return True dest = urllib.unquote(self.path[query_char + 1:]) self.send_response(301) # moved permanently self.send_header('Location', dest) self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write('<html><head>') self.wfile.write('</head><body>Redirecting to %s</body></html>' % dest) return True def CrossSiteRedirectHandler(self): """Sends a server redirect to the given site. The syntax is '/cross-site/hostname/...' to redirect to //hostname/... It is used to navigate between different Sites, causing cross-site/cross-process navigations in the browser.""" test_name = "/cross-site" if not self._ShouldHandleRequest(test_name): return False params = urllib.unquote(self.path[(len(test_name) + 1):]) slash = params.find('/') if slash < 0: self.sendRedirectHelp(test_name) return True host = params[:slash] path = params[(slash+1):] dest = "//%s:%s/%s" % (host, str(self.server.server_port), path) self.send_response(301) # moved permanently self.send_header('Location', dest) self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write('<html><head>') self.wfile.write('</head><body>Redirecting to %s</body></html>' % dest) return True def ClientRedirectHandler(self): """Sends a client redirect to the given URL. The syntax is '/client-redirect?http://foo.bar/asdf' to redirect to 'http://foo.bar/asdf'""" test_name = "/client-redirect" if not self._ShouldHandleRequest(test_name): return False query_char = self.path.find('?') if query_char < 0 or len(self.path) <= query_char + 1: self.sendRedirectHelp(test_name) return True dest = urllib.unquote(self.path[query_char + 1:]) self.send_response(200) self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write('<html><head>') self.wfile.write('<meta http-equiv="refresh" content="0;url=%s">' % dest) self.wfile.write('</head><body>Redirecting to %s</body></html>' % dest) return True def GetSSLSessionCacheHandler(self): """Send a reply containing a log of the session cache operations.""" if not self._ShouldHandleRequest('/ssl-session-cache'): return False self.send_response(200) self.send_header('Content-Type', 'text/plain') self.end_headers() try: log = self.server.session_cache.log except AttributeError: self.wfile.write('Pass --https-record-resume in order to use' + ' this request') return True for (action, sessionID) in log: self.wfile.write('%s\t%s\n' % (action, bytes(sessionID).encode('hex'))) return True def SSLManySmallRecords(self): """Sends a reply consisting of a variety of small writes. These will be translated into a series of small SSL records when used over an HTTPS server.""" if not self._ShouldHandleRequest('/ssl-many-small-records'): return False self.send_response(200) self.send_header('Content-Type', 'text/plain') self.end_headers() # Write ~26K of data, in 1350 byte chunks for i in xrange(20): self.wfile.write('*' * 1350) self.wfile.flush() return True def GetChannelID(self): """Send a reply containing the hashed ChannelID that the client provided.""" if not self._ShouldHandleRequest('/channel-id'): return False self.send_response(200) self.send_header('Content-Type', 'text/plain') self.end_headers() channel_id = bytes(self.server.tlsConnection.channel_id) self.wfile.write(hashlib.sha256(channel_id).digest().encode('base64')) return True def GetTokenBindingEKM(self): """Send a reply containing the EKM value for token binding from the TLS layer.""" if not self._ShouldHandleRequest('/tokbind-ekm'): return False ekm = self.server.tlsConnection.exportKeyingMaterial( "EXPORTER-Token-Binding", "", False, 32) self.send_response(200) self.send_header('Content-Type', 'application/octet-stream') self.end_headers() self.wfile.write(ekm) return True def GetClientCert(self): """Send a reply whether a client certificate was provided.""" if not self._ShouldHandleRequest('/client-cert'): return False self.send_response(200) self.send_header('Content-Type', 'text/plain') self.end_headers() cert_chain = self.server.tlsConnection.session.clientCertChain if cert_chain != None: self.wfile.write('got client cert with fingerprint: ' + cert_chain.getFingerprint()) else: self.wfile.write('got no client cert') return True def ClientCipherListHandler(self): """Send a reply containing the cipher suite list that the client provided. Each cipher suite value is serialized in decimal, followed by a newline.""" if not self._ShouldHandleRequest('/client-cipher-list'): return False self.send_response(200) self.send_header('Content-Type', 'text/plain') self.end_headers() cipher_suites = self.server.tlsConnection.clientHello.cipher_suites self.wfile.write('\n'.join(str(c) for c in cipher_suites)) return True def CloseSocketHandler(self): """Closes the socket without sending anything.""" if not self._ShouldHandleRequest('/close-socket'): return False self.wfile.close() return True def DefaultResponseHandler(self): """This is the catch-all response handler for requests that aren't handled by one of the special handlers above. Note that we specify the content-length as without it the https connection is not closed properly (and the browser keeps expecting data).""" contents = "Default response given for path: " + self.path self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Content-Length', len(contents)) self.end_headers() if (self.command != 'HEAD'): self.wfile.write(contents) return True def RedirectConnectHandler(self): """Sends a redirect to the CONNECT request for www.redirect.com. This response is not specified by the RFC, so the browser should not follow the redirect.""" if (self.path.find("www.redirect.com") < 0): return False dest = "http://www.destination.com/foo.js" self.send_response(302) # moved temporarily self.send_header('Location', dest) self.send_header('Connection', 'close') self.end_headers() return True def ServerAuthConnectHandler(self): """Sends a 401 to the CONNECT request for www.server-auth.com. This response doesn't make sense because the proxy server cannot request server authentication.""" if (self.path.find("www.server-auth.com") < 0): return False challenge = 'Basic realm="WallyWorld"' self.send_response(401) # unauthorized self.send_header('WWW-Authenticate', challenge) self.send_header('Connection', 'close') self.end_headers() return True def DefaultConnectResponseHandler(self): """This is the catch-all response handler for CONNECT requests that aren't handled by one of the special handlers above. Real Web servers respond with 400 to CONNECT requests.""" contents = "Your client has issued a malformed or illegal request." self.send_response(400) # bad request self.send_header('Content-Type', 'text/html') self.send_header('Content-Length', len(contents)) self.end_headers() self.wfile.write(contents) return True # called by the redirect handling function when there is no parameter def sendRedirectHelp(self, redirect_name): self.send_response(200) self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write('<html><body><h1>Error: no redirect destination</h1>') self.wfile.write('Use <pre>%s?http://dest...</pre>' % redirect_name) self.wfile.write('</body></html>') # called by chunked handling function def sendChunkHelp(self, chunk): # Each chunk consists of: chunk size (hex), CRLF, chunk body, CRLF self.wfile.write('%X\r\n' % len(chunk)) self.wfile.write(chunk) self.wfile.write('\r\n') class OCSPHandler(testserver_base.BasePageHandler): def __init__(self, request, client_address, socket_server): handlers = [self.OCSPResponse] self.ocsp_response = socket_server.ocsp_response testserver_base.BasePageHandler.__init__(self, request, client_address, socket_server, [], handlers, [], handlers, []) def OCSPResponse(self): self.send_response(200) self.send_header('Content-Type', 'application/ocsp-response') self.send_header('Content-Length', str(len(self.ocsp_response))) self.end_headers() self.wfile.write(self.ocsp_response) class TCPEchoHandler(SocketServer.BaseRequestHandler): """The RequestHandler class for TCP echo server. It is instantiated once per connection to the server, and overrides the handle() method to implement communication to the client. """ def handle(self): """Handles the request from the client and constructs a response.""" data = self.request.recv(65536).strip() # Verify the "echo request" message received from the client. Send back # "echo response" message if "echo request" message is valid. try: return_data = echo_message.GetEchoResponseData(data) if not return_data: return except ValueError: return self.request.send(return_data) class UDPEchoHandler(SocketServer.BaseRequestHandler): """The RequestHandler class for UDP echo server. It is instantiated once per connection to the server, and overrides the handle() method to implement communication to the client. """ def handle(self): """Handles the request from the client and constructs a response.""" data = self.request[0].strip() request_socket = self.request[1] # Verify the "echo request" message received from the client. Send back # "echo response" message if "echo request" message is valid. try: return_data = echo_message.GetEchoResponseData(data) if not return_data: return except ValueError: return request_socket.sendto(return_data, self.client_address) class BasicAuthProxyRequestHandler(BaseHTTPServer.BaseHTTPRequestHandler): """A request handler that behaves as a proxy server which requires basic authentication. Only CONNECT, GET and HEAD is supported for now. """ _AUTH_CREDENTIAL = 'Basic Zm9vOmJhcg==' # foo:bar def parse_request(self): """Overrides parse_request to check credential.""" if not BaseHTTPServer.BaseHTTPRequestHandler.parse_request(self): return False auth = self.headers.getheader('Proxy-Authorization') if auth != self._AUTH_CREDENTIAL: self.send_response(407) self.send_header('Proxy-Authenticate', 'Basic realm="MyRealm1"') self.end_headers() return False return True def _start_read_write(self, sock): sock.setblocking(0) self.request.setblocking(0) rlist = [self.request, sock] while True: ready_sockets, _unused, errors = select.select(rlist, [], []) if errors: self.send_response(500) self.end_headers() return for s in ready_sockets: received = s.recv(1024) if len(received) == 0: return if s == self.request: other = sock else: other = self.request other.send(received) def _do_common_method(self): url = urlparse.urlparse(self.path) port = url.port if not port: if url.scheme == 'http': port = 80 elif url.scheme == 'https': port = 443 if not url.hostname or not port: self.send_response(400) self.end_headers() return if len(url.path) == 0: path = '/' else: path = url.path if len(url.query) > 0: path = '%s?%s' % (url.path, url.query) sock = None try: sock = socket.create_connection((url.hostname, port)) sock.send('%s %s %s\r\n' % ( self.command, path, self.protocol_version)) for header in self.headers.headers: header = header.strip() if (header.lower().startswith('connection') or header.lower().startswith('proxy')): continue sock.send('%s\r\n' % header) sock.send('\r\n') self._start_read_write(sock) except Exception: self.send_response(500) self.end_headers() finally: if sock is not None: sock.close() def do_CONNECT(self): try: pos = self.path.rfind(':') host = self.path[:pos] port = int(self.path[pos+1:]) except Exception: self.send_response(400) self.end_headers() try: sock = socket.create_connection((host, port)) self.send_response(200, 'Connection established') self.end_headers() self._start_read_write(sock) except Exception: self.send_response(500) self.end_headers() finally: sock.close() def do_GET(self): self._do_common_method() def do_HEAD(self): self._do_common_method() class ServerRunner(testserver_base.TestServerRunner): """TestServerRunner for the net test servers.""" def __init__(self): super(ServerRunner, self).__init__() self.__ocsp_server = None def __make_data_dir(self): if self.options.data_dir: if not os.path.isdir(self.options.data_dir): raise testserver_base.OptionError('specified data dir not found: ' + self.options.data_dir + ' exiting...') my_data_dir = self.options.data_dir else: # Create the default path to our data dir, relative to the exe dir. my_data_dir = os.path.join(BASE_DIR, "..", "..", "..", "..", "test", "data") #TODO(ibrar): Must use Find* funtion defined in google\tools #i.e my_data_dir = FindUpward(my_data_dir, "test", "data") return my_data_dir def create_server(self, server_data): port = self.options.port host = self.options.host # Work around a bug in Mac OS 10.6. Spawning a WebSockets server # will result in a call to |getaddrinfo|, which fails with "nodename # nor servname provided" for localhost:0 on 10.6. if self.options.server_type == SERVER_WEBSOCKET and \ host == "localhost" and \ port == 0: host = "127.0.0.1" if self.options.server_type == SERVER_HTTP: if self.options.https: pem_cert_and_key = None ocsp_der = None if self.options.cert_and_key_file: if not os.path.isfile(self.options.cert_and_key_file): raise testserver_base.OptionError( 'specified server cert file not found: ' + self.options.cert_and_key_file + ' exiting...') pem_cert_and_key = file(self.options.cert_and_key_file, 'r').read() else: # generate a new certificate and run an OCSP server for it. self.__ocsp_server = OCSPServer((host, 0), OCSPHandler) print ('OCSP server started on %s:%d...' % (host, self.__ocsp_server.server_port)) ocsp_state = None if self.options.ocsp == 'ok': ocsp_state = minica.OCSP_STATE_GOOD elif self.options.ocsp == 'revoked': ocsp_state = minica.OCSP_STATE_REVOKED elif self.options.ocsp == 'invalid': ocsp_state = minica.OCSP_STATE_INVALID elif self.options.ocsp == 'unauthorized': ocsp_state = minica.OCSP_STATE_UNAUTHORIZED elif self.options.ocsp == 'unknown': ocsp_state = minica.OCSP_STATE_UNKNOWN else: raise testserver_base.OptionError('unknown OCSP status: ' + self.options.ocsp_status) (pem_cert_and_key, ocsp_der) = minica.GenerateCertKeyAndOCSP( subject = "127.0.0.1", ocsp_url = ("http://%s:%d/ocsp" % (host, self.__ocsp_server.server_port)), ocsp_state = ocsp_state, serial = self.options.cert_serial) if self.options.ocsp_server_unavailable: # SEQUENCE containing ENUMERATED with value 3 (tryLater). self.__ocsp_server.ocsp_response = '30030a0103'.decode('hex') else: self.__ocsp_server.ocsp_response = ocsp_der for ca_cert in self.options.ssl_client_ca: if not os.path.isfile(ca_cert): raise testserver_base.OptionError( 'specified trusted client CA file not found: ' + ca_cert + ' exiting...') stapled_ocsp_response = None if self.options.staple_ocsp_response: stapled_ocsp_response = ocsp_der server = HTTPSServer((host, port), TestPageHandler, pem_cert_and_key, self.options.ssl_client_auth, self.options.ssl_client_ca, self.options.ssl_client_cert_type, self.options.ssl_bulk_cipher, self.options.ssl_key_exchange, self.options.npn_protocols, self.options.record_resume, self.options.tls_intolerant, self.options.tls_intolerance_type, self.options.signed_cert_timestamps_tls_ext.decode( "base64"), self.options.fallback_scsv, stapled_ocsp_response, self.options.alert_after_handshake, self.options.disable_channel_id, self.options.disable_extended_master_secret, self.options.token_binding_params) print 'HTTPS server started on https://%s:%d...' % \ (host, server.server_port) else: server = HTTPServer((host, port), TestPageHandler) print 'HTTP server started on http://%s:%d...' % \ (host, server.server_port) server.data_dir = self.__make_data_dir() server.file_root_url = self.options.file_root_url server_data['port'] = server.server_port elif self.options.server_type == SERVER_WEBSOCKET: # Launch pywebsocket via WebSocketServer. logger = logging.getLogger() logger.addHandler(logging.StreamHandler()) # TODO(toyoshim): Remove following os.chdir. Currently this operation # is required to work correctly. It should be fixed from pywebsocket side. os.chdir(self.__make_data_dir()) websocket_options = WebSocketOptions(host, port, '.') scheme = "ws" if self.options.cert_and_key_file: scheme = "wss" websocket_options.use_tls = True websocket_options.private_key = self.options.cert_and_key_file websocket_options.certificate = self.options.cert_and_key_file if self.options.ssl_client_auth: websocket_options.tls_client_cert_optional = False websocket_options.tls_client_auth = True if len(self.options.ssl_client_ca) != 1: raise testserver_base.OptionError( 'one trusted client CA file should be specified') if not os.path.isfile(self.options.ssl_client_ca[0]): raise testserver_base.OptionError( 'specified trusted client CA file not found: ' + self.options.ssl_client_ca[0] + ' exiting...') websocket_options.tls_client_ca = self.options.ssl_client_ca[0] print 'Trying to start websocket server on %s://%s:%d...' % \ (scheme, websocket_options.server_host, websocket_options.port) server = WebSocketServer(websocket_options) print 'WebSocket server started on %s://%s:%d...' % \ (scheme, host, server.server_port) server_data['port'] = server.server_port websocket_options.use_basic_auth = self.options.ws_basic_auth elif self.options.server_type == SERVER_TCP_ECHO: # Used for generating the key (randomly) that encodes the "echo request" # message. random.seed() server = TCPEchoServer((host, port), TCPEchoHandler) print 'Echo TCP server started on port %d...' % server.server_port server_data['port'] = server.server_port elif self.options.server_type == SERVER_UDP_ECHO: # Used for generating the key (randomly) that encodes the "echo request" # message. random.seed() server = UDPEchoServer((host, port), UDPEchoHandler) print 'Echo UDP server started on port %d...' % server.server_port server_data['port'] = server.server_port elif self.options.server_type == SERVER_BASIC_AUTH_PROXY: server = HTTPServer((host, port), BasicAuthProxyRequestHandler) print 'BasicAuthProxy server started on port %d...' % server.server_port server_data['port'] = server.server_port elif self.options.server_type == SERVER_FTP: my_data_dir = self.__make_data_dir() # Instantiate a dummy authorizer for managing 'virtual' users authorizer = pyftpdlib.ftpserver.DummyAuthorizer() # Define a new user having full r/w permissions authorizer.add_user('chrome', 'chrome', my_data_dir, perm='elradfmw') # Define a read-only anonymous user unless disabled if not self.options.no_anonymous_ftp_user: authorizer.add_anonymous(my_data_dir) # Instantiate FTP handler class ftp_handler = pyftpdlib.ftpserver.FTPHandler ftp_handler.authorizer = authorizer # Define a customized banner (string returned when client connects) ftp_handler.banner = ("pyftpdlib %s based ftpd ready." % pyftpdlib.ftpserver.__ver__) # Instantiate FTP server class and listen to address:port server = pyftpdlib.ftpserver.FTPServer((host, port), ftp_handler) server_data['port'] = server.socket.getsockname()[1] print 'FTP server started on port %d...' % server_data['port'] else: raise testserver_base.OptionError('unknown server type' + self.options.server_type) return server def run_server(self): if self.__ocsp_server: self.__ocsp_server.serve_forever_on_thread() testserver_base.TestServerRunner.run_server(self) if self.__ocsp_server: self.__ocsp_server.stop_serving() def add_options(self): testserver_base.TestServerRunner.add_options(self) self.option_parser.add_option('-f', '--ftp', action='store_const', const=SERVER_FTP, default=SERVER_HTTP, dest='server_type', help='start up an FTP server.') self.option_parser.add_option('--tcp-echo', action='store_const', const=SERVER_TCP_ECHO, default=SERVER_HTTP, dest='server_type', help='start up a tcp echo server.') self.option_parser.add_option('--udp-echo', action='store_const', const=SERVER_UDP_ECHO, default=SERVER_HTTP, dest='server_type', help='start up a udp echo server.') self.option_parser.add_option('--basic-auth-proxy', action='store_const', const=SERVER_BASIC_AUTH_PROXY, default=SERVER_HTTP, dest='server_type', help='start up a proxy server which requires ' 'basic authentication.') self.option_parser.add_option('--websocket', action='store_const', const=SERVER_WEBSOCKET, default=SERVER_HTTP, dest='server_type', help='start up a WebSocket server.') self.option_parser.add_option('--https', action='store_true', dest='https', help='Specify that https ' 'should be used.') self.option_parser.add_option('--cert-and-key-file', dest='cert_and_key_file', help='specify the ' 'path to the file containing the certificate ' 'and private key for the server in PEM ' 'format') self.option_parser.add_option('--ocsp', dest='ocsp', default='ok', help='The type of OCSP response generated ' 'for the automatically generated ' 'certificate. One of [ok,revoked,invalid]') self.option_parser.add_option('--cert-serial', dest='cert_serial', default=0, type=int, help='If non-zero then the generated ' 'certificate will have this serial number') self.option_parser.add_option('--tls-intolerant', dest='tls_intolerant', default='0', type='int', help='If nonzero, certain TLS connections ' 'will be aborted in order to test version ' 'fallback. 1 means all TLS versions will be ' 'aborted. 2 means TLS 1.1 or higher will be ' 'aborted. 3 means TLS 1.2 or higher will be ' 'aborted.') self.option_parser.add_option('--tls-intolerance-type', dest='tls_intolerance_type', default="alert", help='Controls how the server reacts to a ' 'TLS version it is intolerant to. Valid ' 'values are "alert", "close", and "reset".') self.option_parser.add_option('--signed-cert-timestamps-tls-ext', dest='signed_cert_timestamps_tls_ext', default='', help='Base64 encoded SCT list. If set, ' 'server will respond with a ' 'signed_certificate_timestamp TLS extension ' 'whenever the client supports it.') self.option_parser.add_option('--fallback-scsv', dest='fallback_scsv', default=False, const=True, action='store_const', help='If given, TLS_FALLBACK_SCSV support ' 'will be enabled. This causes the server to ' 'reject fallback connections from compatible ' 'clients (e.g. Chrome).') self.option_parser.add_option('--staple-ocsp-response', dest='staple_ocsp_response', default=False, action='store_true', help='If set, server will staple the OCSP ' 'response whenever OCSP is on and the client ' 'supports OCSP stapling.') self.option_parser.add_option('--https-record-resume', dest='record_resume', const=True, default=False, action='store_const', help='Record resumption cache events rather ' 'than resuming as normal. Allows the use of ' 'the /ssl-session-cache request') self.option_parser.add_option('--ssl-client-auth', action='store_true', help='Require SSL client auth on every ' 'connection.') self.option_parser.add_option('--ssl-client-ca', action='append', default=[], help='Specify that the client ' 'certificate request should include the CA ' 'named in the subject of the DER-encoded ' 'certificate contained in the specified ' 'file. This option may appear multiple ' 'times, indicating multiple CA names should ' 'be sent in the request.') self.option_parser.add_option('--ssl-client-cert-type', action='append', default=[], help='Specify that the client ' 'certificate request should include the ' 'specified certificate_type value. This ' 'option may appear multiple times, ' 'indicating multiple values should be send ' 'in the request. Valid values are ' '"rsa_sign", "dss_sign", and "ecdsa_sign". ' 'If omitted, "rsa_sign" will be used.') self.option_parser.add_option('--ssl-bulk-cipher', action='append', help='Specify the bulk encryption ' 'algorithm(s) that will be accepted by the ' 'SSL server. Valid values are "aes128gcm", ' '"aes256", "aes128", "3des", "rc4". If ' 'omitted, all algorithms will be used. This ' 'option may appear multiple times, ' 'indicating multiple algorithms should be ' 'enabled.'); self.option_parser.add_option('--ssl-key-exchange', action='append', help='Specify the key exchange algorithm(s)' 'that will be accepted by the SSL server. ' 'Valid values are "rsa", "dhe_rsa", ' '"ecdhe_rsa". If omitted, all algorithms ' 'will be used. This option may appear ' 'multiple times, indicating multiple ' 'algorithms should be enabled.'); # TODO(davidben): Add ALPN support to tlslite. self.option_parser.add_option('--npn-protocols', action='append', help='Specify the list of protocols sent in' 'an NPN response. The server will not' 'support NPN if the list is empty.') self.option_parser.add_option('--file-root-url', default='/files/', help='Specify a root URL for files served.') # TODO(ricea): Generalize this to support basic auth for HTTP too. self.option_parser.add_option('--ws-basic-auth', action='store_true', dest='ws_basic_auth', help='Enable basic-auth for WebSocket') self.option_parser.add_option('--ocsp-server-unavailable', dest='ocsp_server_unavailable', default=False, action='store_true', help='If set, the OCSP server will return ' 'a tryLater status rather than the actual ' 'OCSP response.') self.option_parser.add_option('--alert-after-handshake', dest='alert_after_handshake', default=False, action='store_true', help='If set, the server will send a fatal ' 'alert immediately after the handshake.') self.option_parser.add_option('--no-anonymous-ftp-user', dest='no_anonymous_ftp_user', default=False, action='store_true', help='If set, the FTP server will not create ' 'an anonymous user.') self.option_parser.add_option('--disable-channel-id', action='store_true') self.option_parser.add_option('--disable-extended-master-secret', action='store_true') self.option_parser.add_option('--token-binding-params', action='append', default=[], type='int') if __name__ == '__main__': sys.exit(ServerRunner().main())
code
डॉक्टर्स की बड़ी लापरवाही, ऑपरेशन के दौरान पेट में छोड़ीं 2 कैंची लाइफस्टाइल न्यूज डेस्क।। कहते है कि डॉक्टर भगवान का रूप होते है। लेकिन आज के जमाने में डॉक्टरों की लापरवाही के ऐसे मामले सामने आ रहे है जिनके बारे में जानकर अंदाजा लगाया जा सकता है कि अब इंसानियत का कोई मौल नहीं रहा है। रोज इंसानियत को शर्मसार कर देने वाले मामला सामने आते है।हाल ही में एक डॉक्टरों की लापरवाही का मामला सामने आया है जिसने मानवता को झंकझौर कर रख दिया है। सूत्रों से मिली जानकारी के अनुसार ये मामला हैदराबाद से हमारे सामने आया है। यहां पर एक सर्जन डॉक्टर की एक बड़ी लापरवाही का मामला सामने आया है।हैरान कर देने वाली बात है कि यहां के एक अस्पताल में तीन महीने पहले ऑपरेशन के दौरान डॉक्टर महिला के पेट कैची भूल गए थे।बताया जा रहा है कि निजाम मेडिकल अस्पताल में 33 साल महीला के पेट में डॉक्टर्स की टीम द्वारा ऑपरेशन के दौरान दो कैंची भूल गए थे। जब ऑपरेशन के बाद अस्पताल से निकल तो उसने पेट में दर्द होने की शिकायत की। जहां पर महिला के परिजनों ने अस्पताल में जांच करवाई।जांच में सामने आया की महिला के पेट में ऑपरेशन के दौरान कैची रह गई है।जिसके बाद उसको तुंरत अस्पताल में भर्ती करवाया गया। डॉक्टरों की टीम ने बड़ी मशक्कत के बाद कैची को निकाल दिया है। इस मामले में ऑपरेशन सर्जिकल गैस्ट्रोएंटरोलॉजी विभाग के एक सर्जन ने बताया कि इस मामले के सामने आने के बाद अस्पताल में एक जांच समिति का गठन किया गया हैपुलिस द्वारा एक जांच अधिकारी भेजा गया है. इस मामले में चिकित्सकीय लापरवाही का मामला दर्ज किया जा सकता है। इस पूरे मामले को कंज्यूमर कोर्ट द्वारा भी देखा जा सकता है।
hindi
નડિયાદમાં 1.5 વર્ષની ઉંમરે ગાયત્રી મંત્ર, ઓમકાર મંત્રનું ગાન આ મંત્રનુ ગાન સાંભળી મહંત રામદાસજી મહારાજ ખુબ જ ગર્વ અનુભવ્યો 200 બાળકોને જીવનનું પ્રથમ પ્રમાણપત્ર સંતરામ મંદિરના મહંતના હસ્તે એનાયત ચાઈલ્ડ બ્રેઈન ડેવલોપમેન્ટ સેન્ટર તપોવન માં 20મી બેચની કોનવોકેશન સેરેમની શાહીન નડિયાદ : નડિયાદના વિશ્વપ્રસિદ્ધ સંતરામ મંદિર સંચાલિત અને મહંત રામદાસ મહારાજ ની પ્રેરણાથી અને સંત નિર્ગુણદાસ મહારાજ ના સાનિધ્ય માં અને સંચાલક રાહુલભાઈ દવેની આગેવાની હેઠળ ચાલતા સંતરામ ચાઈલ્ડ બ્રેઈન ડેવલોપમેન્ટ સેન્ટર તપોવન માં 20મી બેચની કોનવોકેશન સેરેમની કાર્યક્રમ યોજાયો હતો. તેમાં મહંત રામદાસ મહારાજ તથા સંત નિર્ગુણદાસ મહારાજ અને મહેમાનોના હસ્તે બાળકના જીવનનું પ્રથમ પ્રમાણપત્ર એનાયત કરવામાં આવ્યું. જેમાં સંતરામ ચાઈલ્ડ બ્રેઈન ડેવલોપમેન્ટ સેન્ટર ના બાળકો જેઓ 1.5 વર્ષ ની ઉંમર એ ગાયત્રી મંત્ર, ગુરુ મંત્ર, વિદ્યા મંત્ર, ૐ કાર મંત્ર નુ ગાન પરમ પૂજય મહંત રામદાસજી મહારાજ ની સામે કર્યું હતું. આ મંત્રનુ ગાન સાંભળી મહંત રામદાસજી મહારાજ ખુબ જ ગર્વ અનુભવ્યો હતો. આ કાર્યક્રમ માં મંદિરના મહંત રામદાસજી મહારાજ ઉપસ્થિત રહી બાળ માનસ વિકાસ ની જાગૃતિ લાવી ભાવિ પેઢીમાં વયક્તિત્વ નિર્માણ થાય, તેજસ્વી બને , આદર્શ બને, પારિવારિકથી માંડી રાષ્ટ્રીય કક્ષાએ બાળકનું જીવન આદર્શ ,સંસ્કારી બને તેના વિશે પ્રવચન આપ્યું હતુ. સંત નિર્ગુણદાસ મહારાજે બાળક તેના જીવનમાં બુદ્ધિ અને મનનો સમન્વય કરી આધ્યાત્મિક ઉન્નતિ અને વિકાસ સાધી શકે તેવા શુભાષીશ પાઠવ્યા હતા. આ કાર્યક્રમ માં 6 માસ થી 3 વર્ષ ના 200 થી વધુ બાળકને તેમના જીવનનુ પ્રથમ સર્ટિફિકેટ એનાયત કરાવામાં આવ્યા હતા. તમારા ફોન પર લેટેસ્ટ ન્યૂઝ અપડેટ્સ સૌથી પહેલા મેળવવા માટે હમણાં જ Sandesh ની મોબાઇલ એપ્લિકેશન ડાઉનલોડ કરો
gujurati
राहुल गांधी के भाषण की तारीफ करने वाले विपक्षी नेताओं पर रिजिजू का तंज, कुछ लोग अंग्रेजी बोलने वाले पसंद कानून मंत्री किरेन रिजिजू ने लोकसभा में कांग्रेस नेता राहुल गांधी के भाषण की सराहना करने वाले कुछ विपक्षी सदस्यों पर शुक्रवार को परोक्ष रूप से कटाक्ष करते हुए कहा कि कुछ लोग पश्चिमी विचारों को ध्यान में रखकर अंग्रेजी बोलने वालों का महिमामंडन करना पसंद करते हैं। नेशनल डेस्क: कानून मंत्री किरेन रिजिजू ने लोकसभा में कांग्रेस नेता राहुल गांधी के भाषण की सराहना करने वाले कुछ विपक्षी सदस्यों पर शुक्रवार को परोक्ष रूप से कटाक्ष करते हुए कहा कि कुछ लोग पश्चिमी विचारों को ध्यान में रखकर अंग्रेजी बोलने वालों का महिमामंडन करना पसंद करते हैं। कम से कम दो लोकसभा सदस्यों ने गुरुवार को भाजपा नीत सरकार के तहत सत्ता के केंद्रीकरण संबंधी गांधी की टिप्पणी की सराहना करते हुए कहा था कि वह देश के लोगों की नब्ज को सही ढंग से समझते हैं। रिजिजू ने हिंदी में ट्वीट किया, कई सांसदों ने संसद में बहुत ही शानदार और खूबसूरती से बात की, लेकिन कुछ लोग पश्चिमी विचारों को ध्यान में रखकर अंग्रेजी बोलने वालों का महिमामंडन करना पसंद करते हैं। लोकसभा में गुरुवार को राष्ट्रपति के अभिभाषण पर धन्यवाद प्रस्ताव पर चर्चा में हिस्सा लेते हुए इंडियन यूनियन मुस्लिम लीग IUML के ई टी मोहम्मद बशीर ने कहा था कि मेरा मानना है कि अगर हमें धन्यवाद संदेश देना है या धन्यवाद संकल्प देना है तो वह राहुल गांधी को दिया जाना चाहिए। उनका कल बुधवार का भाषण भारतीय लोगों की नब्ज का असली प्रतिबिंब था। रिवॉल्यूशनरी सोशलिस्ट पार्टी RSP के सदस्य एन के प्रेमचंद्रन ने कहा था कि वह गांधी की इस बात से सहमत हैं कि भारत कोई साम्राज्य नहीं है, बल्कि राज्यों का एक संघ है। उन्होंने आरोप लगाया था कि सत्तारूढ़ भाजपा अपने कार्यक्रमों का विरोध करने वाले सभी लोगों को राष्ट्रविरोधी करार देती है।
hindi
துறையூரில் சட்டவிரோத செயல்களில் ஈடுபட்ட கடை உரிமையாளர் கைது துறையூர்: துறையூர் சுற்றுவட்டாரப் பகுதிகளில் தனிப்படை போலீசார் ரோந்து பணியில் ஈடுபட்டனர். அப்போது துறையூர் சொரத்தூர் பிரிவு சாலையில் உள்ள ஹோட்டல் ஒன்றினை திடீர் சோதனை செய்தனர். சோதனையில் ஹோட்டலில் பதுக்கி விற்பனைக்கு வைக்கப்பட்டிருந்த 18 மதுபாட்டில்கள், 200 கிராம் கஞ்சா, 43 பான்மசாலா பாக்கெட்டுகள், பட்டாக்கத்தி ஒன்று, 2 மோட்டார் சைக்கிள் மற்றும் பணம் 61,710 ஆகியவற்றை கைப்பற்றி ஹோட்டல் கடை உரிமையாளர் அடிவாரத்தை சேர்ந்த வினோத்குமார் 27 என்பவரை கைது செய்தனர்.
tamil
Mabel of the Anzacs: A Taste of Greece with Loukoumades! More scrumptious Greek food from my novel “Mabel of the Anzacs” This time the irresistible Loukoumades. Loukoumades are sweet honey puffs which are deep fried to golden and crispy perfection. Greek donuts (loukoumades) are traditionally served soaked in hot honey syrup, sprinkled with cinnamon and garnished with chopped walnuts. How do you make these yummy little puffs? Our friends over at MyGreekDish have the perfect recipe! To prepare this delicious Greek honey puffs recipe, start by dissolving the yeast in the water. Cover with plastic wrap and allow to rise for about 5 minutes, until it starts bubbling. In a separate bowl add the flour, corn starch and salt and blend to combine. Add the flour mixture in the yeast mixture and pour in the honey. Whisk all the ingredients together, until the batter is smooth. Cover the bowl with plastic wrap and let the dough rise for about 30 minutes. Into a medium sized frying pan pour enough vegetable oil to deep fry the loukoumades. Heat the oil to high heat (175-180C) until it begins to bubble. Test if the oil is hot enough by dipping in some of the dough. If it sizzles the oil is ready. Take a handful of the dough in your palm and squeeze it out, between your thumb and index finger, onto a wet teaspoon. Then drop it in the oil and fry until golden. Repeat this procedure until the surface off the pan is comfortably filled. It is important to dip the spoon in a glass of water every time, so that the batter doesn’t stick on it. While being fried, use a slotted spoon to push the honey puffs into the oil and turn them around, until golden brown on all sides. Place the loukoumades on some kitchen paper to drain and repeat with the rest of the dough. When done, place these delicious golden Greek honey puffs on a large platter, drizzle with (heated) honey and sprinkle with cinnamon and chopped walnuts. Enjoy!
english
ಕಿರುತೆರೆ ನಟಿಗೆ ಅಪಘಾತ ಹಿಟ್ಲರ್ ಕಲ್ಯಾಣ ಧಾರಾವಾಹಿ ಆರಂಭಕ್ಕೆ ವಿಘ್ನ! ಕಿರುತೆರೆ ಲೋಕದಲ್ಲಿ ಇದೀಗ ಸಾಲ್ಟ್ ಆಯಂಡ್ ಪೆಪ್ಪರ್ ಲುಕ್ ಹೊಸ ಟ್ರೆಂಡ್ ಕ್ರಿಯೇಟ್ ಮಾಡಿದೆ. ಆರ್ಯವರ್ಧನ್ ಸಾಲಿಗೆ ದಿಲೀಪ್ ರಾಜ್ ಸೇರಿಕೊಳ್ಳುತ್ತಿದ್ದಾರೆ. ಕಳೆದ ನಾಲ್ಕು ತಿಂಗಳಿನಿಂದ ಧಾರಾವಾಹಿ ಪ್ರಸಾರಕ್ಕೆ ವಾಹಿನಿ ತಂಡ ಹಾಗೂ ವೀಕ್ಷಕರು ಕಾಯುತ್ತಿದ್ದಾರೆ. ಪ್ರಸಾರದ ದಿನಾಂಕ ಹಾಗೂ ಪ್ರೋಮೋ ಕೂಡ ರಿವೀಲ್ ಮಾಡಲಾಗಿತ್ತು ಆದರೀಗ ಮತ್ತೊಂದು ಸಂಕಷ್ಟ ಎದುರಾಗಿದೆ. ಹೌದು! ಜುಲೈ 19ರಂದು ಹಿಟ್ಲರ್ ಕಲ್ಯಾಣ ಧಾರಾವಾಹಿ ಆರಂಭವಾಗಬೇಕಿತ್ತು. ಆದರೆ ಚಿತ್ರೀಕರಣದ ವೇಳೆ ನಟಿಗೆ ಅಪಘಾತವಾಗಿ ಮತ್ತೆ ಪ್ರಸಾರ ದಿನಾಂಕವನ್ನು ಮುಂದೂಡಿದ್ದಾರೆ ಎನ್ನಲಾಗಿದೆ. ದೃಶ್ಯವೊಂದರ ಚಿತ್ರೀಕರಣ ವೇಳೆ ಸ್ಕೂಟಿಯಿಂದ ಬಿದ್ದು ತಲೆಗೆ ಪೆಟ್ಟು ಮಾಡಿಕೊಂಡಿದ್ದಾರೆ. ತಕ್ಷಣವೇ ಆಸ್ಪತ್ರೆಗೆ ದಾಖಲಾಗಿದ್ದಾರೆ. ಈ ವಿಚಾರದ ಬಗ್ಗೆ ತಂಡದಿಂದ ಯಾವುದೇ ಅಧಿಕೃತ ಮಾಹಿತಿ ಹೊರ ಬಂದಿಲ್ಲ. ಜೊತೆ ಜೊತೆಯಲಿ ಧಾರಾವಾಹಿಯಿಂದ ಹೊರ ಬಂದ ಅನು ಸಿರಿಮನೆ? ಅಲ್ಲದೇ ಧಾರಾವಾಹಿಯಲ್ಲಿ ನಾಲ್ಕು ನಟಿಯರು ಪ್ರಮುಖ ಪಾತ್ರಗಳಲ್ಲಿ ಕಾಣಿಸಿಕೊಳ್ಳುತ್ತಿದ್ದಾರೆ. ಹೀಗಾಗಿ ನಟಿಯ ಹೆಸರು ಕೂಡ ಬಹಿರಂಗವಾಗಿಲ್ಲ. ಸೋಷಿಯಲ್ ಮೀಡಿಯಾದಲ್ಲಿ ಈ ಬಗ್ಗೆ ಸುದ್ದಿಗಳು ಶೇರ್ ಆಗುತ್ತಿವೆ. ಪದೇ ಪದೇ ಪ್ರಸಾರಕ್ಕೆ ಅಡೆತಡೆ ಎದುರಾಗುತ್ತಿರುವುದರ ಬಗ್ಗೆ ವೀಕ್ಷಕರ ಆತಂಕ ವ್ಯಕ್ತ ಪಡಿಸಿದ್ದಾರೆ. ನಿರ್ದೇಶಕ ದಿಲೀಪ್ ರಾಜ್ ನಟನಾಗಿ ಕಮ್ ಬ್ಯಾಕ್ ಮಾಡುತ್ತಿರುವುದರ ಬಗ್ಗೆ ಹಾಗೂ ಲುಕ್ ಬಗ್ಗೆ ಪ್ರೋಮೋ ವಿಡಿಯೋಗೆ ನೆಟ್ಟಿಗರು ಮೆಚ್ಚುಗೆಯ ಕಾಮೆಂಟ್ ಮಾಡುತ್ತಿದ್ದಾರೆ.
kannad
Anand Mahindra को याद आए Rajesh Khanna, बताई Thar से जुड़ी ये बात हाल में Mahindra Thar ने अपना एक नया एड वीडियो जारी किया है. आनंद महिंद्रा ने ट्विटर Anand Mahindra Twitter पर जब इस रोमांचक वीडियो को शेयर किया तो देखते ही देखते ये वायरल Thar Viral Video हो गया. इस वीडियो में 1969 की आराधना फिल्म के मेरे सपनों की रानी गाने का रीमेक किया गया है. लेकिन यही गाना क्यों इस्तेमाल हुआ इसे लेकर आनंद महिंद्रा ने अनोखी बात बताई है. महिंद्रा की गाड़ी पर शूट हुआ था गाना आनंद महिंद्रा ने अपनी पोस्ट में लिखा है कि 1969 की आराधना Aradhana 1969 Movie में हिंदी सिनेमा के पहले सुपरस्टार राजेश खन्ना ने महिंद्रा की एसयूवी Mahindra SUV में बैठकर अपनी प्रेमिका Sharmila Tagore के लिए मेरे सपनों की रानी कब आएगी तू Mere Sapnon Ki Rani Kab Aayegi Tu गाया था. अब लगभग आधी सदी बाद इस एसयूवी को नया अवतार मिला AvaThar मिला है और रोमांस अब भी जीवंत है... In 1969, Hindi Cinemas first superstar sat in a Mahindra SUV and sang out to his lady love: Mere Sapnon Ki Rani Kab Aayegi Tu. More than half a century later, the SUV has a new AvaThar and the romance is still alive. pic.twitter.comwcR2Icl5UZ आराधना फिल्म में राजेश खन्ना रेलवे की पटरी के साथ वाली सड़क पर एक खुली जीप में शर्मिला टैगोर के लिए ये गाना गाते हैं. यह खुली जीप महिंद्रा की ही है, जो आगे चलकर महिंद्रा थार का आधार बनी. महिंद्रा थार का नया एड वीडियो महिंद्रा ने हाल में अपनी थार नया एड वीडियो Mahindra Thar Ad Video रिलीज किया है. ये वीडियो काफी एडवेंचरस है. इसमें एक प्रेमी युगल की कहानी दिखाई है जो एक पहाड़ी रास्ते पर रेस लगा रहे हैं. हालांकि इस वीडियो में जो ट्विस्ट है उसका खुलासा आखिर में होता है. मिका ने गाया गाना महिंद्रा थार के नए एड वीडियो में मेरे सपनों की रानी गाने को बॉलीवुड सिंगर मिका Mika और अनुष्का मनचंदा Anushka Manchanda ने आवाज दी है. जबकि आराधना फिल्म में ये गाना किशोर कुमार Kishore Kumar ने गाया था. Budget 2022: EV का रखा जाएगा खास ख्याल, इतनी सस्ती हो सकती हैं इलेक्ट्रिक गाड़ियां Thar से लगाए शादी के फेरे, Anand Mahindra बोले कुछ नहीं नामुमकिन
hindi
Rain Alert സംസ്ഥാനത്ത് മഴ കനക്കും : 5 ജില്ലകളില് യെല്ലോ അലര്ട്ട് തിരുവനന്തപുരം: ഓണ ദിവസങ്ങളില് സംസ്ഥാനത്ത് കനത്ത മഴക്ക് സാധ്യത. വരും ദിവസങ്ങളില് ശക്തമായ മഴയ്ക്ക് സാധ്യതയുള്ളതായി കാലവസ്ഥാവകുപ്പ് മുന്നറിയിപ്പ് നല്കി.കോവിഡിനെക്കുറിച്ചുളള ഏറ്റവും പുതിയ അപ്ഡേറ്റുകള് ഇവിടെ വായിക്കൂ വിവിധ ജില്ലകളില് യെല്ലോ അലര്ട്ട് പ്രഖ്യാപിച്ചു.21082021 : പത്തനംതിട്ട, കോട്ടയം ,മലപ്പുറം, തിരുവനന്തപുരം,ഇടുക്കി, 22082021 : തിരുവനനതപുരം,കോട്ടയം,ഇടക്കി,പത്തനംതിട്ട230820201 : പത്തനംതിട്ട,ഇടുക്കി,പൊതുജനങ്ങള്ക്കുള്ള പ്രത്യേക നിര്ദേശങ്ങള് മഴ മുന്നറിയിപ്പുള്ള സാഹചര്യത്തില് അധികൃതരുടെ നിര്ദേശങ്ങള് അനുസരിച്ച് മാറിത്താമസിക്കേണ്ട ഇടങ്ങളില് അതിനോട് സഹകരിക്കേണ്ടതാണ്.അടച്ചുറപ്പില്ലാത്ത വീടുകളില് താമസിക്കുന്നവരും മേല്ക്കൂര ശക്തമല്ലാത്ത വീടുകളില് താമസിക്കുന്നവരും വരും ദിവസങ്ങളിലെ മുന്നറിയിപ്പുകളുടെ അടിസ്ഥാനത്തില് സുരക്ഷയെ മുന്കരുതി മാറി താമസിക്കാന് തയ്യാറാവേണ്ടതാണ്.സ്വകാര്യപൊതു ഇടങ്ങളില് അപകടവസ്ഥയില് നില്ക്കുന്ന മരങ്ങള്പോസ്റ്റുകള്ബോര്ഡുകള് തുടങ്ങിയവ സുരക്ഷിതമാക്കേണ്ടതും മരങ്ങള് കോതി ഒതുക്കുകയും ചെയ്യേണ്ടതാണ്. അപകടാവസ്ഥകള് അധികൃതരുടെ ശ്രദ്ധയില് പെടുത്തേണ്ടതാണ്.ദുരിതാശ്വാസ ക്യാമ്ബുകളിലേക്ക് മാറേണ്ടുന്ന ഘട്ടങ്ങളില് പൂര്ണ്ണമായും കോവിഡ് മാനദണ്ഡങ്ങള് പാലിക്കാന് തയ്യാറാവണം.ദുരന്ത സാധ്യത മേഖലയിലുള്ളവര് ഒരു എമെര്ജന്സി കിറ്റ് അടിയന്തരമായി തയ്യാറാക്കി വെക്കേണ്ടതാണ്.ശക്തമായ മഴ പെയ്യുന്ന സാഹചര്യത്തില് ഒരു കാരണവശാലും നദികള് മുറിച്ചു കടക്കാനോ, നദികളിലോ മറ്റ് ജലാശയങ്ങളിലോ കുളിക്കാനോ മീന്പിടിക്കാനോ മറ്റ് ആവശ്യങ്ങള്ക്കോ ഇറങ്ങാന് പാടുള്ളതല്ല.ജലാശയങ്ങള്ക്ക് മുകളിലെ മേല്പ്പാലങ്ങളില് കയറി കാഴ്ച കാണുകയോ സെല്ഫിയെടുക്കുകയോ കൂട്ടം കൂടി നില്ക്കുകയോ ചെയ്യാന് പാടുള്ളതല്ല.അണക്കെട്ടുകളുടെ താഴെ താമസിക്കുന്നവര് അണക്കെട്ടുകളില് നിന്ന് വെള്ളം പുറത്തേക്ക് ഒഴുക്കി വിടാനുള്ള സാധ്യത മുന്കൂട്ടി കണ്ട് കൊണ്ടുള്ള തയ്യാറെടുപ്പുകള് നടത്തുകയും അധികൃതരുടെ നിര്ദേശങ്ങള്ക്ക് അനുസരിച്ച് ആവശ്യമെങ്കില് മാറിത്താമസിക്കുകയും വേണം.മലയോര മേഖലയിലേക്കുള്ള രാത്രി സഞ്ചാരം പൂര്ണ്ണമായി ഒഴിവാക്കുക.കാറ്റില് മരങ്ങള് കടപുഴകി വീണും പോസ്റ്റുകള് തകര്ന്നു വീണും ഉണ്ടാകാനിടയുള്ള അപകടങ്ങളെയും ശ്രദ്ധിക്കേണ്ടതാണ്. Onam 2021 ഓണം സോപ്പിട്ട് മാസ്ക്കിട്ട് ഗ്യാപ്പിട്ട് ജാഗ്രതാ നിര്ദേശവുമായി ആരോഗ്യ വകുപ്പ് കോവിഡ് കാലത്ത് മറ്റൊരു ഓണം കൂടി വന്നെത്തുമ്ബോള് എല്ലാവരും ജാഗ്രത പാലിക്കണമെന്ന് ആരോഗ്യ വകുപ്പ് മന്ത്രി വീണാ ജോര്ജ്. കഴിഞ്ഞ ഓണ സമയത്ത് 2,000ത്തോളം കോവിഡ് കേസുകളാണ് ഉണ്ടായിരുന്നത്. എന്നാല് ഓണം കഴിഞ്ഞതോടെയും നിയന്ത്രണങ്ങള് കുറച്ചതോടും കൂടി കേസുകള് ക്രമേണ വര്ധിച്ച് ഒക്ടോബര് മാസത്തോടെ കൂടി 11,000ത്തോളമായി. ഇപ്പോള് അതല്ല സ്ഥിതി. അതീവ വ്യാപനശേഷിയുള്ള ഡെല്റ്റ വൈറസിന്റെ വലിയ ഭീഷണിയിലാണ്.പ്രതിദിന കോവിഡ് കേസുകള് 20,000ന് മുകളിലാണ്. മാത്രമല്ല കേരളം മൂന്നാം തരംഗത്തിന്റെ ഭീഷണിയിലുമാണ്. അതിനാല് തന്നെ ഓണം കഴിഞ്ഞ് കോവിഡ് വ്യാപനമുണ്ടാകാതെ എല്ലാവരും ശ്രദ്ധിക്കേണ്ടതാണ്. ഓണം സോപ്പിട്ട് മാസ്ക്കിട്ട് ഗ്യാപ്പിട്ട് എന്നതായിരുന്നു കഴിഞ്ഞ വര്ഷത്തെ നമ്മുടെ സന്ദേശം. അതിത്തവണയും തുടരണമെന്ന് ആരോഗ്യ വകുപ്പ് അറിയിച്ചു . സാധനങ്ങള് വാങ്ങാന് കടകളില് പോകുമ്ബോഴും ബന്ധുക്കളെ കാണുമ്ബോഴും ജാഗ്രത പാലിക്കണംകടകളില് പോകുന്നവരും കടയിലുള്ളവരും യാത്ര ചെയ്യുന്നവരും ഡബിള് മാസ്കോ, എന് 95 മാസ്കോ ധരിക്കേണ്ടതാണ്. ഇടയ്ക്കിടയ്ക്ക് സോപ്പുപയോഗിച്ച് കൈ കഴുകുകയോ സാനിറ്റൈസര് കൊണ്ട് കൈ വൃത്തിയാക്കുകയോ ചെയ്യണം. സോപ്പിട്ട് കൈ കഴുകാതെ മൂക്ക്, വായ്, കണ്ണ് എന്നിവിടങ്ങളില് സ്പര്ശിക്കാന് പാടില്ല. എല്ലായിടത്തും 2 മീറ്റര് സാമൂഹിക അകലം ഉത്തരവാദിത്തമായി സ്വയം ഏറ്റെടുക്കണം. കടകളിലും മാര്ക്കറ്റുകളിലും ആരും തിരക്ക് കൂട്ടരുത്. സാമൂഹിക അകലം ഉറപ്പാക്കാന് കടക്കാരും ജാഗ്രത പുലര്ത്തണം. സാധനങ്ങള് വാങ്ങി വീട്ടിലെത്തിയാലുടന് കൈകള് സോപ്പുപയോഗിച്ച് കഴുകേണ്ടതാണ്.ആരില് നിന്നും ആരിലേക്കും രോഗം വരാം. വീട്ടിലെ ഒരാള്ക്ക് കോവിഡ് വന്നാല് അയാളില് നിന്നും മറ്റുള്ളവരിലേക്ക് രോഗം പടരുന്ന അവസ്ഥയാണുള്ളത്. കോവിഡ് കാലമായതിനാല് ബന്ധുക്കളുടേയും സുഹൃത്തുക്കളുടേയും ഒത്തുകൂടലുകള് പരമാവധി കുറയ്ക്കണം. വീട്ടില് അതിഥികളെത്തിയാല് മാസ്ക് നിര്ബന്ധമാക്കുക. വന്നയുടന് സോപ്പും വെള്ളവും ഉപയോഗിച്ച് കൈ കഴുകേണ്ടതാണ്.
malyali
அனைவருக்கும் கரோனா தடுப்பூசி செலுத்த நடவடிக்கை: மாநில சுகாதார அமைச்சா்களுக்கு மன்சுக் மாண்டவியா வலியுறுத்தல் இல்லம் தேடிச் சென்று கரோனா தடுப்பூசி செலுத்தும் திட்டத்தின் கீழ் 18 வயதுக்கு மேற்பட்ட அனைவருக்கும் ஒரு தவணை கரோனா தடுப்பூசி செலுத்திவிட வேண்டும் என்று அனைத்து மாநில சுகாதாரத் துறை அமைச்சா்களை மத்திய சுகாதாரத் துறை அமைச்சா் மன்சுக் மாண்டவியா வலியுறுத்தி உள்ளாா். இல்லம் தேடி தடுப்பூசி திட்டத்தை வெற்றிகரமாக செயல்படுத்த மாநில மற்றும் யூனியன் பிரதேச சுகாதாரத் துறை அமைச்சா்களுடன் மத்திய சுகாதாரத் துறை அமைச்சா் மன்சுக் மாண்டவியா வியாழக்கிழமை ஆலோசனை நடத்தினாா். காணொலி வழியாக நடைபெற்ற இக்கூட்டத்தில், தமிழக சுகாதாரத் துறை அமைச்சா் மா.சுப்பிரமணியன் கலந்துகொண்டாா். இதேபோல், கேரளம், உத்தரகண்ட், ஜாா்க்கண்ட், மிஸோரம், பிகாா், கா்நாடகம், மகாராஷ்டிரம், மத்திய பிரதேசம், உத்தர பிரதேசம், கோவா, குஜராத், அஸ்ஸாம், தில்லி ஆகிய மாநிலங்களைச் சோந்த சுகாதாரத் துறை அமைச்சா்கள் கலந்து கொண்டனா். அவா்களிடம் மன்சுக் மாண்டவியா கூறியதாவது: கரோனாவுக்கு எதிரான போா் இறுதிக்கட்டத்தில் உள்ளது. கரோனாவுக்கு எதிரான இரு பெரும் ஆயுதங்களாக தடுப்பூசியும், பாதுகாப்பு நடைமுறைகளும் உள்ளன. கரோனா பெருந்தொற்று முற்றிலுமாக ஒழியும் வரை பாதுகாப்பில் நாம் அலட்சியம் காட்டிவிடக் கூடாது. நாடு முழுவதும் 18 வயதுக்கு மேற்பட்டவா்கள் 94 கோடி போ உள்ளனா். அவா்களில் 38 சதவீதம் போ இரு தவணை தடுப்பூசிகளையும் செலுத்திக் கொண்டனா். 79 சதவீதம் போ ஒரு தவணை தடுப்பூசி மட்டுமே செலுத்திக் கொண்டுள்ளனா். 12 கோடி போ இன்னும் இரண்டாவது தவணை தடுப்பூசி செலுத்திக் கொள்ளவில்லை. இந்நிலையில், இல்லம் தேடி தடுப்பூசி திட்டத்தை பல்வேறு துறைகளின் ஒத்துழைப்புடன் அனைவரின் கூட்டு முயற்சியால் வெற்றிகரமாக செயல்படுத்த வேண்டும். 18 வயதுக்கு மேற்பட்ட அனைவரும் குறைந்தது ஒரு தவணை தடுப்பூசி செலுத்திக்கொள்வதை அமைச்சா்கள் உறுதிசெய்ய வேண்டும். வீடு வீடாகச் சென்றும் தடுப்பூசி செலுத்தும் திட்டத்தின் கீழ் தகுதியான அனைவரும் முதல் தவணை தடுப்பூசி செலுத்திக் கொள்வதையும், முதல் தவணை தடுப்பூசி செலுத்திக் கொண்டவா்கள், 2ஆவது தவணை செலுத்திக் கொள்வதையும் ஊக்குவிக்க வேண்டும். தடுப்பூசி செலுத்திக் கொள்வதால் கரோனாவின் தீவிரம் குறைகிறது. கரோனா பாதுகாப்பு நெறிமுறைகளைக் கடைப்பிடிப்பதும் அவசியம். இவை இரண்டையும் நாம் முறையாகப் பின்பற்றியதால் கரோனா பரவல் பெருமளவில் குறைந்துள்ளது. தடுப்பூசி செலுத்திக் கொள்வதற்கு தன்னாா்வ அமைப்புகள், சிவில் சமூக அமைப்புகள், சமூகத் தலைவா்கள், மதத் தலைவா்கள் ஆகியோா் மூலமாக விழிப்புணா்வு ஏற்படுத்த வேண்டும். பேருந்து நிலையம், ரயில் நிலையம், மெட்ரோ மற்றும் மக்கள் அதிகம் கூடுமிடங்களில் கரோனா தடுப்பூசி முகாம்கள் அமைக்க வேண்டும். எச்சரிக்கை: கரோனா பெருந்தொற்று முடிவுக்கு வந்துவிட்டதாக கருதிவிடக் கூடாது. சா்வதேச அளவில் கரோனா நோயாளிகளின் எண்ணிக்கை அதிகரித்து வருகிறது. சிங்கப்பூா், பிரிட்டன், ரஷியா, சீனா போன்ற நாடுகளில் 80 சதவீத்துக்கும் அதிகமானவா்கள் தடுப்பூசி செலுத்திக் கொண்டனா். இருப்பினும் அங்கு மீண்டும் கரோனா தொற்று பரவி வருகிறது. எனவே, தடுப்பூசி செலுத்திக் கொள்வதுடன் பாதுகாப்பு நெறிமுறைகளையும் கட்டாயம் கடைப்பிடிக்க வேண்டும். மாநிலங்களுக்கு தேவையான தடுப்பூசிகள் வழங்கப்படும். நாட்டில் தடுப்பூசிகளுக்கு பற்றாக்குறை இல்லை என்றாா் மன்சுக் மாண்டவியா.
tamil
اتھ دوکھس منز چھو ھر کانہہ داغدار تہ غمغین
kashmiri
Golden Fish: మత్స్యకారుడి వలకు గోల్డ్ చేప..!! రాత్రికి రాత్రే కోటీశ్వరుడు..!! వీడియో దేశవ్యాప్తంగా వర్షాలు భారీగా పడుతుండడంతో మత్స్యకారులు బిజీగా మారారు. ఇలా చేపలు పడుతూ ఒక్కరోజే ఏకంగా కోటీశ్వరుడిగా ఓ వ్యక్తి మారాడు. ఆయన పట్టిన చేపలు అరుదైనవి.. పైగా ఆరోగ్యానికి దోహదం చేయడంతో విపరీతమైన డిమాండ్ వచ్చింది. దీంతో ఆ చేపను కొనేందుకు పోటీ పడ్డారు వ్యాపారస్తులు. అయితే ఈ ఘటన మహారాష్ట్రలోని పాల్ఘర్ జిల్లా ముర్బే గ్రామంలో చోటుచేసుకుంది. చంద్రకాంత్ అనే వ్యక్తి చేపల వేటకోసం సముద్రంలోకి వెళ్లాడు. ఆ సమయంలో అతడి వలలో చాలా బరువు ఉండటం గమనించాడు. చాలామంది కలిసి వలను ఒడ్డుకు చేర్చారు. అప్పుడు అందరు ఒక్కసారిగా షాక్ అయ్యారు. మరిన్ని ఇక్కడ చూడండి: Silver Cascade Falls: కనువిందు చేస్తున్న సిల్వర్ కాస్కేడ్ జలపాతం.. పోటెత్తిన పర్యాటకులు.. వీడియో Viral Photo: మొసలిని కనిపెట్టండి చూద్దాం.. ఈ ఫోటోలో అదెక్కడుందో గుర్తించండి!
telegu
મલાણા તળાવ ભરવાની માંગ, 4000 મહિલાઓ 2000 ખેડૂતોની જંગી રેલી ભાનુપ્રસાદ જોશી પાલનપુર બનાસકાંઠામાં ફરી ઉગ્ર બન્યું પાણી માટે ખેડૂતોનું આંદોલન જિલ્લાના ખેડૂતોના સમર્થનમાં આવી 4 હજાર બહેનો ગાંધીનગરમાં ઘેરાવ કરવાની અને ચૂંટણી બહિષ્કારની આપી ચીમકી બનાસકાંઠા જિલ્લામાં ફરી એકવાર પાણી માટે આંદોલન થયું છે. પાલનપુર તાલુકાના મલાણાના તળાવ ભરવાની માંગ સાથે આજે મહિલા પશુપાલકો તેમજ ખેડૂતો મોટી સંખ્યામાં જોડાયા હતા. પાલનપુર શહેરમાં આજે મહિલાઓ મોટી સંખ્યામાં જય જવાન જય કિસાન ના નારા સાથે પાણી માટે માંગ ઉગ્ર બનાવી કલેકટરને આવેદનપત્ર આપી તાત્કાલિક ધોરણે તળાવ ભરવાની માંગ કરી હતી. ભારતીય કિસાન સંઘના નેજા હેઠળ આજે પાલનપુર તાલુકાના પશુપાલકો તેમજ ખેડૂતોની પાણીની સમસ્યા મામલે રેલી યોજાઇ હતી. પાલનપુર થી ત્રણ કિલોમીટર દૂર ખેડૂતો એકઠા થયા. ત્યાંથી પદયાત્રા કરી પાણી આપો પાણી આપોની માંગ કરી કલેક્ટર કચેરી પહોંચ્યા હતા. ખેડૂતોની માંગ છે કે છેલ્લા કેટલાય સમયથી સરકાર પાસે ખેડૂતો પાણી માટેની માંગ કરી રહ્યા છે. પરંતુ તે માટે કોઈ નક્કર પગલાં ભરવામાં આવતા નથી. અગાઉ ખેડૂતોએ પદયાત્રા કરી ટ્રેક્ટર રેલી યોજી આવેદનપત્ર આપ્યું હતું. પરંતુ તે બાદ જે કાર્યવાહી થવી જોઈએ તે થઈ ન હતી. જેથી આજે મહિલા પશુપાલકો પાણીની માંગ સાથે રસ્તા પર ઉતરી છે. મહિલાઓની એક જ માંગ છે કે પીવાનું તો ઠીક પરંતુ પશુપાલન કરવા માટે પણ હવે પાણી નથી. સરકાર ખેડૂતોની સમસ્યાને વાચા આપી પાણીની વ્યવસ્થા કરે. જો સરકાર માંગ નહીં સ્વીકારે તો આગામી સમયમાં આનાથી પણ ઉગ્ર આંદોલન થશે જેની જવાબદારી સરકારની રહેશે તેમ જણાવ્યું છે. ભારતીય કિસાન સંઘના નેજા હેઠળ આજે પશુપાલક મહિલાઓ તેમજ ખેડૂતોની આજે રેલી યોજાઈ હતી. અગાઉ પણ પાલનપુર તાલુકાના ખેડૂતો તળાવ ભરવાની માંગ સાથે આંદોલન કરી ચૂક્યા છે. આજે ફરી એકવાર ખેડૂતો શાંતિપૂર્વક રસ્તા પર ઉતર્યા છે. ત્યારે જો હજુ પણ આ માંગ નહીં સ્વીકારાય તો આનાથી પણ ઉગ્ર આંદોલન થશે અને આગામી વિધાનસભા ચૂંટણીમાં મતદાનનો બહિષ્કાર કરવામાં આવશે તેવી ચિમકી આપવામાં આવી છે. તમારા ફોન પર લેટેસ્ટ ન્યૂઝ અપડેટ્સ સૌથી પહેલા મેળવવા માટે હમણાં જ Sandesh ની મોબાઇલ એપ્લિકેશન ડાઉનલોડ કરો
gujurati
BREAKING: ಹೊಸ ವರ್ಷದ ಸಂಭ್ರಮಾಚರಣೆಗೆ ಬ್ರೇಕ್, ನಿಷೇಧಾಜ್ಞೆ ಜಾರಿ ಉಲ್ಲಂಘಿಸಿದವರಿಗೆ ಕಾದಿದೆ ಶಾಸ್ತಿ ಬೆಂಗಳೂರು: ನಗರದಾದ್ಯಂತ 144 ಸೆಕ್ಷನ್ ಜಾರಿ ಮಾಡಲಾಗುವುದು. ಡಿಸೆಂಬರ್ 31 ರಂದು ಬೆಳಗ್ಗೆ 6 ರಿಂದ ಜನವರಿ 1 ರಂದು ಬೆಳಗ್ಗೆ 6 ಗಂಟೆಯವರೆಗೆ ನಿಷೇಧಾಜ್ಞೆ ಜಾರಿಯಲ್ಲಿರುತ್ತದೆ. 5 ಜನರು ಒಂದಾಗಿ ಸೇರುವಂತಿಲ್ಲ ಎಂದು ಬೆಂಗಳೂರು ನಗರ ಪೊಲೀಸ್ ಕಮಿಷನರ್ ಕಮಲ್ ಪಂತ್ ಹೇಳಿದ್ದಾರೆ. ಹೊಸ ವರ್ಷಾಚರಣೆ ಹಿನ್ನೆಲೆಯಲ್ಲಿ ಗೈಡ್ ಲೈನ್ ಬಿಡುಗಡೆ ಮಾಡಲಾಗಿದ್ದು, ಸಂಭ್ರಮಾಚರಣೆಗೆ ಬ್ರೇಕ್ ಹಾಕಲಾಗಿದೆ. ರಸ್ತೆಯಲ್ಲಿ ಹೊಸವರ್ಷಾಚರಣೆ ನಡೆಸುವಂತಿಲ್ಲ. ಬೆಂಗಳೂರಿನ ಹೊರ ಭಾಗದಲ್ಲಿಯೂ ಹೊಸವರ್ಷಕ್ಕೆ ನಿರ್ಬಂಧವಿದೆ. ಖಾಸಗಿ ಜಾಗದಲ್ಲಿ ಆಚರಿಸಿಕೊಳ್ಳಬಹುದು. ಬಾರ್, ಪಬ್, ಕ್ಲಬ್ ಗಳ ಬಂದ್ ಮಾಡಬೇಕಿದೆ. ಡ್ಯಾನ್ಸ್, ಮ್ಯೂಸಿಕ್ ಗೆ ಅವಕಾಶ ಇರುವುದಿಲ್ಲ. ಡಿಸೆಂಬರ್ 31 ರಂದು ಬೆಂಗಳೂರಿನಲ್ಲಿ ಹೊಸ ವರ್ಷಾಚರಣೆ ದಿನ ನಿಷೇಧಾಜ್ಞೆ ಜಾರಿಯಾಗಲಿದ್ದು, ರಸ್ತೆಯಲ್ಲಿ ಹೊಸವರ್ಷಾಚರಣೆ ಮಾಡುವಂತಿಲ್ಲ. ನಿಯಮ ಉಲ್ಲಂಘಿಸಿದವರ ವಿರುದ್ಧ ಕ್ರಮಕೈಗೊಳ್ಳಲಾಗುವುದು. ಡಿಸೆಂಬರ್ 31 ರಂದು ಬೆಳಗ್ಗೆ 6 ರಿಂದ ಜನವರಿ 1 ರಂದು ಬೆಳಗ್ಗೆ 6 ಗಂಟೆಯವರೆಗೆ ನಿಷೇಧಾಜ್ಞೆ ಜಾರಿಯಲ್ಲಿರುತ್ತದೆ ಎಂದು ಹೇಳಲಾಗಿದೆ.
kannad
IPL 2022 मेगा ऑक्शन इशान किशन और दीपक चाहर अभी तक के सबसे महंगे खिलाड़ी, कुछ खिलाड़ियों ने चौंकाया क्रिकेट न्यूज डेस्क ।। शिखर धवन को पंजाब किंग्स ने 8 करोड़ 25 लाख में खरीदा रविचंद्रन अश्विन को 5 करोड़ में राजस्थान रॉयल्स ने खरीदा पैट कमिंस को 7 करोड़ 25 लाख में कोलकाता नाइटराइडर्स ने खरीदा कगिसो रबाडा को 9 करोड़ 25 लाख में पंजाब किंग्स ने खरीदा ट्रेंट बोल्ट को राजस्थान रॉयल्स ने 8 करोड़ में खरीदा श्रेयस अय्यर को 12 करोड़ 25 लाख में कोलकाता नाइटराइडर्स ने खरीदा मोहम्मद शमी को गुजरात टाइटंस ने 6 करोड़ 25 लाख में खरीदा फाफ डू प्लेसी को रॉयल चैलेंजर्स बैंगलोर ने 7 करोड़ में खरीदा क्विंटन डी कॉक को 6 करोड़ 75 लाख में लखनऊ सुपरजायंट्स ने खरीदा डेविड वॉर्नर को दिल्ली कैपिटल्स ने 6 करोड़ 25 लाख में खरीदा आईपीएल मेगा ऑक्शन में अगली लिस्ट कैप्ड बल्लेबाज मनीष पांडे को 4 करोड़ 60 लाख में लखनऊ सुपरजायंट्स ने खरीदा शिमरोन हेटमायर को 8 करोड़ 50 लाख में राजस्थान रॉयल्स ने खरीदा रॉबिन उथप्पा को चेन्नई सुपरकिंग्स ने 2 करोड़ में खरीदा जेसन रॉय को 2 करोड़ में गुजरात टाइटंस ने खरीदा डेविड मिलर अनसोल्ड देवदत्त पडीक्कल को राजस्थान रॉयल्स ने 7 करोड़ 75 लाख में खरीदा सुरेश रैना अनसोल्ड स्टीव स्मिथ अनसोल्ड अगली लिस्ट कैप्ड ऑलराउंडर ड्वेन ब्रावो को चेन्नई सुपरकिंग्स ने 4 करोड़ 40 लाख में खरीदा नितीश राणा को कोलकाता नाइटराइडर्स ने 8 करोड़ में खरीदा जेसन होल्डर को लखनऊ सुपरजायंट्स ने 8 करोड़ 75 लाख में खरीदा शाकिब अल हसन अनसोल्ड दीपक हूडा को 5 करोड़ 75 लाख में लखनऊ सुपरजायंट्स ने खरीदा वानिन्दु हसरंगा को रॉयल चैलेंजर्स बैंगलोर ने 10 करोड़ 75 लाख में खरीदा, आईपीएल में श्रीलंका के सबसे महंगे खिलाड़ी वॉशिंगटन सुंदर को सनराइजर्स हैदराबाद ने 8 करोड़ 75 लाख में खरीदा क्रुणाल पांड्या को लखनऊ सुपर जायंट्स ने 8 करोड़ 25 लाख में खरीदा मिचेल मार्श को दिल्ली कैपिटल्स ने 6 करोड़ 50 लाख में खरीदा मोहम्मद नबी अनसोल्ड अगली लिस्ट कैप्ड विकेटकीपर मैथ्यू वेड अनसोल्ड अम्बाती रायडू को चेन्नई सुपरकिंग्स ने 6 करोड़ 75 लाख में खरीदा इशान किशन को मुंबई इंडियंस ने 15 करोड़ 25 लाख की जबरदस्त राशि में खरीदा जॉनी बेयरस्टो को पंजाब किंग्स ने 6 करोड़ 75 लाख में खरीदा दिनेश कार्तिक को रॉयल चैलेंजर्स बैंगलोर ने 5 करोड़ 50 लाख में खरीदा ऋद्धिमान साहा अनसोल्ड सैम बिलिंग्स अनसोल्ड निकोलस पूरन को सनराइजर्स हैदराबाद ने 10 करोड़ 75 लाख में खरीदा, आईपीएल ऑक्शन में वेस्टइंडीज के सबसे महंगे खिलाड़ी बने अगली लिस्ट कैप्ड तेज गेंदबाज टी नटराजन को सनराइजर्स हैदराबाद ने 4 करोड़ में खरीदा दीपक चाहर को 14 करोड़ में चेन्नई सुपरकिंग्स ने खरीदा, आईपीएल ऑक्शन इतिहास में यह चेन्नई सुपरकिंग्स की सबसे बड़ी बोली उमेश यादव अनसोल्ड प्रसिद्ध कृष्णा को 10 करोड़ में राजस्थान रॉयल्स ने खरीदा लोकी फर्ग्युसन को गुजरात टाइटंस ने 10 करोड़ में खरीदा जोश हेज़लवुड को रॉयल चैलेंजर्स बैंगलोर ने 7 करोड़ 75 लाख में खरीदा मार्क वुड को लखनऊ सुपरजायंट्स ने 7 करोड़ 50 लाख में खरीदा भुवनेश्वर कुमार को 4 करोड़ 20 लाख में सनराइजर्स हैदराबाद ने खरीदा शार्दुल ठाकुर को दिल्ली कैपिटल्स ने 10 करोड़ 75 लाख में खरीदा मुस्ताफ़िज़ुर रहमान को दिल्ली कैपिटल्स ने 2 करोड़ में खरीदा अगली लिस्ट कैप्ड स्पिनर आदिल रशीद अनसोल्ड मुजीब उर रहमान अनसोल्ड इमरान ताहिर अनसोल्ड कुलदीप यादव को दिल्ली कैपिटल्स ने 2 करोड़ में खरीदा एडम ज़म्पा अनसोल्ड राहुल चाहर को पंजाब किंग्स ने 5 करोड़ 25 लाख में खरीदा युजवेंद्र चहल को राजस्थान रॉयल्स ने 6 करोड़ 50 लाख में खरीदा अमित मिश्रा अनसोल्ड IPL 2022 के लिए 12 और 13 फरवरी को बेंगलुरु में मेगा ऑक्शन IPL Auction का आयोजन होगा। आईपीएल मेगा ऑक्शन में 10 टीमें 600 खिलाड़ियों के लिए बोली लगाएंगी। आईपीएल नीलामी के लिए 1214 खिलाड़ियों ने अपना नाम भेजा था और उसमें से 590 खिलाड़ियों को शॉर्ट लिस्ट किया गया। इसके अलावा अंडर 19 वर्ल्ड कप विजेता भारतीय टीम के 10 खिलाड़ियों को भी लिस्ट में शामिल किया गया और इस तरह से कुल 600 खिलाड़ियों के लिए नीलामी होगी। ऑक्शन में 377 भारतीय और 223 विदेशी खिलाड़ी शामिल हैं। अगर ऑक्शन में मार्की लिस्ट की बात करें तो 10 खिलाड़ियों को इसमें शामिल किया गया है। इन 10 खिलाड़ियों में शिखर धवन, श्रेयस अय्यर, रविचंद्रन अश्विन, मोहम्मद शमी, डेविड वॉर्नर, फाफ डू प्लेसी, पैट कमिंस, कगिसो रबाडा, क्विंटन डी कॉक और ट्रेंट बोल्ट शामिल हैं। ऑक्शन की शुरुआत इन खिलाड़ियों से हो सकती है। सभी खिलाड़ियों को 62 अलगअलग सेट में बांटा गया है और पहले दिन 161 खिलाड़ियों के लिए बोली लगाई जाएगी। दूसरे दिन की नीलामी में ज्यादातर अनकैप्ड खिलाड़ी शामिल रहेंगे। इस बार के ऑक्शन में टीमों को राइट टू मैच का विकल्प नहीं दिया गया है। अगर बेस प्राइस की बात करें तो 48 खिलाड़ियों ने अपना अपना बेस प्राइस 2 करोड़ रखा है। 20 खिलाड़ियों का बेस प्राइस 1.5 करोड़ और 34 खिलाड़ियों का बेस प्राइस 1 करोड़ है। ऑक्शन में सबसे ज्यादा राशि पंजाब किंग्स 72 करोड़ के पास बची हुई है। सनराइजर्स हैदराबाद के पास 68 करोड़, राजस्थान रॉयल्स के पास 62 करोड़, लखनऊ सुपरजायंट्स के पास 59 करोड़, रॉयल चैलेंजर्स बैंगलोर के पास 57 करोड़, गुजरात टाइटंस के पास 52 करोड़, चेन्नई सुपर किंग्स, मुंबई इंडियंस और कोलकाता नाइटराइडर्स के पास 4848 करोड़ और दिल्ली कैपिटल्स के पास सबसे कम 47.5 करोड़ रूपये बचे हैं।
hindi
<?php /** * This file is part of the Socialite package. * * Copyright (c) Telemundo Digital Media * * For the full copyright and license information, please view the LICENSE.txt * file that was distributed with this source code. */ namespace Socialite\Bridge\Provider; use Socialite\Bridge\Provider\Base\BaseProvider; use Socialite\Component\OAuth\OAuth; use Socialite\Component\OAuth\OAuthClient; use Socialite\Component\OAuth\OAuthRequest; /** * Soundcloud provider. * * @author Rodolfo Puig <[email protected]> */ class SoundcloudProvider extends BaseProvider { protected $oauth_access_token_url = 'https://api.soundcloud.com/oauth2/token'; protected $oauth_authorize_url = 'https://soundcloud.com/connect?response_type=code&client_id={CLIENT_ID}&redirect_uri={REDIRECT_URI}&scope={SCOPE}&state={STATE}'; protected $oauth_version = '2.0'; /** * (non-PHPdoc) * @see \Socialite\Bridge\Provider\BaseProvider::getRequestToken() */ public function getRequestToken(array $params = null) { return; } /** * (non-PHPdoc) * @see \Socialite\Bridge\Provider\BaseProvider::getAccessToken() */ public function getAccessToken($verifier) { $url = $this->getNormalizedUrl($this->oauth_access_token_url); // build the oauth request parameters $params = array('code' => $verifier, 'redirect_uri' => $this->getCallback(), 'grant_type' => 'authorization_code'); // create the request object $request = new OAuthRequest($url, $params, OAuthClient::HTTP_POST); $request->setVersion($this->oauth_version); $request->setConsumer($this->consumer); // execute the request $client = new OAuthClient($request); $client->execute(); // store the response $this->response = $client->getResponse(); } /** * (non-PHPdoc) * @see \Socialite\Bridge\Provider\Base\BaseProvider::getAuthorizeUrl() */ public function getAuthorizeUrl(array $params = null) { $url = $this->getNormalizedUrl($this->oauth_authorize_url); return $this->getParametizedUrl($url, $params); } }
code
Rattlesnake : వామ్మో.. ఒక్కచోటే 92 పాములు.. హడలిపోయిన యజమాని Rattlesnake : భూమి మీద ఉన్న అతి ప్రమాదకర పాముల్లో ర్యాటిల్ స్నేక్ ఒకటి.. పాములు పట్టుకోవడంలో ఎంతో నైపుణ్యం ఉన్నవారు కూడా ఈ పామును చూస్తే భయపడిపోతారు. ఈ పాము కాటువేస్తే 15 నుంచి 25 నిమిషాల్లోపు వైద్యం అందాలి లేదంటే మనిషి ఔటే.. అలాంటి ప్రమాదకరమైన విషసర్పాలు ఒకే చోట గుంపుగా కనిపిస్తే.. గుండె జారినట్లు అవుతుంది. చదవండి : Boy plays with snake : రెండేళ్ల బుడ్డోడు 12 అడుగుల పాము తోక పట్టుకుని ఆటలు.. వాటి గురించి తెలిసిన వారు అక్కడ ఒక్క క్షణం కూడా ఉండరు పరుగు పెడతారు. అయితే ఎలా వచ్చాయో తెలియదు కానీ ఓ ఇంటి అడుగున ఏకంగా 92 ర్యాటిల్ స్నెన్స్ తిష్ట వేశాయి. ఈ ఘటన అమెరికాలోని కాలిఫోర్నియాలో చోటుచేసుకుంది. ఓ వ్యక్తి ఇంట్లో కొన్ని పాములు ఎప్పుడు వచ్చాయో కానీ చక్కగా అక్కడే పిల్లలు చేశాయి. వాటి సంఖ్య సెంచరీకి చేరువైంది. చదవండి : 2 Headed Snake : ఈ పాము ఇంట్లో ఉంటే అదృష్టమే, ఖరీదు రూ.70లక్షలు.. నమ్మారో అంతే సంగతులు ఈ పనులు యజమాని కంటపడటంతో హడలిపోయారు. వెంటనే ఆలస్యం చేయకుండా రెస్క్యూ టీమ్ కు సమాచారం అందించాడు. అక్కడికి చేరుకున్న రెస్క్యూ సిబ్బంది నాలుగు గంటలు కష్టపడి 92 ర్యాటిల్ స్నేక్స్ ను బయటకు తీశారు. బయట ఆహారం దొరక్కపోవడంతో అవి ఇంట్లోకి వచ్చి ఇక్కడే తమ సంతతిని పెంచుకుని ఉంటాయని రెస్క్యూ టీమ్ బృందంలోని ఓ వ్యక్తి మీడియాకు తెలిపారు. చదవండి : Snake : వామ్మో.. వాషింగ్ మెషీన్లో నాగుపాము.. బట్టలు వేద్దామని డోర్ తెరవగా.. ఇక వాటిని తీసుకెళ్లి అడవిలో వదిలిపెట్టారు. ఇక వీటికి సంబందించిన ఫోటోలు సోషల్ మీడియాలో వైరల్ గా మారాయి. ఫోటోలు చూసిన నెటిజన్లు వామ్మో ఇన్ని పాములా అంటూ కామెంట్స్ చేస్తున్నారు. ఈ విషసర్పాలు ఎవరికి హాని చేయకపోవడంతో ఊపిరిపీల్చుకున్నారు ఆ ఇంటిసభ్యులు The post Rattlesnake : వామ్మో.. ఒక్కచోటే 92 పాములు.. హడలిపోయిన యజమాని appeared first on 10TV.
telegu
گُلالہٕ شاہَن تُل مُلکس تہٕ اتہِ کؠن لوٗکَن متعلق کتھہٕ باتھِ دَس
kashmiri
God bless them but The House of Lords has announced plans to investigate the government's plans to have "the best superfast broadband network in Europe by 2015". I'd love to be a fly on the proverbial. One because I suspect the august members of the House of Lords are not the most web savvy (although I may well be wrong) and two because the plan is doomed to fail! With all the problems the UK is facing I would have thought that an investigation by the House of Lords would be low priority given that it is the likes of BT (a private company now to my knowledge) who will be providing the infrastructure. Additionally, no Government has had a great deal of success either introducing computerised systems or upgrading them - always seems to have ended up with a committee designing a horse with humps!! Given this situation I would have thought the wisest idea would have been to leave any investigation to private enterprise but to urge them to supply the infrastructure and provide praise in achievement of suggested targets. Probably much cheaper in the long run as well. The private sector needs incentives to expose itself to risk and build infrastructure. I totally agree about any government involvement in tech projects, but I suspect it might take a bit of carrot and stick to claw back the competitive advantage. In S Korea, our plans would seem very outdated. They are aiming at 1Gigabit broadband speeds! Countries in South East Asia know that fast internet access is one of the keys to economic development in a global economy. They have a 'can do' philosophy which is ideally suited to a world that is increasingly influenced by the internet. Their other advantage is that - in general - they aren't saddled with huge creaky old copper wire telecoms networks. They can leapfrog over people like us. As a result of the importance these people give to internet access, four of the top five countries in the world as far as percentage of population with broadband access are Hong Kong, Taiwan, South Korea and Singapore. I have 20meg virgin and regularly get between 17 and 19 meg on different speed tests. On Tuesday my home broadband connection is being upgraded to BT Infinity. I've been waiting for over a year for BT to get around to providing the service, and during that time they have repeatedly delayed the 'available by' date. When the time eventually came BT asked me to select the Infinity package that was right for me. I don't download millions of music tracks or hundreds of movies, so I picked the 'Up to 40Mb download with a 40Gb a month limit' package at £18 a month. That didn't suit BT, because it would have resulted in them getting less money from me than I'm currently paying for my BT broadband and phone package, so they popped up message telling me that the package I selected 'isn't available to you'. I had to stump up for the 40Mb unlimited usage package at £25 a month. It irritates me because here is a company that advertises Infinity heavily on TV as if it's the best thing since sliced bread. Then, having got me on the hook they behave like a bunch of spivs, telling me that if I think I can save a pound or two by being clever I've got another think coming. If it wasn't such a reliable service (something I really want) I would tell them where they could put their fibre-optic cable.
english
బ్రేకింగ్. దళిత బంధు ఆపండి .. ఈసీ ఆదేశం దళిత బంధు చైర్మన్ మోత్కుపల్లి నర్సింహులు అలా పార్టీలోకి వచ్చారో లేదో. ఇంకోవైపు కేసీఆర్ కు షాకిచ్చింది ఎన్నికల సంఘం. రాష్ట్రంలో అమలు చేస్తున్న దళిత బంధు పథకాన్ని హుజూరాబాద్ లో నిలిపివేయాలని ఆదేశించింది. ఈమేరకు రాష్ట్ర ఎన్నికల అధికారికి లేఖ రాసింది ఈసీ. ఉప ఎన్నిక జరుగుతున్న నేపథ్యంలో ఓటర్లను ప్రలోభానికి లోను కాకుండా ఈ నిర్ణయం తీసుకున్నట్లు తెలిపింది ఈసీ. 30న పోలింగ్ అయిపోయాక యథావిథిగా పథకాన్ని అమలు చేసుకోవచ్చని సూచించింది.
telegu
We are Offering Precision Measuring Instruments. vernier Callipers, Micrometers – Outside/inside, Digimatic Verniers/micrometers, Dial Gauges, Bore Gauges, Combination Sets, Height Gauges. Leveraging on our experience, we, as a supplier of Precision Measuring Instruments have placed ourselves in the upper echelons of the industry. Quality is one aspect on which we can never compromise. And, for this, our personnel work hard and ensure that the entire lot complies with defined quality norms. Metrology equipment pvt. Ltd. Is one of the leading manufacturing and supplying company of high quality precision measuring instruments from india. We are offering the full range of precision measuring instruments like Vernier Calipers analogue and digital, Dial Depth Gauge, Micro Meter, Height Vernier etc. Messals overseas (india) private limited offering precision measuring instrument in india. We have gained expertise in retailing and wholesaling a wide range of precision measuring instrument. We offer precision measuring instruments. precision measuring instruments & tools, gauges, fastners, torque wrenches, slings, gen. Industrial items, vernier calipers, micrometers, height gauge etc. Metrology Equipment Pvt. Ltd. is one of the premier organizations involved in manufacturing and supplying of a wide range of precision measuring instruments in India. FEATURES : Temperature measurement facility. Selectable frequency and duty cycle measurement. LESLIE’S CUBE 130 mm sides, galvanised iron box with vertical faces are blackened dull, blackened bright, white and polished respectively, with a tubule at top. Accessories are important part of each instrument. Standard set is normally part of the instrument itself. Optional accessories set is described in this section. Inspecs Metrology India Pvt. Ltd. ranges : 100 to 600 deg. Wide range of measuring tapes in steel body, fibreglass for industrial and construction purpose and applications.
english