arxiv_id
stringlengths
11
12
tables
listlengths
1
11
1904.05947v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "MuPoTS-3D", "metric": "MPJPE", "model": "Depth Prediction Network", "row": 4, "task": "3D Multi-person Pose Estimation (absolute)", "value": "292" }, { "column": 2, "dataset": "MuPoTS-3D", "metric": "MPJPE", "model": "Depth Prediction Network", "row": 4, "task": "3D Multi-person Pose Estimation (root-relative)", "value": "120" } ] } ]
1904.05967v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "SUN - 0-Shot", "metric": "Accuracy", "model": "TAFE-Net", "row": 14, "task": "Few-Shot Image Classification", "value": "60.9" }, { "column": 2, "dataset": "CUB-200 - 0-Shot Learning", "metric": "Accuracy", "model": "TAFE-Net", "row": 14, "task": "Few-Shot Image Classification", "value": "56.9" }, { "column": 3, "dataset": "AWA1 - 0-Shot", "metric": "Accuracy", "model": "TAFE-Net", "row": 14, "task": "Few-Shot Image Classification", "value": "70.8" }, { "column": 4, "dataset": "AWA2 - 0-Shot", "metric": "Accuracy", "model": "TAFE-Net", "row": 14, "task": "Few-Shot Image Classification", "value": "69.3" }, { "column": 5, "dataset": "aPY - 0-Shot", "metric": "Accuracy", "model": "TAFE-Net", "row": 14, "task": "Few-Shot Image Classification", "value": "42.2" } ] } ]
1904.06627v2
[ { "index": 2, "records": [ { "column": 1, "dataset": "CUB-200-2011", "metric": "R@1", "model": "MS512", "row": 11, "task": "Image Retrieval", "value": "65.7" }, { "column": 7, "dataset": "CARS196", "metric": "R@1", "model": "MS512", "row": 11, "task": "Image Retrieval", "value": "84.1" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "In-Shop", "metric": "R@1", "model": "MS512", "row": 7, "task": "Image Retrieval", "value": "89.7" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "SOP", "metric": "R@1", "model": "MS512", "row": 10, "task": "Image Retrieval", "value": "78.2" } ] } ]
1904.06925v3
[ { "index": 1, "records": [ { "column": 1, "dataset": "CIFAR-10", "metric": "NMI", "model": "DCCM", "row": 14, "task": "Image Clustering", "value": "0.496" }, { "column": 2, "dataset": "CIFAR-10", "metric": "Accuracy", "model": "DCCM", "row": 14, "task": "Image Clustering", "value": "0.623" }, { "column": 4, "dataset": "CIFAR-100", "metric": "NMI", "model": "DCCM", "row": 14, "task": "Image Clustering", "value": "0.285" }, { "column": 5, "dataset": "CIFAR-100", "metric": "Accuracy", "model": "DCCM", "row": 14, "task": "Image Clustering", "value": "0.327" }, { "column": 7, "dataset": "STL-10", "metric": "NMI", "model": "DCCM", "row": 14, "task": "Image Clustering", "value": "0.376" }, { "column": 8, "dataset": "STL-10", "metric": "Accuracy", "model": "DCCM", "row": 14, "task": "Image Clustering", "value": "0.48200000000000004" }, { "column": 10, "dataset": "ImageNet-10", "metric": "NMI", "model": "DCCM", "row": 14, "task": "Image Clustering", "value": "0.608" }, { "column": 11, "dataset": "ImageNet-10", "metric": "Accuracy", "model": "DCCM", "row": 14, "task": "Image Clustering", "value": "0.71" }, { "column": 13, "dataset": "Imagenet-dog-15", "metric": "NMI", "model": "DCCM", "row": 14, "task": "Image Clustering", "value": "0.321" }, { "column": 14, "dataset": "Imagenet-dog-15", "metric": "Accuracy", "model": "DCCM", "row": 14, "task": "Image Clustering", "value": "0.38299999999999995" }, { "column": 16, "dataset": "Tiny-ImageNet", "metric": "NMI", "model": "DCCM", "row": 14, "task": "Image Clustering", "value": "0.22399999999999998" }, { "column": 17, "dataset": "Tiny-ImageNet", "metric": "Accuracy", "model": "DCCM", "row": 14, "task": "Image Clustering", "value": "0.10800000000000001" } ] } ]
1904.07223v2
[ { "index": 2, "records": [ { "column": 5, "dataset": "MSMT17", "metric": "Rank-1", "model": "DG-Net", "row": 5, "task": "Person Re-Identification", "value": "77.2" }, { "column": 6, "dataset": "MSMT17", "metric": "mAP", "model": "DG-Net", "row": 5, "task": "Person Re-Identification", "value": "52.3" } ] }, { "index": 8, "records": [ { "column": 2, "dataset": "CUHK03", "metric": "MAP", "model": "DG-Net", "row": 6, "task": "Person Re-Identification", "value": "61.1" } ] } ]
1904.07392v1
[ { "index": 0, "records": [ { "column": 5, "dataset": "COCO", "metric": "MAP", "model": "NAS-FPN AmoebaNet (7 @ 384) + DropBlock", "row": 24, "task": "Real-Time Object Detection", "value": "48.3" } ] } ]
1904.07396v1
[ { "index": 1, "records": [ { "column": 10, "dataset": "BSD68 sigma15", "metric": "PSNR", "model": "RIDNet", "row": 2, "task": "Grayscale Image Denoising", "value": "31.81" }, { "column": 10, "dataset": "BSD68 sigma25", "metric": "PSNR", "model": "RIDNet", "row": 3, "task": "Grayscale Image Denoising", "value": "29.34" }, { "column": 10, "dataset": "BSD68 sigma50", "metric": "PSNR", "model": "RIDNet", "row": 4, "task": "Grayscale Image Denoising", "value": "26.4" } ] }, { "index": 3, "records": [ { "column": 8, "dataset": "BSD68 sigma15", "metric": "PSNR", "model": "RIDNet", "row": 2, "task": "Color Image Denoising", "value": "34.01" }, { "column": 8, "dataset": "BSD68 sigma25", "metric": "PSNR", "model": "RIDNet", "row": 3, "task": "Color Image Denoising", "value": "31.37" }, { "column": 8, "dataset": "BSD68 sigma50", "metric": "PSNR", "model": "RIDNet", "row": 4, "task": "Color Image Denoising", "value": "28.14" } ] }, { "index": 4, "records": [ { "column": 2, "dataset": "Darmstadt Noise Dataset", "metric": "PSNR (sRGB)", "model": "RIDNet (blind)", "row": 18, "task": "Color Image Denoising", "value": "39.23" }, { "column": 3, "dataset": "Darmstadt Noise Dataset", "metric": "SSIM (sRGB)", "model": "RIDNet (blind)", "row": 18, "task": "Color Image Denoising", "value": "0.9526" } ] } ]
1904.07442v1
[ { "index": 1, "records": [ { "column": 2, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "Decouple-SSAD", "row": 16, "task": "Temporal Action Localization", "value": "60.2" }, { "column": 3, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "Decouple-SSAD", "row": 16, "task": "Temporal Action Localization", "value": "54.1" }, { "column": 4, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "Decouple-SSAD", "row": 16, "task": "Temporal Action Localization", "value": "44.2" }, { "column": 5, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "Decouple-SSAD", "row": 16, "task": "Temporal Action Localization", "value": "32.3" }, { "column": 6, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "Decouple-SSAD", "row": 16, "task": "Temporal Action Localization", "value": "19.1" } ] } ]
1904.07750v2
[ { "index": 0, "records": [ { "column": 5, "dataset": "MUSIC (multi-source)", "metric": "SIR", "model": "Co-Separation", "row": 5, "task": "Audio Source Separation", "value": "13.8" }, { "column": 6, "dataset": "MUSIC (multi-source)", "metric": "SAR", "model": "Co-Separation", "row": 5, "task": "Audio Source Separation", "value": "11.3" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "AudioSet", "metric": "SDR", "model": "Co-Separation", "row": 5, "task": "Audio Source Separation", "value": "4.26" }, { "column": 2, "dataset": "AudioSet", "metric": "SIR", "model": "Co-Separation", "row": 5, "task": "Audio Source Separation", "value": "7.07" }, { "column": 3, "dataset": "AudioSet", "metric": "SAR", "model": "Co-Separation", "row": 5, "task": "Audio Source Separation", "value": "13" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "AV-Bench - Wooden Horse", "metric": "NSDR", "model": "Co-Separation", "row": 5, "task": "Audio Denoising", "value": "14.5" }, { "column": 2, "dataset": "AV-Bench - Violin Yanni", "metric": "NSDR", "model": "Co-Separation", "row": 5, "task": "Audio Denoising", "value": "8.53" }, { "column": 3, "dataset": "AV-Bench - Guitar Solo", "metric": "NSDR", "model": "Co-Separation", "row": 5, "task": "Audio Denoising", "value": "11.9" } ] } ]
1904.08082v4
[ { "index": 2, "records": [ { "column": 4, "dataset": "NCI109", "metric": "Accuracy", "model": "SAGPool_g", "row": 3, "task": "Graph Classification", "value": "74.06" }, { "column": 1, "dataset": "D&D", "metric": "Accuracy", "model": "SAGPool_h", "row": 6, "task": "Graph Classification", "value": "76.45" }, { "column": 2, "dataset": "PROTEINS", "metric": "Accuracy", "model": "SAGPool_h", "row": 6, "task": "Graph Classification", "value": "71.86" } ] } ]
1904.08118v3
[ { "index": 0, "records": [ { "column": 2, "dataset": "Set5 - 4x upscaling", "metric": "PSNR", "model": "AdaFM-Net", "row": 1, "task": "Image Super-Resolution", "value": "32.13" }, { "column": 2, "dataset": "CBSD68 sigma15", "metric": "PSNR", "model": "AdaFM-Net", "row": 3, "task": "Color Image Denoising", "value": "34.1" } ] }, { "index": 2, "records": [ { "column": 3, "dataset": "Set5 - 3x upscaling", "metric": "PSNR", "model": "AdaFM-Net", "row": 1, "task": "Image Super-Resolution", "value": "34.34" }, { "column": 3, "dataset": "CBSD68 sigma75", "metric": "PSNR", "model": "AdaFM-Net", "row": 6, "task": "Color Image Denoising", "value": "26.35" } ] } ]
1904.08375v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "TREC-PM", "metric": "mAP", "model": "BERT + Doc2query", "row": 11, "task": "Passage Re-Ranking", "value": "36.5" }, { "column": 2, "dataset": "MS MARCO", "metric": "MRR", "model": "BERT + Doc2query", "row": 11, "task": "Passage Re-Ranking", "value": "0.368" } ] } ]
1904.08398v3
[ { "index": 1, "records": [ { "column": 3, "dataset": "Reuters-21578", "metric": "F1", "model": "KD-LSTMreg", "row": 13, "task": "Document Classification", "value": "88.9" }, { "column": 5, "dataset": "AAPD", "metric": "F1", "model": "KD-LSTMreg", "row": 13, "task": "Document Classification", "value": "72.9" }, { "column": 7, "dataset": "IMDb", "metric": "Accuracy", "model": "KD-LSTMreg", "row": 13, "task": "Text Classification", "value": "53.7" }, { "column": 9, "dataset": "Yelp-14", "metric": "Accuracy", "model": "KD-LSTMreg", "row": 13, "task": "Document Classification", "value": "69.4" } ] } ]
1904.08739v1
[ { "index": 0, "records": [ { "column": 4, "dataset": "ECSSD", "metric": "F-measure", "model": "CPD-R (ResNet50)", "row": 14, "task": "Salient Object Detection", "value": "91.7" }, { "column": 5, "dataset": "ECSSD", "metric": "MAE", "model": "CPD-R (ResNet50)", "row": 14, "task": "Salient Object Detection", "value": "0.037" }, { "column": 7, "dataset": "HKU-IS", "metric": "F-measure", "model": "CPD-R (ResNet50)", "row": 14, "task": "Salient Object Detection", "value": "89.1" }, { "column": 8, "dataset": "HKU-IS", "metric": "MAE", "model": "CPD-R (ResNet50)", "row": 14, "task": "Salient Object Detection", "value": "0.034" }, { "column": 10, "dataset": "DUT-OMRON", "metric": "F-measure", "model": "CPD-R (ResNet50)", "row": 14, "task": "Salient Object Detection", "value": "74.7" }, { "column": 11, "dataset": "DUT-OMRON", "metric": "MAE", "model": "CPD-R (ResNet50)", "row": 14, "task": "Salient Object Detection", "value": "0.056" }, { "column": 13, "dataset": "DUTS-test", "metric": "F-measure", "model": "CPD-R (ResNet50)", "row": 14, "task": "Salient Object Detection", "value": "80.5" }, { "column": 14, "dataset": "DUTS-test", "metric": "MAE", "model": "CPD-R (ResNet50)", "row": 14, "task": "Salient Object Detection", "value": "0.043" }, { "column": 16, "dataset": "PASCAL-S", "metric": "F-measure", "model": "CPD-R (ResNet50)", "row": 14, "task": "Salient Object Detection", "value": "82.4" }, { "column": 17, "dataset": "PASCAL-S", "metric": "MAE", "model": "CPD-R (ResNet50)", "row": 14, "task": "Salient Object Detection", "value": "0.072" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "SBU", "metric": "Balanced Error Rate", "model": "CPD", "row": 10, "task": "Salient Object Detection", "value": "4.19" }, { "column": 2, "dataset": "ISTD", "metric": "Balanced Error Rate", "model": "CPD", "row": 10, "task": "Salient Object Detection", "value": "6.76" }, { "column": 3, "dataset": "UCF", "metric": "Balanced Error Rate", "model": "CPD", "row": 10, "task": "Salient Object Detection", "value": "7.21" } ] } ]
1904.08745v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "MUTAG", "metric": "Accuracy", "model": "edGNN (avg)", "row": 4, "task": "Graph Classification", "value": "86.9" }, { "column": 1, "dataset": "MUTAG", "metric": "Accuracy", "model": "edGNN (max)", "row": 5, "task": "Graph Classification", "value": "88.8" } ] } ]
1904.08779v3
[ { "index": 1, "records": [ { "column": 3, "dataset": "LibriSpeech test-clean", "metric": "Word Error Rate (WER)", "model": "LAS (no LM)", "row": 13, "task": "Speech Recognition", "value": "3.2" }, { "column": 4, "dataset": "LibriSpeech test-other", "metric": "Word Error Rate (WER)", "model": "LAS (no LM)", "row": 13, "task": "Speech Recognition", "value": "7.7" }, { "column": 5, "dataset": "LibriSpeech test-clean", "metric": "Word Error Rate (WER)", "model": "LAS (no LM)", "row": 13, "task": "Speech Recognition", "value": "2.7" }, { "column": 6, "dataset": "LibriSpeech test-other", "metric": "Word Error Rate (WER)", "model": "LAS (no LM)", "row": 13, "task": "Speech Recognition", "value": "6.5" } ] }, { "index": 2, "records": [ { "column": 3, "dataset": "LibriSpeech test-clean", "metric": "Word Error Rate (WER)", "model": "LAS + SpecAugment ", "row": 20, "task": "Speech Recognition", "value": "2.5" }, { "column": 4, "dataset": "LibriSpeech test-other", "metric": "Word Error Rate (WER)", "model": "LAS + SpecAugment", "row": 20, "task": "Speech Recognition", "value": "5.8" } ] }, { "index": 4, "records": [ { "column": 3, "dataset": "Hub5'00 SwitchBoard", "metric": "SwitchBoard", "model": "LAS + SpecAugment (with LM, Switchboard mild policy)", "row": 19, "task": "Speech Recognition", "value": "6.8" }, { "column": 4, "dataset": "Hub5'00 SwitchBoard", "metric": "CallHome", "model": "LAS + SpecAugment (with LM, Switchboard strong policy)", "row": 20, "task": "Speech Recognition", "value": "14" } ] } ]
1904.08920v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "VQA v2 test-dev", "metric": "Accuracy", "model": "Pythia v0.3 + LoRRA", "row": 7, "task": "Visual Question Answering", "value": "69.21" }, { "column": 1, "dataset": "VizWiz", "metric": "Accuracy", "model": "Pythia v0.3 (Ours)", "row": 11, "task": "Visual Question Answering", "value": "54.72" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "TextVQA Val", "metric": "Accuracy", "model": "Pythia + LoRRA", "row": 8, "task": "Visual Question Answering", "value": "26.56" }, { "column": 3, "dataset": "TextVQA Test", "metric": "Accuracy", "model": "Pythia + LoRRA", "row": 8, "task": "Visual Question Answering", "value": "27.63" } ] } ]
1904.09140v1
[ { "index": 0, "records": [ { "column": 3, "dataset": "J-HMDB", "metric": "Accuracy (pose)", "model": "EHPI", "row": 3, "task": "Skeleton Based Action Recognition", "value": "65.5" }, { "column": 3, "dataset": "JHMDB (2D poses only)", "metric": "Average accuracy of 3 splits", "model": "EHPI", "row": 3, "task": "Skeleton Based Action Recognition", "value": "65.5" } ] } ]
1904.09223v1
[ { "index": 0, "records": [ { "column": 4, "dataset": "XNLI Chinese Dev", "metric": "Accuracy", "model": "ERNIE", "row": 2, "task": "Natural Language Inference", "value": "79.9" }, { "column": 5, "dataset": "XNLI Chinese", "metric": "Accuracy", "model": "ERNIE", "row": 2, "task": "Natural Language Inference", "value": "78.4" }, { "column": 4, "dataset": "LCQMC Dev", "metric": "Accuracy", "model": "ERNIE", "row": 3, "task": "Chinese Sentence Pair Classification", "value": "89.7" }, { "column": 5, "dataset": "LCQMC", "metric": "Accuracy", "model": "ERNIE", "row": 3, "task": "Chinese Sentence Pair Classification", "value": "87.4" }, { "column": 4, "dataset": "MSRA Dev", "metric": "F1", "model": "ERNIE", "row": 4, "task": "Chinese Named Entity Recognition", "value": "95" }, { "column": 5, "dataset": "MSRA", "metric": "F1", "model": "ERNIE", "row": 4, "task": "Chinese Named Entity Recognition", "value": "93.8" }, { "column": 4, "dataset": "ChnSentiCorp Dev", "metric": "Accuracy", "model": "ERNIE", "row": 5, "task": "Chinese Sentiment Analysis", "value": "95.2" }, { "column": 5, "dataset": "ChnSentiCorp", "metric": "Accuracy", "model": "ERNIE", "row": 5, "task": "Chinese Sentiment Analysis", "value": "95.4" }, { "column": 4, "dataset": "NLPCC-DBQA Dev", "metric": "MRR", "model": "ERNIE", "row": 6, "task": "Chinese Sentence Pair Classification", "value": "0.95" }, { "column": 5, "dataset": "NLPCC-DBQA", "metric": "MRR", "model": "ERNIE", "row": 6, "task": "Chinese Sentence Pair Classification", "value": "0.951" }, { "column": 4, "dataset": "NLPCC-DBQA Dev", "metric": "F1", "model": "ERNIE", "row": 7, "task": "Chinese Sentence Pair Classification", "value": "82.3" }, { "column": 5, "dataset": "NLPCC-DBQA", "metric": "F1", "model": "ERNIE", "row": 7, "task": "Chinese Sentence Pair Classification", "value": "82.7" } ] } ]
1904.09229v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "NIH", "metric": "Recall", "model": "U-Net+R+A4", "row": 34, "task": "Lung Nodule Segmentation", "value": "0.956" }, { "column": 2, "dataset": "NIH", "metric": "Precision", "model": "U-Net+R+A4", "row": 34, "task": "Lung Nodule Segmentation", "value": "0.969" }, { "column": 3, "dataset": "NIH", "metric": "Dice Score", "model": "U-Net+R+A4", "row": 34, "task": "Lung Nodule Segmentation", "value": "0.962" }, { "column": 4, "dataset": "NIH", "metric": "AVD", "model": "U-Net+R+A4", "row": 34, "task": "Lung Nodule Segmentation", "value": "0.262" }, { "column": 5, "dataset": "NIH", "metric": "VS", "model": "U-Net+R+A4", "row": 34, "task": "Lung Nodule Segmentation", "value": "0.985" } ] } ]
1904.09288v1
[ { "index": 2, "records": [ { "column": 3, "dataset": "UCF101-24", "metric": "Video-mAP 0.1", "model": "STEP", "row": 9, "task": "Action Detection", "value": "83.1" }, { "column": 4, "dataset": "UCF101-24", "metric": "Video-mAP 0.2", "model": "STEP", "row": 9, "task": "Action Detection", "value": "76.6" } ] } ]
1904.09569v1
[ { "index": 2, "records": [ { "column": 3, "dataset": "ECSSD", "metric": "F-measure", "model": "PoolNet (VGG-16)", "row": 23, "task": "Salient Object Detection", "value": "0.945" }, { "column": 4, "dataset": "ECSSD", "metric": "MAE", "model": "PoolNet (VGG-16)", "row": 23, "task": "Salient Object Detection", "value": "0.038" }, { "column": 5, "dataset": "PASCAL-S", "metric": "F-measure", "model": "PoolNet (VGG-16)", "row": 23, "task": "Salient Object Detection", "value": "0.88" }, { "column": 6, "dataset": "PASCAL-S", "metric": "MAE", "model": "PoolNet (VGG-16)", "row": 23, "task": "Salient Object Detection", "value": "0.065" }, { "column": 7, "dataset": "DUT-OMRON", "metric": "F-measure", "model": "PoolNet (VGG-16)", "row": 23, "task": "Salient Object Detection", "value": "0.833" }, { "column": 8, "dataset": "DUT-OMRON", "metric": "MAE", "model": "PoolNet (VGG-16)", "row": 23, "task": "Salient Object Detection", "value": "0.053" }, { "column": 9, "dataset": "HKU-IS", "metric": "F-measure", "model": "PoolNet (VGG-16)", "row": 23, "task": "Salient Object Detection", "value": "0.935" }, { "column": 10, "dataset": "HKU-IS", "metric": "MAE", "model": "PoolNet (VGG-16)", "row": 23, "task": "Salient Object Detection", "value": "0.03" }, { "column": 11, "dataset": "SOD", "metric": "F-measure", "model": "PoolNet (VGG-16)", "row": 23, "task": "Salient Object Detection", "value": "0.882" }, { "column": 12, "dataset": "SOD", "metric": "MAE", "model": "PoolNet (VGG-16)", "row": 23, "task": "Salient Object Detection", "value": "0.102" }, { "column": 13, "dataset": "DUTS-TE", "metric": "F-measure", "model": "PoolNet (VGG-16)", "row": 23, "task": "Salient Object Detection", "value": "0.892" }, { "column": 14, "dataset": "DUTS-TE", "metric": "MAE", "model": "PoolNet (VGG-16)", "row": 23, "task": "Salient Object Detection", "value": "0.036000000000000004" } ] } ]
1904.09658v4
[ { "index": 1, "records": [ { "column": 2, "dataset": "Labeled Faces in the Wild", "metric": "Accuracy", "model": "PFEfuse+match", "row": 12, "task": "Face Verification", "value": "99.82" }, { "column": 3, "dataset": "YouTube Faces DB", "metric": "Accuracy", "model": "PFEfuse+match", "row": 12, "task": "Face Verification", "value": "97.36" }, { "column": 5, "dataset": "MegaFace", "metric": "Accuracy", "model": "PFEfuse + match", "row": 12, "task": "Face Verification", "value": "92.51" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "IJB-A", "metric": "TAR @ FAR=0.001", "model": "PFEfuse + match", "row": 12, "task": "Face Verification", "value": "95.25" }, { "column": 3, "dataset": "IJB-A", "metric": "TAR @ FAR=0.01", "model": "PFEfuse + match", "row": 12, "task": "Face Verification", "value": "97.5" } ] }, { "index": 3, "records": [ { "column": 2, "dataset": "IJB-C", "metric": "TAR @ FAR=0.001", "model": "PFEfuse + match", "row": 8, "task": "Face Verification", "value": "89.64" }, { "column": 3, "dataset": "IJB-C", "metric": "TAR @ FAR=0.001", "model": "PFEfuse + match", "row": 8, "task": "Face Verification", "value": "93.25" }, { "column": 4, "dataset": "IJB-C", "metric": "TAR @ FAR=0.001", "model": "PFEfuse + match", "row": 8, "task": "Face Verification", "value": "95.49" }, { "column": 5, "dataset": "IJB-C", "metric": "TAR @ FAR=0.01", "model": "PFEfuse + match", "row": 8, "task": "Face Verification", "value": "97.17" } ] } ]
1904.09664v2
[ { "index": 0, "records": [ { "column": 12, "dataset": "SUN-RGBD val", "metric": "MAP", "model": "VoteNet (Geo only)", "row": 5, "task": "3D Object Detection", "value": "57.7" } ] }, { "index": 1, "records": [ { "column": 2, "dataset": "ScanNetV2", "metric": "[email protected]", "model": "VoteNet", "row": 9, "task": "3D Object Detection", "value": "46.8" }, { "column": 3, "dataset": "ScanNetV2", "metric": "[email protected]", "model": "VoteNet", "row": 9, "task": "3D Object Detection", "value": "24.7" } ] } ]
1904.09739v4
[ { "index": 5, "records": [ { "column": 20, "dataset": "GTAV-to-Cityscapes Labels", "metric": "mIoU", "model": "AdaptSetNet-SWa", "row": 4, "task": "Synthetic-to-Real Translation", "value": "35.7" } ] } ]
1904.10117v1
[ { "index": 5, "records": [ { "column": 2, "dataset": "Volleyball", "metric": "Accuracy", "model": "GTT (VGG19)", "row": 12, "task": "Group Activity Recognition", "value": "92.6" }, { "column": 3, "dataset": "Volleyball", "metric": "Accuracy", "model": "GTT (VGG19)", "row": 12, "task": "Action Recognition In Videos", "value": "82.6" } ] }, { "index": 6, "records": [ { "column": 2, "dataset": "Collective Activity", "metric": "Accuracy", "model": "GT (Inception-v3)", "row": 8, "task": "Group Activity Recognition", "value": "91" } ] } ]
1904.10620v1
[ { "index": 4, "records": [ { "column": 21, "dataset": "GTAV-to-Cityscapes Labels", "metric": "mIoU", "model": "Bidirectional Learning", "row": 12, "task": "Image-to-Image Translation", "value": "41.3" } ] }, { "index": 5, "records": [ { "column": 18, "dataset": "SYNTHIA-to-Cityscapes", "metric": "mIoU", "model": "Bidirectional Learning", "row": 9, "task": "Image-to-Image Translation", "value": "39" } ] } ]
1904.10898v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "CBSD68 sigma5", "metric": "PSNR", "model": "Spatial-CNN", "row": 1, "task": "Color Image Denoising", "value": "39.73" }, { "column": 2, "dataset": "CBSD68 sigma10", "metric": "PSNR", "model": "Spatial-CNN", "row": 1, "task": "Color Image Denoising", "value": "35.92" }, { "column": 3, "dataset": "CBSD68 sigma15", "metric": "PSNR", "model": "Spatial-CNN", "row": 1, "task": "Color Image Denoising", "value": "33.66" }, { "column": 4, "dataset": "CBSD68 sigma25", "metric": "PSNR", "model": "Spatial-CNN", "row": 1, "task": "Color Image Denoising", "value": "30.99" }, { "column": 5, "dataset": "CBSD68 sigma35", "metric": "PSNR", "model": "Spatial-CNN", "row": 1, "task": "Color Image Denoising", "value": "29.34" }, { "column": 6, "dataset": "CBSD68 sigma50", "metric": "PSNR", "model": "Spatial-CNN", "row": 1, "task": "Color Image Denoising", "value": "27.63" } ] } ]
1904.11397v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "Market-1501", "metric": "MAP", "model": "Deep Constrained Dominant Sets", "row": 14, "task": "Person Re-Identification", "value": "93.3" }, { "column": 2, "dataset": "Market-1501", "metric": "Rank-1", "model": "Deep Constrained Dominant Sets", "row": 14, "task": "Person Re-Identification", "value": "95.4" }, { "column": 3, "dataset": "Market-1501", "metric": "Rank-5", "model": "Deep Constrained Dominant Sets", "row": 14, "task": "Person Re-Identification", "value": "98.3" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "CUHK03", "metric": "Rank-1", "model": "Deep Constrained Dominant Sets", "row": 9, "task": "Person Re-Identification", "value": "95.8" }, { "column": 2, "dataset": "CUHK03", "metric": "Rank-5", "model": "Deep Constrained Dominant Sets", "row": 9, "task": "Person Re-Identification", "value": "99.1" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "DukeMTMC-reID", "metric": "MAP", "model": "Deep Constrained Dominant Sets", "row": 13, "task": "Person Re-Identification", "value": "86.1" }, { "column": 2, "dataset": "DukeMTMC-reID", "metric": "Rank-1", "model": "Deep Constrained Dominant Sets", "row": 13, "task": "Person Re-Identification", "value": "88.5" } ] } ]
1904.11451v2
[ { "index": 3, "records": [ { "column": 1, "dataset": "HVU", "metric": "Tags(Object, Scene, etc)", "model": "HATNet", "row": 3, "task": "Multi-Task Learning", "value": "55.2" }, { "column": 3, "dataset": "HVU", "metric": "Action", "model": "HATNet", "row": 3, "task": "Multi-Task Learning", "value": "50.1" } ] }, { "index": 6, "records": [ { "column": 3, "dataset": "UCF101", "metric": "3-fold Accuracy", "model": "HATNet (32 frames)", "row": 24, "task": "Action Recognition In Videos", "value": "97.8" }, { "column": 4, "dataset": "HMDB-51", "metric": "Average accuracy of 3 splits", "model": "HATNet (32 frames)", "row": 24, "task": "Action Recognition In Videos", "value": "76.5" }, { "column": 5, "dataset": "Kinetics-400", "metric": "Accuracy", "model": "HATNet (32 frames)", "row": 24, "task": "Action Classification", "value": "77.6" } ] } ]
1904.11622v3
[ { "index": 2, "records": [ { "column": 2, "dataset": "VRD", "metric": "R@20", "model": "LimLabel (Categ. + Spat.)", "row": 14, "task": "Scene Graph Detection", "value": "17.67" }, { "column": 3, "dataset": "ImageCLEF-DA", "metric": "R@50", "model": "LimLabel (Categ. + Spat.)", "row": 14, "task": "Scene Graph Detection", "value": "18.69" }, { "column": 4, "dataset": "ImageCLEF-DA", "metric": "R@100", "model": "LimLabel (Categ. + Spat.)", "row": 14, "task": "Scene Graph Detection", "value": "19.28" }, { "column": 5, "dataset": "ImageCLEF-DA", "metric": "R@20", "model": "LimLabel (Categ. + Spat.)", "row": 14, "task": "Scene Graph Classification", "value": "20.91" }, { "column": 6, "dataset": "ImageCLEF-DA", "metric": "R@50", "model": "LimLabel (Categ. + Spat.)", "row": 14, "task": "Scene Graph Classification", "value": "21.34" }, { "column": 7, "dataset": "ImageCLEF-DA", "metric": "R@100", "model": "LimLabel (Categ. + Spat.)", "row": 14, "task": "Scene Graph Classification", "value": "21.44" }, { "column": 8, "dataset": "ImageCLEF-DA", "metric": "R@20", "model": "LimLabel (Categ. + Spat.)", "row": 14, "task": "Predicate Classification", "value": "45.49" }, { "column": 9, "dataset": "ImageCLEF-DA", "metric": "R@50", "model": "LimLabel (Categ. + Spat.)", "row": 14, "task": "Predicate Classification", "value": "47.04" }, { "column": 10, "dataset": "ImageCLEF-DA", "metric": "R@100", "model": "LimLabel (Categ. + Spat.)", "row": 14, "task": "Predicate Classification", "value": "47.53" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "Visual Genome", "metric": "R@20", "model": "LimLabel (Categ. + Spat.)", "row": 3, "task": "Scene Graph Detection", "value": "4.04" }, { "column": 2, "dataset": "Visual Genome", "metric": "R@50", "model": "LimLabel (Categ. + Spat.)", "row": 3, "task": "Scene Graph Detection", "value": "6.75" }, { "column": 3, "dataset": "Visual Genome", "metric": "R@100", "model": "LimLabel (Categ. + Spat.)", "row": 3, "task": "Scene Graph Detection", "value": "8.64" }, { "column": 4, "dataset": "Visual Genome", "metric": "R@20", "model": "LimLabel (Categ. + Spat.)", "row": 3, "task": "Scene Graph Classification", "value": "12.69" }, { "column": 5, "dataset": "Visual Genome", "metric": "R@50", "model": "LimLabel (Categ. + Spat.)", "row": 3, "task": "Scene Graph Classification", "value": "13.91" }, { "column": 6, "dataset": "Visual Genome", "metric": "R@100", "model": "LimLabel (Categ. + Spat.)", "row": 3, "task": "Scene Graph Classification", "value": "14.16" }, { "column": 7, "dataset": "Visual Genome", "metric": "R@20", "model": "LimLabel (Categ. + Spat.)", "row": 3, "task": "Predicate Classification", "value": "24.72" }, { "column": 8, "dataset": "Visual Genome", "metric": "R@50", "model": "LimLabel (Categ. + Spat.)", "row": 3, "task": "Predicate Classification", "value": "27.76" }, { "column": 9, "dataset": "Visual Genome", "metric": "R@100", "model": "LimLabel (Categ. + Spat.)", "row": 3, "task": "Predicate Classification", "value": "28.53" } ] } ]
1904.12575v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "MovieLens 20M", "metric": "AUC", "model": "KGCN-sum", "row": 8, "task": "Click-Through Rate Prediction", "value": "0.978" }, { "column": 2, "dataset": "MovieLens 20M", "metric": "F1", "model": "KGCN-sum", "row": 8, "task": "Click-Through Rate Prediction", "value": "0.932" }, { "column": 3, "dataset": "Book-Crossing", "metric": "AUC", "model": "KGCN-sum", "row": 8, "task": "Click-Through Rate Prediction", "value": "73.8" }, { "column": 4, "dataset": "Book-Crossing", "metric": "F1", "model": "KGCN-sum", "row": 8, "task": "Click-Through Rate Prediction", "value": "0.688" }, { "column": 5, "dataset": "Last.FM", "metric": "AUC", "model": "KGCN-concat", "row": 9, "task": "Click-Through Rate Prediction", "value": "0.796" }, { "column": 6, "dataset": "Last.FM", "metric": "F1", "model": "KGCN-concat", "row": 9, "task": "Click-Through Rate Prediction", "value": "0.721" } ] } ]
1904.12659v1
[ { "index": 3, "records": [ { "column": 2, "dataset": "NTU RGB+D", "metric": "Accuracy (CV)", "model": "AS-GCN", "row": 13, "task": "Skeleton Based Action Recognition", "value": "94.2" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "Kinetics-Skeleton dataset", "metric": "Accuracy", "model": "AS-GCN", "row": 5, "task": "Skeleton Based Action Recognition", "value": "34.8" } ] } ]
1904.12848v4
[ { "index": 0, "records": [ { "column": 2, "dataset": "IMDb", "metric": "Accuracy", "model": "BERT Finetune + UDA", "row": 15, "task": "Text Classification", "value": "95.8" }, { "column": 3, "dataset": "Yelp-2", "metric": "Accuracy", "model": "BERT Finetune + UDA", "row": 15, "task": "Text Classification", "value": "97.95" }, { "column": 4, "dataset": "Yelp-5", "metric": "Accuracy", "model": "BERT Finetune + UDA", "row": 15, "task": "Text Classification", "value": "67.92" }, { "column": 5, "dataset": "Amazon-2", "metric": "Error", "model": "BERT Finetune + UDA", "row": 15, "task": "Text Classification", "value": "3.5" }, { "column": 6, "dataset": "Amazon-5", "metric": "Error", "model": "BERT Finetune + UDA", "row": 15, "task": "Text Classification", "value": "37.12" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "CIFAR-10, 4000 Labels", "metric": "Accuracy", "model": "UDA", "row": 12, "task": "Semi-Supervised Image Classification", "value": "94.73" }, { "column": 2, "dataset": "SVHN, 1000 labels", "metric": "Accuracy", "model": "UDA", "row": 12, "task": "Semi-Supervised Image Classification", "value": "97.54" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "ImageNet - 10% labeled data", "metric": "Top 5 Accuracy", "model": "UDA", "row": 2, "task": "Semi-Supervised Image Classification", "value": "88.52" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "ResNet-50 (UDA)", "row": 3, "task": "Image Classification", "value": "79.04" } ] } ]
1905.00292v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "Labeled Faces in the Wild", "metric": "Accuracy", "model": "Dyna. AdaCos", "row": 6, "task": "Face Verification", "value": "99.73" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "MegaFace", "metric": "Accuracy", "model": "Dynamic AdaCos", "row": 6, "task": "Face Verification", "value": "99.88" } ] } ]
1905.00526v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "nuScenes-F", "metric": "AP", "model": "RRPN + R101 - F", "row": 4, "task": "3D Object Detection", "value": "43" }, { "column": 2, "dataset": "nuScenes-F", "metric": "AP50", "model": "RRPN + R101 - F", "row": 4, "task": "3D Object Detection", "value": "64.9" }, { "column": 3, "dataset": "nuScenes-F", "metric": "AP75", "model": "RRPN + R101 - F", "row": 4, "task": "3D Object Detection", "value": "48.5" }, { "column": 4, "dataset": "nuScenes-F", "metric": "AR", "model": "RRPN + R101 - F", "row": 4, "task": "3D Object Detection", "value": "48.6" }, { "column": 5, "dataset": "nuScenes-F", "metric": "ARs", "model": "RRPN + R101 - F", "row": 4, "task": "3D Object Detection", "value": "4" }, { "column": 6, "dataset": "nuScenes-F", "metric": "ARm", "model": "RRPN + R101 - F", "row": 4, "task": "3D Object Detection", "value": "41.2" }, { "column": 7, "dataset": "nuScenes-F", "metric": "ARI", "model": "RRPN + R101 - F", "row": 4, "task": "3D Object Detection", "value": "58.2" }, { "column": 1, "dataset": "nuScenes-FB", "metric": "AP", "model": "RRPN + R101 - FB", "row": 8, "task": "3D Object Detection", "value": "35.5" }, { "column": 2, "dataset": "nuScenes-FB", "metric": "AP50", "model": "RRPN + R101 - FB", "row": 8, "task": "3D Object Detection", "value": "59" }, { "column": 3, "dataset": "nuScenes-FB", "metric": "AP75", "model": "RRPN + R101 - FB", "row": 8, "task": "3D Object Detection", "value": "37" }, { "column": 4, "dataset": "nuScenes-FB", "metric": "AR", "model": "RRPN + R101 - FB", "row": 8, "task": "3D Object Detection", "value": "42.1" }, { "column": 5, "dataset": "nuScenes-FB", "metric": "ARs", "model": "RRPN + R101 - FB", "row": 8, "task": "3D Object Detection", "value": "21.1" }, { "column": 6, "dataset": "nuScenes-FB", "metric": "ARm", "model": "RRPN + R101 - FB", "row": 8, "task": "3D Object Detection", "value": "39.1" }, { "column": 7, "dataset": "nuScenes-FB", "metric": "ARI", "model": "RRPN + R101 - FB", "row": 8, "task": "3D Object Detection", "value": "51.4" } ] } ]
1905.01220v1
[ { "index": 0, "records": [ { "column": 5, "dataset": "Cityscapes val", "metric": "PQth", "model": "TASCNet (ResNet-50, multi-scale)", "row": 9, "task": "Panoptic Segmentation", "value": "56.1" } ] } ]
1905.01436v1
[ { "index": 0, "records": [ { "column": 2, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "EGNN + Transduction", "row": 12, "task": "Few-Shot Image Classification", "value": "76.37" } ] }, { "index": 1, "records": [ { "column": 2, "dataset": "Tiered ImageNet 5-way (5-shot)", "metric": "Accuracy", "model": "EGNN+Transduction", "row": 9, "task": "Image Classification", "value": "80.15" } ] } ]
1905.01566v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "Ontonotes v5 (English)", "metric": "Precision", "model": "ELMo (distant denoising data)", "row": 4, "task": "Entity Typing", "value": "51.5" }, { "column": 2, "dataset": "Ontonotes v5 (English)", "metric": "Recall", "model": "ELMo (distant denoising data)", "row": 4, "task": "Entity Typing", "value": "33" }, { "column": 3, "dataset": "Ontonotes v5 (English)", "metric": "F1", "model": "ELMo (distant denoising data)", "row": 4, "task": "Entity Typing", "value": "40.2" } ] } ]
1905.01669v2
[ { "index": 3, "records": [ { "column": 1, "dataset": "Amazon", "metric": "ROC AUC", "model": "GATNE-T", "row": 12, "task": "Link Prediction", "value": "97.44" }, { "column": 2, "dataset": "Amazon", "metric": "PR AUC", "model": "GATNE-T", "row": 12, "task": "Link Prediction", "value": "97.05" }, { "column": 3, "dataset": "Amazon", "metric": "F1-Score", "model": "GATNE-T", "row": 12, "task": "Link Prediction", "value": "92.87" }, { "column": 4, "dataset": "YouTube", "metric": "ROC AUC", "model": "GATNE-T", "row": 12, "task": "Link Prediction", "value": "84.61" }, { "column": 5, "dataset": "YouTube", "metric": "PR AUC", "model": "GATNE-T", "row": 12, "task": "Link Prediction", "value": "81.93" }, { "column": 6, "dataset": "YouTube", "metric": "F1-Score", "model": "GATNE-T", "row": 12, "task": "Link Prediction", "value": "76.83" }, { "column": 7, "dataset": "Twitter", "metric": "ROC AUC", "model": "GATNE-T", "row": 12, "task": "Link Prediction", "value": "92.3" }, { "column": 8, "dataset": "Twitter", "metric": "PR AUC", "model": "GATNE-T", "row": 12, "task": "Link Prediction", "value": "91.77" }, { "column": 9, "dataset": "Twitter", "metric": "F1-Score", "model": "GATNE-T", "row": 12, "task": "Link Prediction", "value": "84.96" }, { "column": 10, "dataset": "Alibaba-S", "metric": "ROC AUC", "model": "GATNE-T", "row": 12, "task": "Link Prediction", "value": "66.71" }, { "column": 11, "dataset": "Alibaba-S", "metric": "PR AUC", "model": "GATNE-T", "row": 12, "task": "Link Prediction", "value": "67.55" }, { "column": 12, "dataset": "Alibaba-S", "metric": "F1-Score", "model": "GATNE-T", "row": 12, "task": "Link Prediction", "value": "62.48" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "Alibaba", "metric": "ROC AUC", "model": "GATNE-I", "row": 5, "task": "Link Prediction", "value": "84.2" }, { "column": 2, "dataset": "Alibaba", "metric": "PR AUC", "model": "GATNE-I", "row": 5, "task": "Link Prediction", "value": "95.04" }, { "column": 3, "dataset": "Alibaba", "metric": "F1-Score", "model": "GATNE-I", "row": 5, "task": "Link Prediction", "value": "89.94" } ] } ]
1905.02244v5
[ { "index": 2, "records": [ { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "MobileNet V3-Large 1.0", "row": 1, "task": "Image Classification", "value": "75.2" }, { "column": 3, "dataset": "ImageNet", "metric": "Number of params", "model": "MobileNet V3-Large 1.0", "row": 1, "task": "Image Classification", "value": "5.4M" } ] }, { "index": 7, "records": [ { "column": 2, "dataset": "Cityscapes test", "metric": "Mean IoU (class)", "model": "MobileNet V3-Large 1.0", "row": 1, "task": "Semantic Segmentation", "value": "72.6" } ] } ]
1905.02249v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "CIFAR-10", "metric": "Percentage correct", "model": "MixMatch", "row": 3, "task": "Image Classification", "value": "95.05" }, { "column": 2, "dataset": "CIFAR-100", "metric": "Percentage correct", "model": "MixMatch", "row": 3, "task": "Image Classification", "value": "74.12" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "STL-10, 1000 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 5, "task": "Semi-Supervised Image Classification", "value": "89.82" }, { "column": 2, "dataset": "STL-10, 5000 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 5, "task": "Semi-Supervised Image Classification", "value": "94.41" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "SVHN, 250 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 1, "task": "Semi-Supervised Image Classification", "value": "96.22" }, { "column": 2, "dataset": "SVHN, 500 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 1, "task": "Semi-Supervised Image Classification", "value": "96.36" }, { "column": 3, "dataset": "SVHN, 1000 labels", "metric": "Accuracy", "model": "MixMatch", "row": 1, "task": "Semi-Supervised Image Classification", "value": "96.73" }, { "column": 4, "dataset": "SVHN, 2000 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 1, "task": "Semi-Supervised Image Classification", "value": "96.96" }, { "column": 5, "dataset": "SVHN, 4000 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 1, "task": "Semi-Supervised Image Classification", "value": "97.11" }, { "column": 6, "dataset": "SVHN", "metric": "Percentage error", "model": "MixMatch", "row": 1, "task": "Image Classification", "value": "2.59" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "CIFAR-10, 250 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 6, "task": "Semi-Supervised Image Classification", "value": "88.92" }, { "column": 2, "dataset": "CIFAR-10, 500 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 6, "task": "Semi-Supervised Image Classification", "value": "91.35" }, { "column": 3, "dataset": "CIFAR-10, 1000 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 6, "task": "Semi-Supervised Image Classification", "value": "92.25" }, { "column": 4, "dataset": "CIFAR-10, 2000 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 6, "task": "Semi-Supervised Image Classification", "value": "92.97" }, { "column": 5, "dataset": "CIFAR-10, 4000 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 6, "task": "Semi-Supervised Image Classification", "value": "93.76" } ] }, { "index": 6, "records": [ { "column": 1, "dataset": "SVHN, 250 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 6, "task": "Semi-Supervised Image Classification", "value": "96.22" }, { "column": 2, "dataset": "SVHN, 500 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 6, "task": "Semi-Supervised Image Classification", "value": "96.36" }, { "column": 3, "dataset": "SVHN, 1000 labels", "metric": "Accuracy", "model": "MixMatch", "row": 6, "task": "Semi-Supervised Image Classification", "value": "96.73" }, { "column": 4, "dataset": "SVHN, 2000 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 6, "task": "Semi-Supervised Image Classification", "value": "96.96" }, { "column": 5, "dataset": "SVHN, 4000 Labels", "metric": "Accuracy", "model": "MixMatch", "row": 6, "task": "Semi-Supervised Image Classification", "value": "97.11" } ] } ]
1905.02450v5
[ { "index": 1, "records": [ { "column": 2, "dataset": "WMT2014 English-French", "metric": "BLEU", "model": "MASS (6-layer Transformer)", "row": 6, "task": "Unsupervised Machine Translation", "value": "37.5" }, { "column": 3, "dataset": "WMT2014 French-English", "metric": "BLEU", "model": "MASS (6-layer Transformer)", "row": 6, "task": "Unsupervised Machine Translation", "value": "34.9" }, { "column": 4, "dataset": "WMT2016 English-German", "metric": "BLEU", "model": "MASS (6-layer Transformer)", "row": 6, "task": "Unsupervised Machine Translation", "value": "28.3" }, { "column": 5, "dataset": "WMT2016 German-English", "metric": "BLEU", "model": "MASS (6-layer Transformer)", "row": 6, "task": "Unsupervised Machine Translation", "value": "35.2" }, { "column": 6, "dataset": "WMT2016 English-Romanian", "metric": "BLEU", "model": "MASS (6-layer Transformer)", "row": 6, "task": "Unsupervised Machine Translation", "value": "35.2" }, { "column": 7, "dataset": "WMT2016 Romanian-English", "metric": "BLEU", "model": "MASS (6-layer Transformer)", "row": 6, "task": "Unsupervised Machine Translation", "value": "33.1" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "GigaWord", "metric": "ROUGE-1", "model": "MASS", "row": 3, "task": "Text Summarization", "value": "38.73" }, { "column": 2, "dataset": "GigaWord", "metric": "ROUGE-2", "model": "MASS", "row": 3, "task": "Text Summarization", "value": "19.71" }, { "column": 3, "dataset": "GigaWord", "metric": "ROUGE-L", "model": "MASS", "row": 3, "task": "Text Summarization", "value": "35.96" } ] } ]
1905.02716v1
[ { "index": 0, "records": [ { "column": 9, "dataset": "Vid4 - 4x upscaling", "metric": "PSNR", "model": "EDVR", "row": 6, "task": "Video Super-Resolution", "value": "27.35" } ] }, { "index": 3, "records": [ { "column": 5, "dataset": "REDS", "metric": "Average PSNR", "model": "EDVR_Deblur", "row": 5, "task": "Deblurring", "value": "34.8" } ] } ]
1905.02822v1
[ { "index": 2, "records": [ { "column": 3, "dataset": "PoseTrack2017", "metric": "MAP", "model": "GT Detections", "row": 2, "task": "Pose Tracking", "value": "81.7" } ] } ]
1905.02947v1
[ { "index": 2, "records": [ { "column": 13, "dataset": "IEMOCAP", "metric": "Accuracy", "model": "DialogueRNN", "row": 9, "task": "Emotion Recognition in Conversation", "value": "63.4" }, { "column": 14, "dataset": "IEMOCAP", "metric": "F1", "model": "DialogueRNN", "row": 9, "task": "Emotion Recognition in Conversation", "value": "62.75%" } ] } ]
1905.03072v3
[ { "index": 3, "records": [ { "column": 7, "dataset": "LibriSpeech test-clean", "metric": "Word Error Rate (WER)", "model": "Hybrid model with Transformer rescoring", "row": 14, "task": "Speech Recognition", "value": "2.3" }, { "column": 8, "dataset": "LibriSpeech test-other", "metric": "Word Error Rate (WER)", "model": "Hybrid model with Transformer rescoring", "row": 14, "task": "Speech Recognition", "value": "5.0" } ] } ]
1905.03244v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "Human3.6M", "metric": "Average MPJPE (mm)", "model": "Mesh Regression (Graph + SMPL)", "row": 4, "task": "3D Human Pose Estimation", "value": "113.2" }, { "column": 2, "dataset": "Human3.6M", "metric": "Mean Reconstruction Error (mm)", "model": "Mesh Regression (Graph + SMPL)", "row": 4, "task": "3D Human Pose Estimation", "value": "61.3" } ] } ]
1905.04075v2
[ { "index": 5, "records": [ { "column": 4, "dataset": "FERPlus", "metric": "Accuracy", "model": "RAN (VGG-16)", "row": 5, "task": "Facial Expression Recognition", "value": "89.16" } ] }, { "index": 6, "records": [ { "column": 3, "dataset": "AffectNet", "metric": "Accuracy", "model": "RAN (ResNet-18+)", "row": 5, "task": "Facial Expression Recognition", "value": "59.5" } ] }, { "index": 7, "records": [ { "column": 3, "dataset": "SFEW", "metric": "Accuracy", "model": "RAN (VGG16+ResNet18)", "row": 5, "task": "Facial Expression Recognition", "value": "56.4" } ] }, { "index": 8, "records": [ { "column": 3, "dataset": "RAF-DB", "metric": "Accuracy", "model": "RAN (ResNet-18)", "row": 3, "task": "Facial Expression Recognition", "value": "86.9" } ] } ]
1905.04266v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "Human3.6M", "metric": "Average MPJPE (mm)", "model": "Bundle Adjustment", "row": 7, "task": "3D Human Pose Estimation", "value": "63.3" } ] } ]
1905.04413v3
[ { "index": 2, "records": [ { "column": 1, "dataset": "MovieLens 20M", "metric": "Recall@2", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.043" }, { "column": 2, "dataset": "MovieLens 20M", "metric": "Recall@10", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.155" }, { "column": 3, "dataset": "MovieLens 20M", "metric": "Recall@50", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.321" }, { "column": 4, "dataset": "MovieLens 20M", "metric": "Recall@100", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.458" }, { "column": 5, "dataset": "Book-Crossing", "metric": "Recall@2", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.045" }, { "column": 6, "dataset": "Book-Crossing", "metric": "Recall@10", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.082" }, { "column": 7, "dataset": "Book-Crossing", "metric": "Recall@50", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.117" }, { "column": 8, "dataset": "Book-Crossing", "metric": "Recall@100", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.149" }, { "column": 9, "dataset": "Last.FM", "metric": "Recall@2", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.044" }, { "column": 10, "dataset": "Last.FM", "metric": "Recall@10", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.122" }, { "column": 11, "dataset": "Last.FM", "metric": "Recall@50", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.277" }, { "column": 12, "dataset": "Last.FM", "metric": "Recall@100", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.370" }, { "column": 13, "dataset": "Dianping-Food", "metric": "Recall@2", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.047" }, { "column": 14, "dataset": "Dianping-Food", "metric": "Recall@10", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.17" }, { "column": 15, "dataset": "Dianping-Food", "metric": "Recall@50", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.34" }, { "column": 16, "dataset": "Dianping-Food", "metric": "Recall@100", "model": "KGNN-LS", "row": 8, "task": "Recommendation Systems", "value": "0.487" } ] } ]
1905.04757v2
[ { "index": 7, "records": [ { "column": 1, "dataset": "NTU RGB+D 120", "metric": "Accuracy", "model": "APSR", "row": 4, "task": "One-Shot 3D Action Recognition", "value": "45.3" } ] } ]
1905.04899v2
[ { "index": 0, "records": [ { "column": 4, "dataset": "PASCAL VOC 2007", "metric": "MAP", "model": "SSD (CutMix)", "row": 5, "task": "Object Detection", "value": "76.7" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "ResNet-50 (CutMix)", "row": 13, "task": "Image Classification", "value": "78.4" }, { "column": 3, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "ResNet-50 (CutMix)", "row": 13, "task": "Image Classification", "value": "94.10" } ] }, { "index": 3, "records": [ { "column": 2, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "ResNeXt-101 (CutMix)", "row": 4, "task": "Image Classification", "value": "81.53" }, { "column": 3, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "ResNeXt-101 (CutMix)", "row": 4, "task": "Image Classification", "value": "94.97" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "CIFAR-100", "metric": "Percentage correct", "model": "PyramidNet-200 + Shakedrop + Cutmix", "row": 15, "task": "Image Classification", "value": "86.19" } ] }, { "index": 6, "records": [ { "column": 1, "dataset": "CIFAR-10", "metric": "Percentage correct", "model": "PyramidNet-200 + CutMix", "row": 5, "task": "Image Classification", "value": "97.12" } ] }, { "index": 9, "records": [ { "column": 2, "dataset": "PASCAL VOC 2007", "metric": "MAP", "model": "SSD (ResNet-50, CutMix)", "row": 5, "task": "Object Detection", "value": "77.6" } ] }, { "index": 13, "records": [ { "column": 1, "dataset": "COCO", "metric": "BLEU-1", "model": "NIC (ResNet-50, CutMix)", "row": 4, "task": "Image Captioning", "value": "64.2" }, { "column": 2, "dataset": "COCO", "metric": "BLEU-2", "model": "NIC (ResNet-50, CutMix)", "row": 4, "task": "Image Captioning", "value": "46.3" }, { "column": 3, "dataset": "COCO", "metric": "BLEU-3", "model": "NIC (ResNet-50, CutMix)", "row": 4, "task": "Image Captioning", "value": "33.6" }, { "column": 4, "dataset": "COCO", "metric": "BLEU-4", "model": "NIC (ResNet-50, CutMix)", "row": 4, "task": "Image Captioning", "value": "24.9" }, { "column": 5, "dataset": "COCO", "metric": "METEOR", "model": "NIC (ResNet-50, CutMix)", "row": 4, "task": "Image Captioning", "value": "23.1" }, { "column": 6, "dataset": "COCO", "metric": "ROUGE", "model": "NIC (ResNet-50, CutMix)", "row": 4, "task": "Image Captioning", "value": "49" }, { "column": 7, "dataset": "COCO", "metric": "CIDEr", "model": "NIC (ResNet-50, CutMix)", "row": 4, "task": "Image Captioning", "value": "77.6" } ] } ]
1905.05178v1
[ { "index": 2, "records": [ { "column": 1, "dataset": "Cora", "metric": "Accuracy", "model": "Graph U-Nets", "row": 6, "task": "Node Classification", "value": "84.4" }, { "column": 2, "dataset": "Citeseer", "metric": "Accuracy", "model": "Graph U-Nets", "row": 6, "task": "Node Classification", "value": "73.2" }, { "column": 3, "dataset": "Pubmed", "metric": "Accuracy", "model": "Graph U-Nets", "row": 6, "task": "Node Classification", "value": "79.6" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "D&D", "metric": "Accuracy", "model": "Graph U-Nets", "row": 6, "task": "Graph Classification", "value": "82.43" }, { "column": 2, "dataset": "PROTEINS", "metric": "Accuracy", "model": "Graph U-Nets", "row": 6, "task": "Graph Classification", "value": "77.68" }, { "column": 3, "dataset": "COLLAB", "metric": "Accuracy", "model": "Graph U-Nets", "row": 6, "task": "Graph Classification", "value": "77.56" } ] }, { "index": 7, "records": [ { "column": 2, "dataset": "Cora: fixed 20 node per class", "metric": "Accuracy", "model": "g-U-Nets (Ours)", "row": 2, "task": "Node Classification", "value": "75737" } ] } ]
1905.05301v2
[ { "index": 6, "records": [ { "column": 1, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "HSML", "row": 16, "task": "Few-Shot Image Classification", "value": "50.38" } ] } ]
1905.05583v3
[ { "index": 5, "records": [ { "column": 1, "dataset": "IMDb", "metric": "Accuracy", "model": "BERT-ITPT-FiT", "row": 13, "task": "Text Classification", "value": "95.63" }, { "column": 2, "dataset": "Yelp-2", "metric": "Accuracy", "model": "BERT-ITPT-FiT", "row": 13, "task": "Text Classification", "value": "98.08" }, { "column": 3, "dataset": "Yelp-5", "metric": "Accuracy", "model": "BERT-ITPT-FiT", "row": 13, "task": "Text Classification", "value": "70.58" }, { "column": 4, "dataset": "TREC-6", "metric": "Error", "model": "BERT-ITPT-FiT", "row": 13, "task": "Text Classification", "value": "3.2" }, { "column": 5, "dataset": "Yahoo! Answers", "metric": "Accuracy", "model": "BERT-ITPT-FiT", "row": 13, "task": "Text Classification", "value": "77.62" }, { "column": 6, "dataset": "AG News", "metric": "Error", "model": "BERT-ITPT-FiT", "row": 13, "task": "Text Classification", "value": "4.8" }, { "column": 7, "dataset": "DBpedia", "metric": "Error", "model": "BERT-ITPT-FiT", "row": 13, "task": "Text Classification", "value": "0.68" }, { "column": 8, "dataset": "Sogou News", "metric": "Accuracy", "model": "BERT-ITPT-FiT", "row": 13, "task": "Text Classification", "value": "98.07" } ] } ]
1905.06214v2
[ { "index": 1, "records": [ { "column": 2, "dataset": "Cora", "metric": "Accuracy", "model": "GMNN", "row": 9, "task": "Object Classification", "value": "83.7" }, { "column": 3, "dataset": "Citeseer", "metric": "Accuracy", "model": "GMNN", "row": 9, "task": "Object Classification", "value": "72.9" }, { "column": 4, "dataset": "Pubmed", "metric": "Accuracy", "model": "GMNN", "row": 9, "task": "Object Classification", "value": "81.8" } ] } ]
1905.06549v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "OMNIGLOT - 1-Shot, 20-way", "metric": "Accuracy", "model": "TapNet", "row": 10, "task": "Few-Shot Image Classification", "value": "98.07" }, { "column": 2, "dataset": "OMNIGLOT - 5-Shot, 20-way", "metric": "Accuracy", "model": "TapNet", "row": 10, "task": "Few-Shot Image Classification", "value": "99.49" }, { "column": 3, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "TapNet", "row": 10, "task": "Few-Shot Image Classification", "value": "61.65" }, { "column": 4, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "TapNet", "row": 10, "task": "Few-Shot Image Classification", "value": "76.36" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "Tiered ImageNet 5-way (1-shot)", "metric": "Accuracy", "model": "TapNet", "row": 6, "task": "Few-Shot Image Classification", "value": "63.08" }, { "column": 2, "dataset": "Tiered ImageNet 5-way (5-shot)", "metric": "Accuracy", "model": "TapNet", "row": 6, "task": "Few-Shot Image Classification", "value": "80.26" } ] } ]
1905.07129v3
[ { "index": 1, "records": [ { "column": 1, "dataset": "FIGER", "metric": "Accuracy", "model": "ERNIE", "row": 4, "task": "Entity Linking", "value": "57.19" }, { "column": 2, "dataset": "FIGER", "metric": "Macro F1", "model": "ERNIE", "row": 4, "task": "Entity Linking", "value": "76.51" }, { "column": 3, "dataset": "FIGER", "metric": "Micro F1", "model": "ERNIE", "row": 4, "task": "Entity Linking", "value": "73.39" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": " Open Entity", "metric": "Precision", "model": "ERNIE", "row": 4, "task": "Entity Typing", "value": "78.42" }, { "column": 2, "dataset": " Open Entity", "metric": "Recall", "model": "ERNIE", "row": 4, "task": "Entity Typing", "value": "72.9" }, { "column": 3, "dataset": " Open Entity", "metric": "F1", "model": "ERNIE", "row": 4, "task": "Entity Typing", "value": "75.56" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "FewRel", "metric": "Precision", "model": "ERNIE", "row": 6, "task": "Relation Extraction", "value": "88.49" }, { "column": 2, "dataset": "FewRel", "metric": "Recall", "model": "ERNIE", "row": 6, "task": "Relation Extraction", "value": "88.44" }, { "column": 3, "dataset": "FewRel", "metric": "F1", "model": "ERNIE", "row": 6, "task": "Relation Extraction", "value": "88.32" }, { "column": 4, "dataset": "TACRED", "metric": "Precision", "model": "ERNIE", "row": 6, "task": "Relation Extraction", "value": "69.97" }, { "column": 5, "dataset": "TACRED", "metric": "Recall", "model": "ERNIE", "row": 6, "task": "Relation Extraction", "value": "66.08" }, { "column": 6, "dataset": "TACRED", "metric": "F1", "model": "ERNIE", "row": 6, "task": "Relation Extraction", "value": "67.97" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "MultiNLI", "metric": "Matched", "model": "ERNIE", "row": 3, "task": "Natural Language Inference", "value": "84.0" }, { "column": 2, "dataset": "Quora Question Pairs", "metric": "Accuracy", "model": "ERNIE", "row": 3, "task": "Paraphrase Identification", "value": "71.2" }, { "column": 3, "dataset": "QNLI", "metric": "Accuracy", "model": "ERNIE", "row": 3, "task": "Natural Language Inference", "value": "91.3" }, { "column": 4, "dataset": "SST-2 Binary classification", "metric": "Accuracy", "model": "ERNIE", "row": 3, "task": "Sentiment Analysis", "value": "93.5" }, { "column": 1, "dataset": "CoLA", "metric": "Accuracy", "model": "ERNIE", "row": 7, "task": "Linguistic Acceptability", "value": "52.3" }, { "column": 2, "dataset": "STS Benchmark", "metric": "Pearson Correlation", "model": "ERNIE", "row": 7, "task": "Semantic Textual Similarity", "value": "83.2" }, { "column": 3, "dataset": "MRPC", "metric": "Accuracy", "model": "ERNIE", "row": 7, "task": "Semantic Textual Similarity", "value": "88.2" }, { "column": 4, "dataset": "RTE", "metric": "Accuracy", "model": "ERNIE", "row": 7, "task": "Natural Language Inference", "value": "68.8" } ] } ]
1905.07953v2
[ { "index": 7, "records": [ { "column": 6, "dataset": "Amazon2M", "metric": "F1", "model": "Cluster-GCN", "row": 4, "task": "Node Classification", "value": "90.41" } ] }, { "index": 9, "records": [ { "column": 1, "dataset": "PPI", "metric": "F1", "model": "Cluster-GCN", "row": 7, "task": "Node Classification", "value": "99.36" } ] } ]
1905.08233v2
[ { "index": 1, "records": [ { "column": 1, "dataset": "VoxCeleb1 - 32-shot learning", "metric": "FID", "model": "Few-shot Adversarial Model", "row": 10, "task": "Talking Head Generation", "value": "29.5" }, { "column": 1, "dataset": "VoxCeleb2 - 32-shot learning", "metric": "FID", "model": "Few-shot Adversarial Model", "row": 17, "task": "Talking Head Generation", "value": "30.6" } ] } ]
1905.08509v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "MUTAG", "metric": "Accuracy", "model": "sGIN", "row": 4, "task": "Graph Classification", "value": "94.14" }, { "column": 2, "dataset": "PROTEINS", "metric": "Accuracy", "model": "sGIN", "row": 4, "task": "Graph Classification", "value": "78.97" }, { "column": 3, "dataset": "PTC", "metric": "Accuracy", "model": "sGIN", "row": 4, "task": "Graph Classification", "value": "73.56" }, { "column": 4, "dataset": "NCI1", "metric": "Accuracy", "model": "sGIN", "row": 4, "task": "Graph Classification", "value": "83.85" }, { "column": 5, "dataset": "IMDb-B", "metric": "Accuracy", "model": "sGIN", "row": 4, "task": "Graph Classification", "value": "77.94" }, { "column": 6, "dataset": "IMDb-M", "metric": "Accuracy", "model": "sGIN", "row": 4, "task": "Graph Classification", "value": "54.52" }, { "column": 7, "dataset": "COLLAB", "metric": "Accuracy", "model": "sGIN", "row": 4, "task": "Graph Classification", "value": "80.71" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "Wine", "metric": "Accuracy", "model": "sKNN-LDS", "row": 2, "task": "Graph Classification", "value": "98" }, { "column": 2, "dataset": "Cancer", "metric": "Accuracy", "model": "sKNN-LDS", "row": 2, "task": "Graph Classification", "value": "95.7" }, { "column": 3, "dataset": "Digits", "metric": "Accuracy", "model": "sKNN-LDS", "row": 2, "task": "Graph Classification", "value": "92.5" }, { "column": 4, "dataset": "Citeseer", "metric": "Accuracy", "model": "sKNN-LDS", "row": 2, "task": "Graph Classification", "value": "73.7" }, { "column": 5, "dataset": "Cora", "metric": "Accuracy", "model": "sKNN-LDS", "row": 2, "task": "Graph Classification", "value": "72.3" }, { "column": 6, "dataset": "20NEWS", "metric": "Accuracy", "model": "sKNN-LDS", "row": 2, "task": "Graph Classification", "value": "47.9" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "Cora", "metric": "AUC", "model": "sGraphite-VAE", "row": 4, "task": "Link Prediction", "value": "93.7" }, { "column": 2, "dataset": "Citeseer", "metric": "AUC", "model": "sGraphite-VAE", "row": 4, "task": "Link Prediction", "value": "94.1" }, { "column": 3, "dataset": "Pubmed", "metric": "AUC", "model": "sGraphite-VAE", "row": 4, "task": "Link Prediction", "value": "94.8" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "Cora", "metric": "AP", "model": "sGraphite-VAE", "row": 4, "task": "Link Prediction", "value": "93.5" }, { "column": 2, "dataset": "Citeseer", "metric": "AP", "model": "sGraphite-VAE", "row": 4, "task": "Link Prediction", "value": "95.4" }, { "column": 3, "dataset": "Pubmed", "metric": "AP", "model": "sGraphite-VAE", "row": 4, "task": "Link Prediction", "value": "96.3" } ] } ]
1905.08772v1
[ { "index": 6, "records": [ { "column": 1, "dataset": "eRisk 2017", "metric": "ERDE5", "model": "NLPISA", "row": 1, "task": "Depression Detection", "value": "15.59" }, { "column": 3, "dataset": "eRisk 2017", "metric": "ERDE50", "model": "NLPISA", "row": 1, "task": "Depression Detection", "value": "15.59" }, { "column": 1, "dataset": "eRisk 2017", "metric": "ERDE5", "model": "CHEPEA", "row": 2, "task": "Depression Detection", "value": "14.75" }, { "column": 3, "dataset": "eRisk 2017", "metric": "ERDE50", "model": "LyRE", "row": 2, "task": "Depression Detection", "value": "13.74" }, { "column": 1, "dataset": "eRisk 2017", "metric": "ERDE5", "model": "GPLC", "row": 3, "task": "Depression Detection", "value": "14.06" }, { "column": 3, "dataset": "eRisk 2017", "metric": "ERDE50", "model": "CHEPEA", "row": 3, "task": "Depression Detection", "value": "12.26" }, { "column": 1, "dataset": "eRisk 2017", "metric": "ERDE5", "model": "LyRE", "row": 4, "task": "Depression Detection", "value": "13.74" }, { "column": 3, "dataset": "eRisk 2017", "metric": "ERDE50", "model": "GPLC", "row": 4, "task": "Depression Detection", "value": "12.14" }, { "column": 1, "dataset": "eRisk 2017", "metric": "ERDE5", "model": "UNSLA", "row": 5, "task": "Depression Detection", "value": "13.66" }, { "column": 3, "dataset": "eRisk 2017", "metric": "ERDE50", "model": "UQAMD", "row": 5, "task": "Depression Detection", "value": "11.98" }, { "column": 1, "dataset": "eRisk 2017", "metric": "ERDE5", "model": "UQAMD", "row": 6, "task": "Depression Detection", "value": "13.23" }, { "column": 3, "dataset": "eRisk 2017", "metric": "ERDE50", "model": "UArizonaD", "row": 6, "task": "Depression Detection", "value": "10.23" }, { "column": 1, "dataset": "eRisk 2017", "metric": "ERDE5", "model": "UArizonaB", "row": 7, "task": "Depression Detection", "value": "13.07" }, { "column": 3, "dataset": "eRisk 2017", "metric": "ERDE50", "model": "FHDO-BCSGA", "row": 7, "task": "Depression Detection", "value": "9.69" }, { "column": 1, "dataset": "eRisk 2017", "metric": "ERDE5", "model": "FHDO-BCSGB", "row": 8, "task": "Depression Detection", "value": "12.7" }, { "column": 3, "dataset": "eRisk 2017", "metric": "ERDE50", "model": "UNSLA", "row": 8, "task": "Depression Detection", "value": "9.68" }, { "column": 1, "dataset": "eRisk 2017", "metric": "ERDE5", "model": "SS3D", "row": 9, "task": "Depression Detection", "value": "12.7" }, { "column": 3, "dataset": "eRisk 2017", "metric": "ERDE50", "model": "SS3D", "row": 10, "task": "Depression Detection", "value": "7.72" } ] } ]
1905.09998v3
[ { "index": 0, "records": [ { "column": 2, "dataset": "VQA-CP", "metric": "Score", "model": "UpDn+SCR (VQA-X)", "row": 9, "task": "Visual Question Answering", "value": "49.45" } ] } ]
1905.10060v1
[ { "index": 0, "records": [ { "column": 2, "dataset": "Yelp", "metric": "BLEU", "model": "DualRL", "row": 12, "task": "Unsupervised Text Style Transfer", "value": "55.2" }, { "column": 6, "dataset": "GYAFC", "metric": "BLEU", "model": "DualRL", "row": 12, "task": "Unsupervised Text Style Transfer", "value": "41.9" } ] } ]
1905.10070v2
[ { "index": 1, "records": [ { "column": 6, "dataset": "AAPD", "metric": "P@1", "model": "LAHA", "row": 1, "task": "Multi-Label Text Classification", "value": "84.48" }, { "column": 6, "dataset": "AAPD", "metric": "P@3", "model": "LAHA", "row": 2, "task": "Multi-Label Text Classification", "value": "60.72" }, { "column": 6, "dataset": "AAPD", "metric": "P@5", "model": "LAHA", "row": 3, "task": "Multi-Label Text Classification", "value": "41.19" }, { "column": 6, "dataset": "AAPD", "metric": "nDCG@3", "model": "LAHA", "row": 4, "task": "Multi-Label Text Classification", "value": "80.11" }, { "column": 6, "dataset": "AAPD", "metric": "nDCG@5", "model": "LAHA", "row": 5, "task": "Multi-Label Text Classification", "value": "83.7" }, { "column": 6, "dataset": "Kan-Shan Cup", "metric": "P@1", "model": "LAHA", "row": 6, "task": "Multi-Label Text Classification", "value": "54.38" }, { "column": 6, "dataset": "Kan-Shan Cup", "metric": "P@3", "model": "LAHA", "row": 7, "task": "Multi-Label Text Classification", "value": "34.6" }, { "column": 6, "dataset": "Kan-Shan Cup", "metric": "P@5", "model": "LAHA", "row": 8, "task": "Multi-Label Text Classification", "value": "25.88" }, { "column": 6, "dataset": "Kan-Shan Cup", "metric": "nDCG@3", "model": "LAHA", "row": 9, "task": "Multi-Label Text Classification", "value": "51.7" }, { "column": 6, "dataset": "Kan-Shan Cup", "metric": "nDCG@5", "model": "LAHA", "row": 10, "task": "Multi-Label Text Classification", "value": "54.65" }, { "column": 6, "dataset": "EUR-Lex", "metric": "P@1", "model": "LAHA", "row": 11, "task": "Multi-Label Text Classification", "value": "74.95" }, { "column": 6, "dataset": "EUR-Lex", "metric": "P@3", "model": "LAHA", "row": 12, "task": "Multi-Label Text Classification", "value": "61.48" }, { "column": 6, "dataset": "EUR-Lex", "metric": "P@5", "model": "LAHA", "row": 13, "task": "Multi-Label Text Classification", "value": "50.71" }, { "column": 6, "dataset": "EUR-Lex", "metric": "nDCG@3", "model": "LAHA", "row": 14, "task": "Multi-Label Text Classification", "value": "64.89" }, { "column": 6, "dataset": "EUR-Lex", "metric": "nDCG@5", "model": "LAHA", "row": 15, "task": "Multi-Label Text Classification", "value": "59.28" }, { "column": 6, "dataset": "Amazon-12K", "metric": "P@1", "model": "LAHA", "row": 16, "task": "Multi-Label Text Classification", "value": "94.87" }, { "column": 6, "dataset": "Amazon-12K", "metric": "P@3", "model": "LAHA", "row": 17, "task": "Multi-Label Text Classification", "value": "79.16" }, { "column": 6, "dataset": "Amazon-12K", "metric": "P@5", "model": "LAHA", "row": 18, "task": "Multi-Label Text Classification", "value": "63.16" }, { "column": 6, "dataset": "Amazon-12K", "metric": "nDCG@3", "model": "LAHA", "row": 19, "task": "Multi-Label Text Classification", "value": "89.13" }, { "column": 6, "dataset": "Amazon-12K", "metric": "nDCG@5", "model": "LAHA", "row": 20, "task": "Multi-Label Text Classification", "value": "87.57" }, { "column": 6, "dataset": "Wiki-30K", "metric": "P@1", "model": "LAHA", "row": 21, "task": "Multi-Label Text Classification", "value": "84.18" }, { "column": 6, "dataset": "Wiki-30K", "metric": "P@3", "model": "LAHA", "row": 22, "task": "Multi-Label Text Classification", "value": "73.14" }, { "column": 6, "dataset": "Wiki-30K", "metric": "P@5", "model": "LAHA", "row": 23, "task": "Multi-Label Text Classification", "value": "62.87" }, { "column": 6, "dataset": "Wiki-30K", "metric": "nDCG@3", "model": "LAHA", "row": 24, "task": "Multi-Label Text Classification", "value": "75.64" }, { "column": 6, "dataset": "Wiki-30K", "metric": "nDCG@5", "model": "LAHA", "row": 25, "task": "Multi-Label Text Classification", "value": "67.82" } ] } ]
1905.10485v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "MNIST", "metric": "FID", "model": "GLF+perceptual loss (ours)", "row": 9, "task": "Image Generation", "value": "5.8" }, { "column": 2, "dataset": "Fashion-MNIST", "metric": "FID", "model": "GLF+perceptual loss (ours)", "row": 9, "task": "Image Generation", "value": "10.3" }, { "column": 3, "dataset": "CIFAR-10", "metric": "FID", "model": "GLF+perceptual loss (ours)", "row": 9, "task": "Image Generation", "value": "44.6" }, { "column": 4, "dataset": "CelebA 256x256", "metric": "FID", "model": "GLF+perceptual loss (ours)", "row": 9, "task": "Image Generation", "value": "41.8" } ] } ]
1905.10748v3
[ { "index": 0, "records": [ { "column": 1, "dataset": "SVNH-to-MNIST", "metric": "Accuracy", "model": "SRDA (RAN)", "row": 17, "task": "Domain Adaptation", "value": "98.91" }, { "column": 2, "dataset": "SYNSIG-to-GTSRB", "metric": "Accuracy", "model": "SRDA (RAN)", "row": 17, "task": "Domain Adaptation", "value": "93.61" }, { "column": 3, "dataset": "MNIST-to-USPS", "metric": "Accuracy", "model": "SRDA (RAN)", "row": 17, "task": "Domain Adaptation", "value": "94.76" }, { "column": 4, "dataset": "USPS-to-MNIST", "metric": "Accuracy", "model": "SRDA (RAN)", "row": 17, "task": "Domain Adaptation", "value": "95.03" } ] }, { "index": 3, "records": [ { "column": 5, "dataset": "Office-31", "metric": "Average Accuracy", "model": "SRDA (RAN)", "row": 10, "task": "Domain Adaptation", "value": "73.5" } ] } ]
1905.10861v5
[ { "index": 1, "records": [ { "column": 1, "dataset": "UCF-to-Olympic", "metric": "Accuracy", "model": "TA3N", "row": 9, "task": "Domain Adaptation", "value": "98.15" }, { "column": 2, "dataset": "Olympic-to-HMDBsmall", "metric": "Accuracy", "model": "TA3N", "row": 9, "task": "Domain Adaptation", "value": "92.92" }, { "column": 3, "dataset": "UCF-to-HMDBsmall", "metric": "Accuracy", "model": "TA3N", "row": 9, "task": "Domain Adaptation", "value": "99.33" }, { "column": 4, "dataset": "HMDBsmall-to-UCF", "metric": "Accuracy", "model": "TA3N", "row": 9, "task": "Domain Adaptation", "value": "99.47" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "UCF-to-HMDBfull", "metric": "Accuracy", "model": "TA3N", "row": 10, "task": "Domain Adaptation", "value": "78.33" }, { "column": 4, "dataset": "HMDBfull-to-UCF", "metric": "Accuracy", "model": "TA3N", "row": 10, "task": "Domain Adaptation", "value": "81.79" } ] } ]
1905.10994v2
[ { "index": 1, "records": [ { "column": 1, "dataset": "CMU Mocap-1", "metric": "Test Error", "model": "ODE2VAE-KL", "row": 8, "task": "Video Prediction", "value": "15.99" }, { "column": 2, "dataset": "CMU Mocap-2", "metric": "Test Error", "model": "ODE2VAE-KL", "row": 8, "task": "Video Prediction", "value": "8.09" } ] } ]
1905.11136v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "MUTAG", "metric": "Accuracy", "model": "PPGN", "row": 22, "task": "Graph Classification", "value": "90.55" }, { "column": 2, "dataset": "PTC", "metric": "Accuracy", "model": "PPGN", "row": 22, "task": "Graph Classification", "value": "66.17" }, { "column": 3, "dataset": "PROTEINS", "metric": "Accuracy", "model": "PPGN", "row": 22, "task": "Graph Classification", "value": "77.2" }, { "column": 4, "dataset": "NCI1", "metric": "Accuracy", "model": "PPGN", "row": 22, "task": "Graph Classification", "value": "83.19" }, { "column": 5, "dataset": "NCI109", "metric": "Accuracy", "model": "PPGN", "row": 22, "task": "Graph Classification", "value": "81.84" }, { "column": 6, "dataset": "COLLAB", "metric": "Accuracy", "model": "PPGN", "row": 22, "task": "Graph Classification", "value": "80.16" }, { "column": 7, "dataset": "IMDb-B", "metric": "Accuracy", "model": "PPGN", "row": 22, "task": "Graph Classification", "value": "72.6" }, { "column": 8, "dataset": "IMDb-M", "metric": "Accuracy", "model": "PPGN", "row": 22, "task": "Graph Classification", "value": "50" } ] } ]
1905.11172v1
[ { "index": 2, "records": [ { "column": 1, "dataset": "NTIRE 2019 Real Image Denoising Challenge (sRGB)", "metric": "PSNR", "model": "GRDN", "row": 1, "task": "Color Image Denoising", "value": "39.931743" }, { "column": 2, "dataset": "NTIRE 2019 Real Image Denoising Challenge (sRGB)", "metric": "SSIM", "model": "GRDN", "row": 1, "task": "Color Image Denoising", "value": "0.9735889999999999" } ] } ]
1905.11333v3
[ { "index": 2, "records": [ { "column": 1, "dataset": "PhysioNet Challenge 2017", "metric": "ROC-AUC", "model": "MINA", "row": 6, "task": "Atrial Fibrillation Detection", "value": "0.9488" }, { "column": 2, "dataset": "PhysioNet Challenge 2017", "metric": "PR-AUC", "model": "MINA", "row": 6, "task": "Atrial Fibrillation Detection", "value": "0.9436" }, { "column": 3, "dataset": "PhysioNet Challenge 2017", "metric": "F1", "model": "MINA", "row": 6, "task": "Atrial Fibrillation Detection", "value": "0.8342" } ] } ]
1905.11641v2
[ { "index": 3, "records": [ { "column": 1, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "IDeMe-Net", "row": 11, "task": "Few-Shot Image Classification", "value": "59.14" }, { "column": 2, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "IDeMe-Net", "row": 11, "task": "Few-Shot Image Classification", "value": "74.63" } ] } ]
1905.11946v3
[ { "index": 2, "records": [ { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "EfficientNet-B0", "row": 1, "task": "Image Classification", "value": "76.3" }, { "column": 2, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "EfficientNet-B0", "row": 1, "task": "Image Classification", "value": "93.2" }, { "column": 3, "dataset": "ImageNet", "metric": "Number of params", "model": "EfficientNet-B0", "row": 1, "task": "Image Classification", "value": "5.3M" }, { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "EfficientNet-B1", "row": 4, "task": "Image Classification", "value": "78.8" }, { "column": 2, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "EfficientNet-B1", "row": 4, "task": "Image Classification", "value": "94.4" }, { "column": 3, "dataset": "ImageNet", "metric": "Number of params", "model": "EfficientNet-B1", "row": 4, "task": "Image Classification", "value": "7.8M" }, { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "EfficientNet-B2", "row": 9, "task": "Image Classification", "value": "79.8" }, { "column": 2, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "EfficientNet-B2", "row": 9, "task": "Image Classification", "value": "94.9" }, { "column": 3, "dataset": "ImageNet", "metric": "Number of params", "model": "EfficientNet-B2", "row": 9, "task": "Image Classification", "value": "9.2M" }, { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "EfficientNet-B3", "row": 12, "task": "Image Classification", "value": "81.1" }, { "column": 2, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "EfficientNet-B3", "row": 12, "task": "Image Classification", "value": "95.5" }, { "column": 3, "dataset": "ImageNet", "metric": "Number of params", "model": "EfficientNet-B3", "row": 12, "task": "Image Classification", "value": "12M" }, { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "EfficientNet-B4", "row": 15, "task": "Image Classification", "value": "82.6" }, { "column": 2, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "EfficientNet-B4", "row": 15, "task": "Image Classification", "value": "96.3" }, { "column": 3, "dataset": "ImageNet", "metric": "Number of params", "model": "EfficientNet-B4", "row": 15, "task": "Image Classification", "value": "19M" }, { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "EfficientNet-B5", "row": 20, "task": "Image Classification", "value": "83.3" }, { "column": 2, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "EfficientNet-B5", "row": 20, "task": "Image Classification", "value": "96.7" }, { "column": 3, "dataset": "ImageNet", "metric": "Number of params", "model": "EfficientNet-B5", "row": 20, "task": "Image Classification", "value": "30M" }, { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "EfficientNet-B6", "row": 22, "task": "Image Classification", "value": "84" }, { "column": 2, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "EfficientNet-B6", "row": 22, "task": "Image Classification", "value": "96.9" }, { "column": 3, "dataset": "ImageNet", "metric": "Number of params", "model": "EfficientNet-B6", "row": 22, "task": "Image Classification", "value": "43M" }, { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "EfficientNet-B7", "row": 23, "task": "Image Classification", "value": "84.4" }, { "column": 2, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "EfficientNet-B7", "row": 23, "task": "Image Classification", "value": "97.1" }, { "column": 3, "dataset": "ImageNet", "metric": "Number of params", "model": "EfficientNet-B7", "row": 23, "task": "Image Classification", "value": "66M" } ] }, { "index": 6, "records": [ { "column": 11, "dataset": "CIFAR-10", "metric": "Percentage correct", "model": "EfficientNet-B7", "row": 2, "task": "Image Classification", "value": "98.9" }, { "column": 11, "dataset": "CIFAR-100", "metric": "Percentage correct", "model": "EfficientNet-B7", "row": 3, "task": "Image Classification", "value": "91.7" }, { "column": 11, "dataset": "Birdsnap", "metric": "Accuracy", "model": "EfficientNet-B7", "row": 4, "task": "Fine-Grained Image Classification", "value": "84.3" }, { "column": 11, "dataset": "Stanford Cars", "metric": "Accuracy", "model": "EfficientNet-B7", "row": 5, "task": "Fine-Grained Image Classification", "value": "94.7" }, { "column": 11, "dataset": "Flowers-102", "metric": "Accuracy", "model": "EfficientNet-B7", "row": 6, "task": "Image Classification", "value": "98.8" }, { "column": 11, "dataset": "FGVC Aircraft", "metric": "Accuracy", "model": "EfficientNet-B7", "row": 7, "task": "Fine-Grained Image Classification", "value": "92.9" }, { "column": 11, "dataset": "Oxford-IIIT Pets", "metric": "Accuracy", "model": "EfficientNet-B7", "row": 8, "task": "Fine-Grained Image Classification", "value": "95.4" }, { "column": 11, "dataset": "Food-101", "metric": "Accuracy", "model": "EfficientNet-B7", "row": 9, "task": "Fine-Grained Image Classification", "value": "93.0" } ] } ]
1905.12265v3
[ { "index": 0, "records": [ { "column": 2, "dataset": "BBBP", "metric": "AUC", "model": "ContextPred", "row": 14, "task": "Drug Discovery", "value": "0.687" }, { "column": 3, "dataset": "Tox21", "metric": "AUC", "model": "ContextPred", "row": 14, "task": "Drug Discovery", "value": "0.7809999999999999" }, { "column": 4, "dataset": "ToxCast", "metric": "AUC", "model": "ContextPred", "row": 14, "task": "Drug Discovery", "value": "0.657" }, { "column": 5, "dataset": "SIDER", "metric": "AUC", "model": "ContextPred", "row": 14, "task": "Drug Discovery", "value": "0.627" }, { "column": 6, "dataset": "ClinTox", "metric": "AUC", "model": "ContextPred", "row": 14, "task": "Drug Discovery", "value": "0.726" }, { "column": 7, "dataset": "MUV", "metric": "AUC", "model": "ContextPred", "row": 14, "task": "Drug Discovery", "value": "0.813" }, { "column": 8, "dataset": "HIV dataset", "metric": "AUC", "model": "ContextPred", "row": 14, "task": "Drug Discovery", "value": "0.799" }, { "column": 9, "dataset": "BACE", "metric": "AUC", "model": "ContextPred", "row": 14, "task": "Drug Discovery", "value": "0.845" } ] } ]
1905.13209v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "Charades", "metric": "MAP", "model": "AssembleNet", "row": 12, "task": "Action Classification", "value": "51.6" } ] }, { "index": 1, "records": [ { "column": 3, "dataset": "Moments in Time", "metric": "Top 5 Accuracy", "model": "AssembleNet", "row": 9, "task": "Action Classification", "value": "57.38" } ] } ]
1905.13639v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "InterBioScreen", "metric": "Validity", "model": "Scaffold-based (MW)", "row": 2, "task": "Molecular Graph Generation", "value": "98.3" }, { "column": 2, "dataset": "InterBioScreen", "metric": "Uniqueness", "model": "Scaffold-based (MW)", "row": 2, "task": "Molecular Graph Generation", "value": "83.2" }, { "column": 3, "dataset": "InterBioScreen", "metric": "Novelty", "model": "Scaffold-based (MW)", "row": 2, "task": "Molecular Graph Generation", "value": "98.7" } ] } ]
1906.00095v1
[ { "index": 1, "records": [ { "column": 2, "dataset": "MR", "metric": "Accuracy", "model": "STM+TSED+PT+2L", "row": 17, "task": "Sentiment Analysis", "value": "80.09" }, { "column": 3, "dataset": "SST-5 Fine-grained classification", "metric": "Accuracy", "model": "STM+TSED+PT+2L", "row": 17, "task": "Sentiment Analysis", "value": "49.14" }, { "column": 4, "dataset": "SST-2 Binary classification", "metric": "Accuracy", "model": "STM+TSED+PT+2L", "row": 17, "task": "Sentiment Analysis", "value": "86.95" }, { "column": 5, "dataset": "SUBJ", "metric": "Accuracy", "model": "STM+TSED+PT+2L", "row": 17, "task": "Subjectivity Analysis", "value": "92.34" }, { "column": 6, "dataset": "TREC-6", "metric": "Error", "model": "STM+TSED+PT+2L", "row": 17, "task": "Text Classification", "value": "7.04" }, { "column": 7, "dataset": "CR", "metric": "Accuracy", "model": "STM+TSED+PT+2L", "row": 17, "task": "Sentiment Analysis", "value": "82.73" }, { "column": 8, "dataset": "MPQA", "metric": "Accuracy", "model": "STM+TSED+PT+2L", "row": 17, "task": "Sentiment Analysis", "value": "89.83" } ] } ]
1906.00513v3
[ { "index": 0, "records": [ { "column": 4, "dataset": "VQA v2 test-std", "metric": "Accuracy", "model": "Caption VQA", "row": 8, "task": "Visual Question Answering", "value": "69.66" } ] } ]
1906.00562v2
[ { "index": 0, "records": [ { "column": 3, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "LST", "row": 12, "task": "Few-Shot Image Classification", "value": "70.1" }, { "column": 4, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "LST", "row": 12, "task": "Few-Shot Image Classification", "value": "78.7" }, { "column": 3, "dataset": "Tiered ImageNet 5-way (1-shot)", "metric": "Accuracy", "model": "LST", "row": 19, "task": "Few-Shot Image Classification", "value": "77.7" }, { "column": 4, "dataset": "Tiered ImageNet 5-way (5-shot)", "metric": "Accuracy", "model": "LST", "row": 19, "task": "Few-Shot Image Classification", "value": "85.2" } ] } ]
1906.01277v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "MUTAG", "metric": "Accuracy", "model": "WWL", "row": 5, "task": "Graph Classification", "value": "87.27" }, { "column": 2, "dataset": "PTC", "metric": "Accuracy", "model": "WWL", "row": 5, "task": "Graph Classification", "value": "66.31" }, { "column": 3, "dataset": "NCI1", "metric": "Accuracy", "model": "WWL", "row": 5, "task": "Graph Classification", "value": "85.75" }, { "column": 4, "dataset": "PROTEINS", "metric": "Accuracy", "model": "WWL", "row": 5, "task": "Graph Classification", "value": "74.28" }, { "column": 5, "dataset": "D&D", "metric": "Accuracy", "model": "WWL", "row": 5, "task": "Graph Classification", "value": "79.69" }, { "column": 6, "dataset": "ENZYMES", "metric": "Accuracy", "model": "WWL", "row": 5, "task": "Graph Classification", "value": "59.13" } ] } ]
1906.01308v1
[ { "index": 2, "records": [ { "column": 3, "dataset": "Market-1501", "metric": "Rank-1", "model": "Dispersion based Clustering", "row": 10, "task": "Unsupervised Person Re-Identification", "value": "69.2" }, { "column": 4, "dataset": "Market-1501", "metric": "Rank-5", "model": "Dispersion based Clustering", "row": 10, "task": "Person Re-Identification", "value": "83" }, { "column": 5, "dataset": "Market-1501", "metric": "Rank-10", "model": "Dispersion based Clustering", "row": 10, "task": "Person Re-Identification", "value": "87.8" }, { "column": 6, "dataset": "Market-1501", "metric": "MAP", "model": "Dispersion based Clustering", "row": 10, "task": "Person Re-Identification", "value": "41.3" }, { "column": 7, "dataset": "DukeMTMC-reID", "metric": "Rank-1", "model": "Dispersion based Clustering", "row": 10, "task": "Person Re-Identification", "value": "51.5" }, { "column": 8, "dataset": "DukeMTMC-reID", "metric": "Rank-5", "model": "Dispersion based Clustering", "row": 10, "task": "Person Re-Identification", "value": "64.6" }, { "column": 9, "dataset": "DukeMTMC-reID", "metric": "Rank-10", "model": "Dispersion based Clustering", "row": 10, "task": "Person Re-Identification", "value": "70.1" }, { "column": 10, "dataset": "DukeMTMC-reID", "metric": "MAP", "model": "Dispersion based Clustering", "row": 10, "task": "Person Re-Identification", "value": "30" } ] } ]
1906.01637v1
[ { "index": 1, "records": [ { "column": 11, "dataset": "Declicious", "metric": "Hits@10", "model": "TransCF", "row": 1, "task": "Recommendation Systems", "value": "0.2586" }, { "column": 11, "dataset": "Declicious", "metric": "Hits@20", "model": "TransCF", "row": 2, "task": "Recommendation Systems", "value": "0.3786" }, { "column": 11, "dataset": "Declicious", "metric": "nDCG@10", "model": "TransCF", "row": 3, "task": "Recommendation Systems", "value": "0.1475" }, { "column": 11, "dataset": "Declicious", "metric": "nDCG@20", "model": "TransCF", "row": 4, "task": "Recommendation Systems", "value": "0.1781" }, { "column": 11, "dataset": "Tradesy", "metric": "Hits@10", "model": "TransCF", "row": 5, "task": "Recommendation Systems", "value": "0.3198" }, { "column": 11, "dataset": "Tradesy", "metric": "Hits@20", "model": "TransCF", "row": 6, "task": "Recommendation Systems", "value": "0.4505" }, { "column": 11, "dataset": "Tradesy", "metric": "nDCG@10", "model": "TransCF", "row": 7, "task": "Recommendation Systems", "value": "0.1767" }, { "column": 11, "dataset": "Tradesy", "metric": "nDCG@20", "model": "TransCF", "row": 8, "task": "Recommendation Systems", "value": "0.2095" }, { "column": 11, "dataset": "Ciao", "metric": "Hits@10", "model": "TransCF", "row": 9, "task": "Recommendation Systems", "value": "0.2292" }, { "column": 11, "dataset": "Ciao", "metric": "Hits@20", "model": "TransCF", "row": 10, "task": "Recommendation Systems", "value": "0.374" }, { "column": 11, "dataset": "Ciao", "metric": "nDCG@10", "model": "TransCF", "row": 11, "task": "Recommendation Systems", "value": "0.1167" }, { "column": 11, "dataset": "Ciao", "metric": "nDCG@20", "model": "TransCF", "row": 12, "task": "Recommendation Systems", "value": "0.1525" }, { "column": 11, "dataset": "Book-Crossing", "metric": "Hits@10", "model": "TransCF", "row": 13, "task": "Recommendation Systems", "value": "0.3329" }, { "column": 11, "dataset": "Book-Crossing", "metric": "Hits@20", "model": "TransCF", "row": 14, "task": "Recommendation Systems", "value": "0.4744" }, { "column": 11, "dataset": "Book-Crossing", "metric": "nDCG@10", "model": "TransCF", "row": 15, "task": "Recommendation Systems", "value": "0.1865" }, { "column": 11, "dataset": "Book-Crossing", "metric": "nDCG@20", "model": "TransCF", "row": 16, "task": "Recommendation Systems", "value": "0.2221" }, { "column": 11, "dataset": "Amazon C&A", "metric": "Hits@10", "model": "TransCF", "row": 17, "task": "Recommendation Systems", "value": "0.3436" }, { "column": 11, "dataset": "Amazon C&A", "metric": "Hits@20", "model": "TransCF", "row": 18, "task": "Recommendation Systems", "value": "0.4658" }, { "column": 11, "dataset": "Amazon C&A", "metric": "nDCG@10", "model": "TransCF", "row": 19, "task": "Recommendation Systems", "value": "0.2019" }, { "column": 11, "dataset": "Amazon C&A", "metric": "nDCG@20", "model": "TransCF", "row": 20, "task": "Recommendation Systems", "value": "0.2323" }, { "column": 11, "dataset": "Pinterest", "metric": "Hits@10", "model": "TransCF", "row": 21, "task": "Recommendation Systems", "value": "0.5504" }, { "column": 11, "dataset": "Pinterest", "metric": "Hits@20", "model": "TransCF", "row": 22, "task": "Recommendation Systems", "value": "0.8108" }, { "column": 11, "dataset": "Pinterest", "metric": "nDCG@10", "model": "TransCF", "row": 23, "task": "Recommendation Systems", "value": "0.258" }, { "column": 11, "dataset": "Pinterest", "metric": "nDCG@20", "model": "TransCF", "row": 24, "task": "Recommendation Systems", "value": "0.3242" }, { "column": 11, "dataset": "Flixster", "metric": "Hits@10", "model": "TransCF", "row": 25, "task": "Recommendation Systems", "value": "0.7309" }, { "column": 11, "dataset": "Flixster", "metric": "Hits@20", "model": "TransCF", "row": 26, "task": "Recommendation Systems", "value": "0.8374" }, { "column": 11, "dataset": "Flixster", "metric": "nDCG@10", "model": "TransCF", "row": 27, "task": "Recommendation Systems", "value": "0.4986" }, { "column": 11, "dataset": "Flixster", "metric": "nDCG@20", "model": "TransCF", "row": 28, "task": "Recommendation Systems", "value": "0.5257" } ] } ]
1906.01796v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "BRATS 2018 val", "metric": "Dice Score", "model": "OM-Net + CGAp", "row": 12, "task": "Brain Tumor Segmentation", "value": "91.59" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "BRATS-2015", "metric": "Dice Score", "model": "OM-Net + CGAp", "row": 5, "task": "Brain Tumor Segmentation", "value": "87" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "BRATS-2017 val", "metric": "Dice Score", "model": "OM-Net + CGAp", "row": 8, "task": "Brain Tumor Segmentation", "value": "90.71" } ] } ]
1906.02192v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "EUR-Lex", "metric": "RP@5", "model": "bert-base", "row": 13, "task": "Multi-Label Text Classification", "value": "79.6" }, { "column": 2, "dataset": "EUR-Lex", "metric": "nDCG@5", "model": "bert-base", "row": 13, "task": "Multi-Label Text Classification", "value": "82.3" }, { "column": 3, "dataset": "EUR-Lex", "metric": "Micro F1", "model": "bert-base", "row": 13, "task": "Multi-Label Text Classification", "value": "73.2" } ] } ]
1906.02319v1
[ { "index": 4, "records": [ { "column": 1, "dataset": "Facebook", "metric": "Accuracy", "model": "DEMO-Net(weight)", "row": 9, "task": "Node Classification", "value": "91.9" }, { "column": 2, "dataset": "Wiki-Vote", "metric": "Accuracy", "model": "DEMO-Net(weight)", "row": 9, "task": "Node Classification", "value": "99.8" }, { "column": 3, "dataset": "BlogCatalog", "metric": "Accuracy", "model": "DEMO-Net(weight)", "row": 9, "task": "Node Classification", "value": "84.9" }, { "column": 4, "dataset": "Flickr", "metric": "Accuracy", "model": "DEMO-Net(weight)", "row": 9, "task": "Node Classification", "value": "65.6" }, { "column": 5, "dataset": "Brazil Air-Traffic", "metric": "Accuracy", "model": "DEMO-Net(weight)", "row": 9, "task": "Node Classification", "value": "54.3" }, { "column": 6, "dataset": "Europe Air-Traffic", "metric": "Accuracy", "model": "DEMO-Net(weight)", "row": 9, "task": "Node Classification", "value": "45.9" }, { "column": 7, "dataset": "USA Air-Traffic", "metric": "Accuracy", "model": "DEMO-Net(weight)", "row": 9, "task": "Node Classification", "value": "64.7" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "MUTAG", "metric": "Accuracy", "model": "DEMO-Net(weight)", "row": 8, "task": "Graph Classification", "value": "81.4" }, { "column": 2, "dataset": "PTC", "metric": "Accuracy", "model": "DEMO-Net(weight)", "row": 8, "task": "Graph Classification", "value": "57.2" }, { "column": 3, "dataset": "PROTEINS", "metric": "Accuracy", "model": "DEMO-Net(weight)", "row": 8, "task": "Graph Classification", "value": "70.8" }, { "column": 4, "dataset": "ENZYMES", "metric": "Accuracy", "model": "DEMO-Net(weight)", "row": 8, "task": "Graph Classification", "value": "27.2" } ] } ]
1906.02361v1
[ { "index": 2, "records": [ { "column": 1, "dataset": "CommonsenseQA", "metric": "Accuracy", "model": "CAGE-reasoning", "row": 4, "task": "Common Sense Reasoning", "value": "64.7" } ] } ]
1906.02829v1
[ { "index": 1, "records": [ { "column": 9, "dataset": "RCV1", "metric": "P@1", "model": "NLP-Cap", "row": 1, "task": "Text Classification", "value": "97.05" }, { "column": 9, "dataset": "RCV1", "metric": "P@3", "model": "NLP-Cap", "row": 2, "task": "Text Classification", "value": "81.27" }, { "column": 9, "dataset": "RCV1", "metric": "P@5", "model": "NLP-Cap", "row": 3, "task": "Text Classification", "value": "56.33" }, { "column": 9, "dataset": "RCV1", "metric": "nDCG@1", "model": "NLP-Cap", "row": 4, "task": "Text Classification", "value": "97.05" }, { "column": 9, "dataset": "RCV1", "metric": "nDCG@3", "model": "NLP-Cap", "row": 5, "task": "Text Classification", "value": "92.47" }, { "column": 9, "dataset": "RCV1", "metric": "nDCG@5", "model": "NLP-Cap", "row": 6, "task": "Text Classification", "value": "93.11" }, { "column": 9, "dataset": "EUR-Lex", "metric": "P@1", "model": "NLP-Cap", "row": 7, "task": "Multi-Label Text Classification", "value": "80.2" }, { "column": 9, "dataset": "EUR-Lex", "metric": "P@3", "model": "NLP-Cap", "row": 8, "task": "Multi-Label Text Classification", "value": "65.48" }, { "column": 9, "dataset": "EUR-Lex", "metric": "P@5", "model": "NLP-Cap", "row": 9, "task": "Multi-Label Text Classification", "value": "52.83" }, { "column": 9, "dataset": "EUR-Lex", "metric": "nDCG@1", "model": "NLP-Cap", "row": 10, "task": "Multi-Label Text Classification", "value": "80.2" }, { "column": 9, "dataset": "EUR-Lex", "metric": "nDCG@3", "model": "NLP-Cap", "row": 11, "task": "Multi-Label Text Classification", "value": "71.11" }, { "column": 9, "dataset": "EUR-Lex", "metric": "nDCG@5", "model": "NLP-Cap", "row": 12, "task": "Multi-Label Text Classification", "value": "68.8" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "TrecQA", "metric": "MAP", "model": "NLP-Capsule", "row": 11, "task": "Question Answering", "value": "0.7773" }, { "column": 2, "dataset": "TrecQA", "metric": "MRR", "model": "NLP-Capsule", "row": 11, "task": "Question Answering", "value": "0.7416" } ] } ]
1906.02849v3
[ { "index": 2, "records": [ { "column": 1, "dataset": "CHAOS MRI Dataset", "metric": "Dice Score", "model": "MS-Dual-Guided", "row": 8, "task": "Medical Image Segmentation", "value": "86.75" }, { "column": 2, "dataset": "CHAOS MRI Dataset", "metric": "VS", "model": "MS-Dual-Guided", "row": 8, "task": "Medical Image Segmentation", "value": "93.85" }, { "column": 3, "dataset": "CHAOS MRI Dataset", "metric": "MSD", "model": "MS-Dual-Guided", "row": 8, "task": "Medical Image Segmentation", "value": "66" }, { "column": 1, "dataset": "HSVM", "metric": "Dice Score", "model": "MS-Dual-Guided", "row": 17, "task": "Medical Image Segmentation", "value": "83.2" }, { "column": 2, "dataset": "HSVM", "metric": "VS", "model": "MS-Dual-Guided", "row": 17, "task": "Medical Image Segmentation", "value": "94.45" }, { "column": 3, "dataset": "HSVM", "metric": "MSD", "model": "MS-Dual-Guided", "row": 17, "task": "Medical Image Segmentation", "value": "1.19" }, { "column": 1, "dataset": "BRATS 2018", "metric": "Dice Score", "model": "MS-Dual-Guided", "row": 26, "task": "Brain Tumor Segmentation", "value": "0.8037" }, { "column": 2, "dataset": "BRATS 2018", "metric": "VS", "model": "MS-Dual-Guided", "row": 26, "task": "Brain Tumor Segmentation", "value": "93.08" }, { "column": 3, "dataset": "BRATS 2018", "metric": "MSD", "model": "MS-Dual-Guided", "row": 26, "task": "Brain Tumor Segmentation", "value": "0.9" } ] } ]
1906.03327v2
[ { "index": 3, "records": [ { "column": 19, "dataset": "CrossTask", "metric": "Recall", "model": "Text-Video Embedding", "row": 4, "task": "Temporal Action Localization", "value": "33.6" } ] }, { "index": 4, "records": [ { "column": 2, "dataset": "YouCook2", "metric": "text-to-video R@1", "model": "Text-Video Embedding", "row": 5, "task": "Video Retrieval", "value": "8.2" }, { "column": 3, "dataset": "YouCook2", "metric": "text-to-video R@5", "model": "Text-Video Embedding", "row": 5, "task": "Video Retrieval", "value": "24.5" }, { "column": 4, "dataset": "YouCook2", "metric": "text-to-video R@10", "model": "Text-Video Embedding", "row": 5, "task": "Video Retrieval", "value": "35.3" }, { "column": 5, "dataset": "YouCook2", "metric": "text-to-video Median Rank", "model": "Text-Video Embedding", "row": 5, "task": "Video Retrieval", "value": "24" } ] }, { "index": 5, "records": [ { "column": 2, "dataset": "MSR-VTT", "metric": "text-to-video R@1", "model": "Text-Video Embedding", "row": 10, "task": "Video Retrieval", "value": "14.9" }, { "column": 3, "dataset": "MSR-VTT", "metric": "video-to-text R@5", "model": "Text-Video Embedding", "row": 10, "task": "Video Retrieval", "value": "40.2" }, { "column": 4, "dataset": "MSR-VTT", "metric": "text-to-video R@10", "model": "Text-Video Embedding", "row": 10, "task": "Video Retrieval", "value": "52.8" }, { "column": 5, "dataset": "MSR-VTT", "metric": "text-to-video Median Rank", "model": "Text-Video Embedding", "row": 10, "task": "Video Retrieval", "value": "9" } ] }, { "index": 6, "records": [ { "column": 2, "dataset": "LSMDC", "metric": "text-to-video R@1", "model": "Text-Video Embedding", "row": 9, "task": "Video Retrieval", "value": "7.2" }, { "column": 3, "dataset": "LSMDC", "metric": "text-to-video R@5", "model": "Text-Video Embedding", "row": 10, "task": "Video Retrieval", "value": "19.6" }, { "column": 4, "dataset": "LSMDC", "metric": "text-to-video R@10", "model": "Text-Video Embedding", "row": 10, "task": "Video Retrieval", "value": "27.9" }, { "column": 5, "dataset": "LSMDC", "metric": "text-to-video Median Rank", "model": "Text-Video Embedding", "row": 10, "task": "Video Retrieval", "value": "40" } ] } ]
1906.03502v2
[ { "index": 1, "records": [ { "column": 7, "dataset": "Office-31", "metric": "Average Accuracy", "model": "CADA-P", "row": 14, "task": "Domain Adaptation", "value": "89.5" } ] }, { "index": 2, "records": [ { "column": 13, "dataset": "Office-Home", "metric": "Accuracy", "model": "CADA", "row": 7, "task": "Domain Adaptation", "value": "70.2" } ] }, { "index": 3, "records": [ { "column": 7, "dataset": "ImageCLEF-DA", "metric": "Accuracy", "model": "CADA-P", "row": 9, "task": "Domain Adaptation", "value": "88.3" } ] } ]
1906.03516v2
[ { "index": 2, "records": [ { "column": 2, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "DiCENet", "row": 11, "task": "Image Classification", "value": "75.1" } ] }, { "index": 3, "records": [ { "column": 2, "dataset": "Cityscapes val", "metric": "mIoU", "model": "DiCENet", "row": 10, "task": "Semantic Segmentation", "value": "63.4" } ] }, { "index": 4, "records": [ { "column": 2, "dataset": "PASCAL VOC 2012 val", "metric": "mIoU", "model": "DiCENet", "row": 8, "task": "Semantic Segmentation", "value": "66.5" }, { "column": 2, "dataset": "PASCAL VOC 2012 test", "metric": "Mean IoU", "model": "DiCENet", "row": 9, "task": "Semantic Segmentation", "value": "67.31" } ] }, { "index": 5, "records": [ { "column": 2, "dataset": "PASCAL VOC 2007", "metric": "MAP", "model": "DiCENet-512", "row": 7, "task": "Object Detection", "value": "68.4" } ] } ]
1906.03609v1
[ { "index": 2, "records": [ { "column": 1, "dataset": "PASCAL VOC 2007", "metric": "MAP", "model": "Faster R-CNN (ResNet-101, feature imit)", "row": 5, "task": "Object Detection", "value": "74.4" } ] } ]
1906.03776v2
[ { "index": 2, "records": [ { "column": 1, "dataset": "Avito", "metric": "AUC", "model": "DSTN-I", "row": 11, "task": "Click-Through Rate Prediction", "value": "0.8395" }, { "column": 2, "dataset": "Avito", "metric": "Log Loss", "model": "DSTN-I", "row": 11, "task": "Click-Through Rate Prediction", "value": "0.054479999999999994" } ] } ]
1906.04016v3
[ { "index": 1, "records": [ { "column": 9, "dataset": "PoseTrack2017", "metric": "Mean mAP", "model": "PoseWarper", "row": 11, "task": "Multi-Person Pose Estimation", "value": "77.9" }, { "column": 9, "dataset": "PoseTrack2018", "metric": "Mean mAP", "model": "PoseWarper", "row": 17, "task": "Multi-Person Pose Estimation", "value": "78" } ] } ]
1906.04104v1
[ { "index": 4, "records": [ { "column": 3, "dataset": "MPII Human Pose", "metric": "PCKh-0.5", "model": "Stacked Hourglass Networks", "row": 8, "task": "Pose Estimation", "value": "90.9" } ] } ]
1906.04365v3
[ { "index": 2, "records": [ { "column": 1, "dataset": "Avito", "metric": "AUC", "model": "DeepMCP", "row": 10, "task": "Click-Through Rate Prediction", "value": "0.7927" }, { "column": 2, "dataset": "Avito", "metric": "Log Loss", "model": "DeepMCP", "row": 10, "task": "Click-Through Rate Prediction", "value": "0.05517999999999999" }, { "column": 3, "dataset": "Company*", "metric": "AUC", "model": "DeepMCP", "row": 10, "task": "Click-Through Rate Prediction", "value": "0.7674" }, { "column": 4, "dataset": "Company*", "metric": "Log Loss", "model": "DeepMCP", "row": 10, "task": "Click-Through Rate Prediction", "value": "0.2341" } ] } ]
1906.05571v1
[ { "index": 4, "records": [ { "column": 2, "dataset": "Kinetics-400", "metric": "Top-1 Accuracy", "model": "LGD-3D Two-stream (ResNet-101)", "row": 18, "task": "Action Classification", "value": "81.2" }, { "column": 3, "dataset": "Kinetics-400", "metric": "Top-5 Accuracy", "model": "LGD-3D Two-stream (ResNet-101)", "row": 18, "task": "Action Classification", "value": "95.2" } ] }, { "index": 5, "records": [ { "column": 2, "dataset": "Kinetics-600", "metric": "Top-1 Accuracy", "model": "LGD-3D Two-stream* (ResNet-101)", "row": 15, "task": "Action Classification", "value": "82.7" }, { "column": 3, "dataset": "Kinetics-600", "metric": "Top-5 Accuracy", "model": "LGD-3D Two-stream* (ResNet-101)", "row": 15, "task": "Action Classification", "value": "96" } ] }, { "index": 6, "records": [ { "column": 2, "dataset": "UCF101", "metric": "3-fold Accuracy", "model": "LGD-3D Two-stream", "row": 14, "task": "Action Recognition In Videos", "value": "98.2" }, { "column": 3, "dataset": "HMDB-51", "metric": "Average accuracy of 3 splits", "model": "LGD-3D Two-stream", "row": 14, "task": "Action Recognition In Videos", "value": "80.5" } ] } ]
1906.06618v2
[ { "index": 3, "records": [ { "column": 2, "dataset": "MOT17", "metric": "MOTA", "model": "DeepMOT-Tracktor", "row": 1, "task": "Multi-Object Tracking", "value": "53.7" }, { "column": 2, "dataset": "MOT16", "metric": "MOTA", "model": "DeepMOT-Tracktor", "row": 12, "task": "Multi-Object Tracking", "value": "54.8" } ] }, { "index": 6, "records": [ { "column": 2, "dataset": "2D MOT 2015", "metric": "MOTA", "model": "DeepMOT-Tracktor", "row": 1, "task": "Multi-Object Tracking", "value": "44.1" } ] } ]