arxiv_id
stringlengths
11
12
tables
listlengths
1
11
1809.04184v1
[ { "index": 1, "records": [ { "column": 20, "dataset": "Cityscapes test", "metric": "Mean IoU (class)", "model": "Dense Prediction Cell", "row": 4, "task": "Semantic Segmentation", "value": "82.7" } ] }, { "index": 2, "records": [ { "column": 8, "dataset": "PASCAL-Person-Part", "metric": "mIoU", "model": "DPC", "row": 4, "task": "Human Part Segmentation", "value": "71.34" } ] }, { "index": 3, "records": [ { "column": 21, "dataset": "PASCAL VOC 2012 test", "metric": "Mean IoU", "model": "DPC", "row": 6, "task": "Semantic Segmentation", "value": "87.9" } ] } ]
1809.04427v1
[ { "index": 2, "records": [ { "column": 2, "dataset": "MOT16", "metric": "MOTA", "model": "MOTDT", "row": 9, "task": "Online Multi-Object Tracking", "value": "47.6" } ] } ]
1809.04474v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "Atari-57", "metric": "Medium Human-Normalized Score", "model": "PopArt-IMPALA", "row": 3, "task": "Atari Games", "value": "110.7" }, { "column": 6, "dataset": "Dmlab-30", "metric": "Medium Human-Normalized Score", "model": "PopArt-IMPALA", "row": 3, "task": "Visual Navigation", "value": "72.8%" } ] } ]
1809.04987v3
[ { "index": 1, "records": [ { "column": 16, "dataset": "Human3.6M", "metric": "Average MPJPE (mm)", "model": "Synthetic Occlusion Aug+ Vol Heatmaps", "row": 15, "task": "3D Human Pose Estimation", "value": "54.2" } ] } ]
1809.08545v3
[ { "index": 3, "records": [ { "column": 7, "dataset": "COCO test-dev", "metric": "box AP", "model": "ResNet-50-FPN Mask R-CNN + KL Loss + var voting + soft-NMS", "row": 12, "task": "Object Detection", "value": "40.4" } ] } ]
1809.09478v3
[ { "index": 0, "records": [ { "column": 22, "dataset": "GTAV-to-Cityscapes Labels", "metric": "mIoU", "model": "CLAN", "row": 15, "task": "Synthetic-to-Real Translation", "value": "43.2" } ] } ]
1810.01367v3
[ { "index": 1, "records": [ { "column": 1, "dataset": "UCI POWER", "metric": "NLL", "model": "FFJORD", "row": 3, "task": "Density Estimation", "value": "-0.46" }, { "column": 2, "dataset": "UCI GAS", "metric": "NLL", "model": "FFJORD", "row": 3, "task": "Density Estimation", "value": "-8.59" }, { "column": 3, "dataset": "UCI HEPMASS", "metric": "NLL", "model": "FFJORD", "row": 3, "task": "Density Estimation", "value": "14.92" }, { "column": 4, "dataset": "UCI MINIBOONE", "metric": "NLL", "model": "FFJORD", "row": 3, "task": "Density Estimation", "value": "10.43" }, { "column": 5, "dataset": "BSDS300", "metric": "NLL", "model": "FFJORD", "row": 3, "task": "Density Estimation", "value": "-157.4" }, { "column": 6, "dataset": "MNIST", "metric": "NLL", "model": "FFJORD", "row": 3, "task": "Density Estimation", "value": "0.99" }, { "column": 7, "dataset": "CIFAR-10", "metric": "NLL", "model": "FFJORD", "row": 3, "task": "Density Estimation", "value": "3.4" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "MNIST", "metric": "Negative ELBO", "model": "FFJORD", "row": 5, "task": "Density Estimation", "value": "82.82" }, { "column": 2, "dataset": "OMNIGLOT", "metric": "Negative ELBO", "model": "FFJORD", "row": 5, "task": "Density Estimation", "value": "98.33" }, { "column": 3, "dataset": "Freyfaces", "metric": "Negative ELBO", "model": "FFJORD", "row": 5, "task": "Density Estimation", "value": "4.39" }, { "column": 4, "dataset": "Caltech-101", "metric": "Negative ELBO", "model": "FFJORD", "row": 5, "task": "Density Estimation", "value": "104.03" } ] } ]
1810.04246v2
[ { "index": 1, "records": [ { "column": 1, "dataset": "USPS", "metric": "NMI", "model": "SR-K-means", "row": 3, "task": "Image Clustering", "value": "0.936" }, { "column": 2, "dataset": "USPS", "metric": "Accuracy", "model": "SR-K-means", "row": 3, "task": "Image Clustering", "value": "0.974" }, { "column": 3, "dataset": "MNIST-test", "metric": "NMI", "model": "SR-K-means", "row": 3, "task": "Image Clustering", "value": "0.873" }, { "column": 4, "dataset": "MNIST-test", "metric": "Accuracy", "model": "SR-K-means", "row": 3, "task": "Image Clustering", "value": "0.863" }, { "column": 5, "dataset": "MNIST-full", "metric": "NMI", "model": "SR-K-means", "row": 3, "task": "Image Clustering", "value": "0.866" }, { "column": 6, "dataset": "MNIST-full", "metric": "Accuracy", "model": "SR-K-means", "row": 3, "task": "Image Clustering", "value": "0.939" }, { "column": 7, "dataset": "YouTube Faces DB", "metric": "NMI", "model": "SR-K-means", "row": 3, "task": "Image Clustering", "value": "0.806" }, { "column": 8, "dataset": "YouTube Faces DB", "metric": "Accuracy", "model": "SR-K-means", "row": 3, "task": "Image Clustering", "value": "0.605" }, { "column": 9, "dataset": "CMU-PIE", "metric": "NMI", "model": "SR-K-means", "row": 3, "task": "Image Clustering", "value": "0.945" }, { "column": 10, "dataset": "CMU-PIE", "metric": "Accuracy", "model": "SR-K-means", "row": 3, "task": "Image Clustering", "value": "0.902" }, { "column": 11, "dataset": "FRGC", "metric": "NMI", "model": "SR-K-means", "row": 3, "task": "Image Clustering", "value": "0.487" }, { "column": 12, "dataset": "FRGC", "metric": "Accuracy", "model": "SR-K-means", "row": 3, "task": "Image Clustering", "value": "0.413" } ] } ]
1810.04805v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "Quora Question Pairs", "metric": "Accuracy", "model": "BERT (single model)", "row": 6, "task": "Question Answering", "value": "72.1" } ] }, { "index": 1, "records": [ { "column": 4, "dataset": "SQuAD1.1 dev", "metric": "F1", "model": "BERT base (single)", "row": 8, "task": "Question Answering", "value": "88.5" }, { "column": 1, "dataset": "SQuAD1.1 dev", "metric": "EM", "model": "BERT base (single)", "row": 10, "task": "Question Answering", "value": "80.8" }, { "column": 1, "dataset": "SQuAD1.1 dev", "metric": "EM", "model": "BERT large (single)", "row": 11, "task": "Question Answering", "value": "84.1" }, { "column": 2, "dataset": "SQuAD1.1 dev", "metric": "F1", "model": "BERT large (single)", "row": 11, "task": "Question Answering", "value": "90.9" }, { "column": 1, "dataset": "SQuAD1.1 dev", "metric": "EM", "model": "BERT large (+TriviaQA)", "row": 13, "task": "Question Answering", "value": "84.2" }, { "column": 2, "dataset": "SQuAD1.1 dev", "metric": "F1", "model": "BERT large (+TriviaQA)", "row": 13, "task": "Question Answering", "value": "91.1" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "SQuAD2.0 dev", "metric": "EM", "model": "BERT large", "row": 10, "task": "Question Answering", "value": "78.7" }, { "column": 2, "dataset": "SQuAD2.0 dev", "metric": "F1", "model": "BERT large", "row": 10, "task": "Question Answering", "value": "81.9" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "SWAG", "metric": "Dev", "model": "BERT Base", "row": 4, "task": "Common Sense Reasoning", "value": "81.6" }, { "column": 1, "dataset": "SWAG", "metric": "Dev", "model": "BERT Large", "row": 5, "task": "Common Sense Reasoning", "value": "86.6" }, { "column": 2, "dataset": "SWAG", "metric": "Test", "model": "BERT Large", "row": 5, "task": "Common Sense Reasoning", "value": "86.3" } ] }, { "index": 6, "records": [ { "column": 2, "dataset": "CoNLL 2003 (English)", "metric": "F1", "model": "BERT Large", "row": 5, "task": "Named Entity Recognition", "value": "92.8" }, { "column": 2, "dataset": "CoNLL 2003 (English)", "metric": "F1", "model": "BERT Base", "row": 6, "task": "Named Entity Recognition", "value": "92.4" } ] } ]
1810.09155v2
[ { "index": 1, "records": [ { "column": 1, "dataset": "MUTAG", "metric": "Accuracy", "model": "SF + RFC", "row": 6, "task": "Graph Classification", "value": "88.4" }, { "column": 2, "dataset": "PTC", "metric": "Accuracy", "model": "SF + RFC", "row": 6, "task": "Graph Classification", "value": "62.8" }, { "column": 3, "dataset": "ENZYMES", "metric": "Accuracy", "model": "SF + RFC", "row": 6, "task": "Graph Classification", "value": "43.7" }, { "column": 4, "dataset": "PROTEINS", "metric": "Accuracy", "model": "SF + RFC", "row": 6, "task": "Graph Classification", "value": "73.6" }, { "column": 5, "dataset": "D&D", "metric": "Accuracy", "model": "SF + RFC", "row": 6, "task": "Graph Classification", "value": "24.6" }, { "column": 6, "dataset": "NCI1", "metric": "Accuracy", "model": "SF + RFC", "row": 6, "task": "Graph Classification", "value": "75.2" } ] } ]
1810.09502v3
[ { "index": 0, "records": [ { "column": 1, "dataset": "OMNIGLOT - 1-Shot, 20-way", "metric": "Accuracy", "model": "MAML++", "row": 11, "task": "Few-Shot Image Classification", "value": "97.65" }, { "column": 2, "dataset": "OMNIGLOT - 5-Shot, 20-way", "metric": "Accuracy", "model": "MAML++", "row": 11, "task": "Few-Shot Image Classification", "value": "99.33" } ] }, { "index": 1, "records": [ { "column": 2, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "MAML++", "row": 12, "task": "Few-Shot Image Classification", "value": "52.40" }, { "column": 3, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "MAML++", "row": 12, "task": "Few-Shot Image Classification", "value": "67.15" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "OMNIGLOT - 1-Shot, 5-way", "metric": "Accuracy", "model": "MAML++", "row": 11, "task": "Few-Shot Image Classification", "value": "99.47" }, { "column": 2, "dataset": "OMNIGLOT - 5-Shot, 5-way", "metric": "Accuracy", "model": "MAML++", "row": 11, "task": "Few-Shot Image Classification", "value": "99.85" } ] } ]
1810.11921v2
[ { "index": 1, "records": [ { "column": 2, "dataset": "Criteo", "metric": "AUC", "model": "AutoInt", "row": 10, "task": "Click-Through Rate Prediction", "value": "0.8061" }, { "column": 3, "dataset": "Criteo", "metric": "Log Loss", "model": "AutoInt", "row": 10, "task": "Click-Through Rate Prediction", "value": "0.4454" }, { "column": 4, "dataset": "Avazu", "metric": "AUC", "model": "AutoInt", "row": 10, "task": "Click-Through Rate Prediction", "value": "0.7752" }, { "column": 5, "dataset": "Avazu", "metric": "LogLoss", "model": "AutoInt", "row": 10, "task": "Click-Through Rate Prediction", "value": "0.3823" }, { "column": 6, "dataset": "KDD12", "metric": "AUC", "model": "AutoInt", "row": 10, "task": "Click-Through Rate Prediction", "value": "0.7881" }, { "column": 7, "dataset": "KDD12", "metric": "Log Loss", "model": "AutoInt", "row": 10, "task": "Click-Through Rate Prediction", "value": "0.1545" }, { "column": 8, "dataset": "MovieLens 1M", "metric": "AUC", "model": "AutoInt", "row": 10, "task": "Click-Through Rate Prediction", "value": "0.846" }, { "column": 9, "dataset": "MovieLens 1M", "metric": "Log Loss", "model": "AutoInt", "row": 10, "task": "Click-Through Rate Prediction", "value": "0.3784" } ] } ]
1810.12575v1
[ { "index": 0, "records": [ { "column": 3, "dataset": "Urban100 sigma25", "metric": "PSNR", "model": "N3Net", "row": 7, "task": "Grayscale Image Denoising", "value": "30.19" }, { "column": 4, "dataset": "Urban100 sigma25", "metric": "SSIM", "model": "N3Net", "row": 7, "task": "Grayscale Image Denoising", "value": "0.892" } ] }, { "index": 2, "records": [ { "column": 9, "dataset": "Set12 sigma25", "metric": "PSNR", "model": "N3Net", "row": 1, "task": "Grayscale Image Denoising", "value": "30.55" }, { "column": 9, "dataset": "Set12 sigma50", "metric": "PSNR", "model": "N3Net", "row": 2, "task": "Grayscale Image Denoising", "value": "27.43" }, { "column": 9, "dataset": "Set12 sigma70", "metric": "PSNR", "model": "N3Net", "row": 3, "task": "Grayscale Image Denoising", "value": "25.9" }, { "column": 9, "dataset": "BSD68 sigma25", "metric": "PSNR", "model": "N3Net", "row": 4, "task": "Grayscale Image Denoising", "value": "29.3" }, { "column": 9, "dataset": "BSD68 sigma50", "metric": "PSNR", "model": "N3Net", "row": 5, "task": "Grayscale Image Denoising", "value": "26.39" }, { "column": 9, "dataset": "BSD68 sigma70", "metric": "PSNR", "model": "N3Net", "row": 6, "task": "Grayscale Image Denoising", "value": "25.14" }, { "column": 9, "dataset": "Urban100 sigma50", "metric": "PSNR", "model": "N3Net", "row": 8, "task": "Grayscale Image Denoising", "value": "26.82" }, { "column": 9, "dataset": "Urban100 sigma70", "metric": "PSNR", "model": "N3Net", "row": 9, "task": "Grayscale Image Denoising", "value": "25.15" } ] }, { "index": 4, "records": [ { "column": 7, "dataset": "Set5 - 2x upscaling", "metric": "PSNR", "model": "N3Net", "row": 1, "task": "Image Super-Resolution", "value": "37.57" }, { "column": 7, "dataset": "Set5 - 3x upscaling", "metric": "PSNR", "model": "N3Net", "row": 2, "task": "Image Super-Resolution", "value": "33.84" }, { "column": 7, "dataset": "Set5 - 4x upscaling", "metric": "PSNR", "model": "N3Net", "row": 3, "task": "Image Super-Resolution", "value": "31.5" } ] } ]
1810.12894v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "Atari 2600 Gravitar", "metric": "Score", "model": "RND", "row": 1, "task": "Atari Games", "value": "3906" }, { "column": 2, "dataset": "Atari 2600 Montezuma's Revenge", "metric": "Score", "model": "RND", "row": 1, "task": "Atari Games", "value": "8152" }, { "column": 3, "dataset": "Atari 2600 Pitfall!", "metric": "Score", "model": "RND", "row": 1, "task": "Atari Games", "value": "-3" }, { "column": 4, "dataset": "Atari 2600 Private Eye", "metric": "Score", "model": "RND", "row": 1, "task": "Atari Games", "value": "8666" }, { "column": 5, "dataset": "Atari 2600 Solaris", "metric": "Score", "model": "RND", "row": 1, "task": "Atari Games", "value": "3282" }, { "column": 6, "dataset": "Atari 2600 Venture", "metric": "Score", "model": "RND", "row": 1, "task": "Atari Games", "value": "1859" } ] } ]
1811.00270v1
[ { "index": 0, "records": [ { "column": 9, "dataset": "BIT", "metric": "Accuracy", "model": "H-LSTCM", "row": 13, "task": "Human Interaction Recognition", "value": "94.03" } ] }, { "index": 1, "records": [ { "column": 7, "dataset": "UT", "metric": "Accuracy", "model": "H-LSTCM", "row": 18, "task": "Human Interaction Recognition", "value": "98.33" } ] }, { "index": 2, "records": [ { "column": 6, "dataset": "Collective Activity", "metric": "Accuracy", "model": "H-LSTCM", "row": 20, "task": "Group Activity Recognition", "value": "83.75" } ] }, { "index": 3, "records": [ { "column": 9, "dataset": "Volleyball", "metric": "Accuracy", "model": "H-LSTCM", "row": 10, "task": "Group Activity Recognition", "value": "88.4" } ] } ]
1811.00706v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "SNLI", "metric": "% Test Accuracy", "model": "Bi-LSTM sentence encoder (max-pooling)", "row": 18, "task": "Natural Language Inference", "value": "84.5" }, { "column": 2, "dataset": "MultiNLI", "metric": "Matched", "model": "Bi-LSTM sentence encoder (max-pooling)", "row": 18, "task": "Natural Language Inference", "value": "70.7" }, { "column": 3, "dataset": "MultiNLI", "metric": "Mismatched", "model": "Bi-LSTM sentence encoder (max-pooling)", "row": 18, "task": "Natural Language Inference", "value": "71.1" }, { "column": 1, "dataset": "SNLI", "metric": "% Test Accuracy", "model": "Stacked Bi-LSTMs (shortcut connections, max-pooling)", "row": 22, "task": "Natural Language Inference", "value": "84.8" }, { "column": 2, "dataset": "MultiNLI", "metric": "Matched", "model": "Stacked Bi-LSTMs (shortcut connections, max-pooling)", "row": 22, "task": "Natural Language Inference", "value": "71.4" }, { "column": 3, "dataset": "MultiNLI", "metric": "Mismatched", "model": "Stacked Bi-LSTMs (shortcut connections, max-pooling)", "row": 22, "task": "Natural Language Inference", "value": "72.2" }, { "column": 1, "dataset": "SNLI", "metric": "% Test Accuracy", "model": "Stacked Bi-LSTMs (shortcut connections, max-pooling, attention)", "row": 24, "task": "Natural Language Inference", "value": "84.4" }, { "column": 2, "dataset": "MultiNLI", "metric": "Matched", "model": "Stacked Bi-LSTMs (shortcut connections, max-pooling, attention)", "row": 24, "task": "Natural Language Inference", "value": "70.7" }, { "column": 3, "dataset": "MultiNLI", "metric": "Mismatched", "model": "Stacked Bi-LSTMs (shortcut connections, max-pooling, attention)", "row": 24, "task": "Natural Language Inference", "value": "70.5" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "FNC-1", "metric": "Weighted Accuracy", "model": "Bi-LSTM (max-pooling, attention)", "row": 17, "task": "Fake News Detection", "value": "82.23" }, { "column": 2, "dataset": "FNC-1", "metric": "Per-class Accuracy (Unrelated)", "model": "Bi-LSTM (max-pooling, attention)", "row": 17, "task": "Fake News Detection", "value": "96.74" }, { "column": 3, "dataset": "FNC-1", "metric": "Per-class Accuracy (Discuss)", "model": "Bi-LSTM (max-pooling, attention)", "row": 17, "task": "Fake News Detection", "value": "81.52" }, { "column": 4, "dataset": "FNC-1", "metric": "Per-class Accuracy (Agree)", "model": "Bi-LSTM (max-pooling, attention)", "row": 17, "task": "Fake News Detection", "value": "51.34" }, { "column": 5, "dataset": "FNC-1", "metric": "Per-class Accuracy (Disagree)", "model": "Bi-LSTM (max-pooling, attention)", "row": 17, "task": "Fake News Detection", "value": "10.33" } ] } ]
1811.00839v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "Wiki-Vote", "metric": "AUC", "model": "Asymmetric Transitivity Preservation", "row": 9, "task": "Link Prediction", "value": "94.81" }, { "column": 3, "dataset": "Cit-HepPH", "metric": "AUC", "model": "Asymmetric Transitivity Preservation", "row": 9, "task": "Link Prediction", "value": "89.16" }, { "column": 4, "dataset": "Gnutella", "metric": "AUC", "model": "Asymmetric Transitivity Preservation", "row": 9, "task": "Link Prediction", "value": "93.14" } ] } ]
1811.00937v2
[ { "index": 4, "records": [ { "column": 1, "dataset": "CommonsenseQA", "metric": "Accuracy", "model": "BERT-LARGE", "row": 6, "task": "Common Sense Reasoning", "value": "55.9" } ] } ]
1811.04441v2
[ { "index": 2, "records": [ { "column": 1, "dataset": "FB15k-237", "metric": "Hits@10", "model": "Structure-Aware Convolutional Networks", "row": 8, "task": "Link Prediction", "value": "0.54" }, { "column": 2, "dataset": "FB15k-237", "metric": "Hits@3", "model": "Structure-Aware Convolutional Networks", "row": 8, "task": "Link Prediction", "value": "0.39" }, { "column": 3, "dataset": "FB15k-237", "metric": "Hits@1", "model": "Structure-Aware Convolutional Networks", "row": 8, "task": "Link Prediction", "value": "0.26" }, { "column": 4, "dataset": "FB15k-237", "metric": "MRR", "model": "Structure-Aware Convolutional Networks", "row": 8, "task": "Link Prediction", "value": "0.35" }, { "column": 5, "dataset": "WN18RR", "metric": "Hits@10", "model": "Structure-Aware Convolutional Networks", "row": 8, "task": "Link Prediction", "value": "0.54" }, { "column": 6, "dataset": "WN18RR", "metric": "Hits@3", "model": "Structure-Aware Convolutional Networks", "row": 8, "task": "Link Prediction", "value": "0.48" }, { "column": 7, "dataset": "WN18RR", "metric": "Hits@1", "model": "Structure-Aware Convolutional Networks", "row": 8, "task": "Link Prediction", "value": "0.43" }, { "column": 8, "dataset": "WN18RR", "metric": "MRR", "model": "Structure-Aware Convolutional Networks", "row": 8, "task": "Link Prediction", "value": "0.47" } ] } ]
1811.04588v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "YAGO39K", "metric": "MRR", "model": "TransC (bern)", "row": 11, "task": "Link Prediction", "value": "0.11199999999999999" }, { "column": 2, "dataset": "YAGO39K", "metric": "MRR", "model": "TransC (bern)", "row": 11, "task": "Link Prediction", "value": "0.42" }, { "column": 3, "dataset": "YAGO39K", "metric": "Hits@1", "model": "TransC (bern)", "row": 11, "task": "Link Prediction", "value": "0.298" }, { "column": 4, "dataset": "YAGO39K", "metric": "Hits@3", "model": "TransC (bern)", "row": 11, "task": "Link Prediction", "value": "0.502" }, { "column": 5, "dataset": "YAGO39K", "metric": "Hits@10", "model": "TransC (bern)", "row": 11, "task": "Link Prediction", "value": "0.698" }, { "column": 6, "dataset": "YAGO39K", "metric": "Accuracy", "model": "TransC (bern)", "row": 11, "task": "Triple Classification", "value": "93.8" }, { "column": 7, "dataset": "YAGO39K", "metric": "Precision", "model": "TransC (bern)", "row": 11, "task": "Triple Classification", "value": "94.8" }, { "column": 8, "dataset": "YAGO39K", "metric": "Recall", "model": "TransC (bern)", "row": 11, "task": "Triple Classification", "value": "92.7" }, { "column": 9, "dataset": "YAGO39K", "metric": "F1-Score", "model": "TransC (bern)", "row": 11, "task": "Triple Classification", "value": "93.7" } ] } ]
1811.07081v2
[ { "index": 4, "records": [ { "column": 1, "dataset": "ChaLearn 2013", "metric": "Accuracy", "model": "3S Net TTM", "row": 8, "task": "Gesture Recognition", "value": "92.08" } ] }, { "index": 6, "records": [ { "column": 1, "dataset": "ChaLearn 2016", "metric": "Accuracy", "model": "3S Net TTM", "row": 8, "task": "Gesture Recognition", "value": "39.95" } ] }, { "index": 7, "records": [ { "column": 1, "dataset": "MSRC-12", "metric": "Accuracy", "model": "3S Net TTM", "row": 8, "task": "Gesture Recognition", "value": "99.01" } ] } ]
1811.07100v2
[ { "index": 1, "records": [ { "column": 1, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "Deep Comparison Network", "row": 16, "task": "Few-Shot Image Classification", "value": "62.88" }, { "column": 2, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "Deep Comparison Network", "row": 16, "task": "Few-Shot Image Classification", "value": "75.84" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "Mini-Imagenet 20-way (1-shot)", "metric": "Accuracy", "model": "Deep Comparison Network", "row": 6, "task": "Few-Shot Image Classification", "value": "32.07" }, { "column": 2, "dataset": "Mini-Imagenet 20-way (5-shot)", "metric": "Accuracy", "model": "Deep Comparison Network", "row": 6, "task": "Few-Shot Image Classification", "value": "47.31" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "Tiered ImageNet 5-way (1-shot)", "metric": "Accuracy", "model": "Deep Comparison Network", "row": 8, "task": "Few-Shot Image Classification", "value": "68.83" }, { "column": 2, "dataset": "Tiered ImageNet 5-way (5-shot)", "metric": "Accuracy", "model": "Deep Comparison Network", "row": 8, "task": "Few-Shot Image Classification", "value": "79.62" } ] } ]
1811.07130v2
[ { "index": 0, "records": [ { "column": 5, "dataset": "DukeMTMC-reID", "metric": "Rank-1", "model": "SVDNet + Random Erasing", "row": 7, "task": "Person Re-Identification", "value": "79.3" }, { "column": 6, "dataset": "DukeMTMC-reID", "metric": "MAP", "model": "SVDNet + Random Erasing", "row": 7, "task": "Person Re-Identification", "value": "62.4" } ] } ]
1811.07258v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "MOT16", "metric": "MOTA", "model": "TNT", "row": 8, "task": "Multi-Object Tracking", "value": "56.1" }, { "column": 2, "dataset": "MOT16", "metric": "MOTA", "model": "TNT", "row": 8, "task": "Multi-Object Tracking", "value": "49.2" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "MOT17", "metric": "MOTA", "model": "TNT", "row": 8, "task": "Multi-Object Tracking", "value": "58" }, { "column": 2, "dataset": "MOT17", "metric": "MOTA", "model": "TNT", "row": 8, "task": "Multi-Object Tracking", "value": "51.9" } ] } ]
1811.07456v2
[ { "index": 0, "records": [ { "column": 13, "dataset": "VisDA2017", "metric": "Accuracy", "model": "IAFN", "row": 7, "task": "Domain Adaptation", "value": "76.1" } ] }, { "index": 1, "records": [ { "column": 7, "dataset": "Office-31", "metric": "Average Accuracy", "model": "IAFN+ENT", "row": 12, "task": "Domain Adaptation", "value": "87.1" } ] }, { "index": 2, "records": [ { "column": 7, "dataset": "ImageCLEF-DA", "metric": "Accuracy", "model": "IAFN+ENT", "row": 8, "task": "Domain Adaptation", "value": "88.9" } ] }, { "index": 3, "records": [ { "column": 13, "dataset": "Office-Home", "metric": "Accuracy", "model": "IAFN (ResNet-50)", "row": 8, "task": "Domain Adaptation", "value": "71.83" } ] } ]
1811.08605v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "ICDAR 2017 MLT", "metric": "Recall", "model": "SPCNET", "row": 9, "task": "Scene Text Detection", "value": "68.6" }, { "column": 2, "dataset": "ICDAR 2017 MLT", "metric": "Precision", "model": "SPCNET", "row": 9, "task": "Scene Text Detection", "value": "80.6" }, { "column": 3, "dataset": "ICDAR 2017 MLT", "metric": "F-Measure", "model": "SPCNET", "row": 9, "task": "Scene Text Detection", "value": "74.1" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "ICDAR 2015", "metric": "Recall", "model": "SPCNET", "row": 15, "task": "Scene Text Detection", "value": "85.8" }, { "column": 2, "dataset": "ICDAR 2015", "metric": "Precision", "model": "SPCNET", "row": 15, "task": "Scene Text Detection", "value": "88.7" }, { "column": 3, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "SPCNET", "row": 15, "task": "Scene Text Detection", "value": "87.2" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "ICDAR 2013", "metric": "Recall", "model": "SPCNET", "row": 12, "task": "Scene Text Detection", "value": "90.5" }, { "column": 2, "dataset": "ICDAR 2013", "metric": "Precision", "model": "SPCNET", "row": 12, "task": "Scene Text Detection", "value": "93.8" }, { "column": 3, "dataset": "ICDAR 2013", "metric": "F-Measure", "model": "SPCNET", "row": 12, "task": "Scene Text Detection", "value": "92.1" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "Total-Text", "metric": "Recall", "model": "SPCNET", "row": 7, "task": "Scene Text Detection", "value": "82.8" }, { "column": 2, "dataset": "Total-Text", "metric": "Precision", "model": "SPCNET", "row": 7, "task": "Scene Text Detection", "value": "83" }, { "column": 3, "dataset": "Total-Text", "metric": "F-Measure", "model": "SPCNET", "row": 7, "task": "Scene Text Detection", "value": "82.9" } ] } ]
1811.09058v1
[ { "index": 3, "records": [ { "column": 1, "dataset": "ICDAR 2017 MLT", "metric": "Recall", "model": "PAN", "row": 1, "task": "Scene Text Detection", "value": "69.8" }, { "column": 2, "dataset": "ICDAR 2017 MLT", "metric": "Precision", "model": "PAN", "row": 1, "task": "Scene Text Detection", "value": "80" }, { "column": 3, "dataset": "ICDAR 2017 MLT", "metric": "F-Measure", "model": "PAN", "row": 1, "task": "Scene Text Detection", "value": "74.3" } ] }, { "index": 4, "records": [ { "column": 2, "dataset": "ICDAR 2015", "metric": "Recall", "model": "PAN", "row": 1, "task": "Scene Text Detection", "value": "81.5" }, { "column": 3, "dataset": "ICDAR 2015", "metric": "Precision", "model": "PAN", "row": 1, "task": "Scene Text Detection", "value": "90.8" }, { "column": 4, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "PAN", "row": 1, "task": "Scene Text Detection", "value": "85.9" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "SCUT-CTW1500", "metric": "Recall", "model": "PAN", "row": 1, "task": "Scene Text Detection", "value": "83.2" }, { "column": 2, "dataset": "SCUT-CTW1500", "metric": "Precision", "model": "PAN", "row": 1, "task": "Scene Text Detection", "value": "86.8" }, { "column": 3, "dataset": "SCUT-CTW1500", "metric": "F-Measure", "model": "PAN", "row": 1, "task": "Scene Text Detection", "value": "85" } ] } ]
1811.10144v3
[ { "index": 1, "records": [ { "column": 1, "dataset": "Market-1501", "metric": "MAP", "model": "Self-Similarity Grouping (one shot)", "row": 13, "task": "Unsupervised Person Re-Identification", "value": "71.5" }, { "column": 2, "dataset": "Market-1501", "metric": "Rank-1", "model": "Self-Similarity Grouping (one shot)", "row": 13, "task": "Unsupervised Person Re-Identification", "value": "87.5" }, { "column": 3, "dataset": "Market-1501", "metric": "Rank-5", "model": "Self-Similarity Grouping (one shot)", "row": 13, "task": "Unsupervised Person Re-Identification", "value": "95.2" }, { "column": 4, "dataset": "Market-1501", "metric": "Rank-10", "model": "Self-Similarity Grouping (one shot)", "row": 13, "task": "Unsupervised Person Re-Identification", "value": "96.8" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "DukeMTMC-reID", "metric": "mAP", "model": "Self-Similarity Grouping (one shot)", "row": 13, "task": "Unsupervised Person Re-Identification", "value": "55.9" }, { "column": 2, "dataset": "DukeMTMC-reID", "metric": "Rank-1", "model": "Self-Similarity Grouping (one shot)", "row": 13, "task": "Unsupervised Person Re-Identification", "value": "72.4" }, { "column": 3, "dataset": "DukeMTMC-reID", "metric": "Rank-5", "model": "Self-Similarity Grouping (one shot)", "row": 13, "task": "Unsupervised Person Re-Identification", "value": "84" }, { "column": 4, "dataset": "DukeMTMC-reID", "metric": "Rank-10", "model": "Self-Similarity Grouping (one shot)", "row": 13, "task": "Unsupervised Person Re-Identification", "value": "87.7" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "DukeMTMC-reID->MSMT17", "metric": "mAP", "model": "Self-Similarity Grouping (one shot)", "row": 3, "task": "Unsupervised Person Re-Identification", "value": "23.6" }, { "column": 2, "dataset": "DukeMTMC-reID->MSMT17", "metric": "Rank-1", "model": "Self-Similarity Grouping (one shot)", "row": 3, "task": "Unsupervised Person Re-Identification", "value": "43.6" }, { "column": 3, "dataset": "DukeMTMC-reID->MSMT17", "metric": "Rank-10", "model": "Self-Similarity Grouping (one shot)", "row": 3, "task": "Unsupervised Person Re-Identification", "value": "61.8" }, { "column": 1, "dataset": "Market-1501->MSMT17", "metric": "mAP", "model": "Self-Similarity Grouping (one shot)", "row": 7, "task": "Unsupervised Person Re-Identification", "value": "11.8" }, { "column": 2, "dataset": "Market-1501->MSMT17", "metric": "Rank-1", "model": "Self-Similarity Grouping (one shot)", "row": 7, "task": "Unsupervised Person Re-Identification", "value": "27.6" }, { "column": 3, "dataset": "Market-1501->MSMT17", "metric": "Rank-10", "model": "Self-Similarity Grouping (one shot)", "row": 7, "task": "Unsupervised Person Re-Identification", "value": "45.7" } ] } ]
1811.10636v2
[ { "index": 0, "records": [ { "column": 3, "dataset": "Moments in Time", "metric": "Top 1 Accuracy", "model": "EvaNet", "row": 6, "task": "Action Classification", "value": "31.8" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "HMDB-51", "metric": "Average accuracy of 3 splits", "model": "EvaNet", "row": 9, "task": "Action Recognition In Videos", "value": "82.1" } ] } ]
1811.11127v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "Darmstadt Noise Dataset", "metric": "PSNR (Raw)", "model": "Image Unprocessing", "row": 16, "task": "Color Image Denoising", "value": "48.88" }, { "column": 3, "dataset": "Darmstadt Noise Dataset", "metric": "SSIM (Raw)", "model": "Image Unprocessing", "row": 16, "task": "Color Image Denoising", "value": "0.9821" }, { "column": 5, "dataset": "Darmstadt Noise Dataset", "metric": "PSNR (sRGB)", "model": "Image Unprocessing", "row": 16, "task": "Color Image Denoising", "value": "40.35" }, { "column": 7, "dataset": "Darmstadt Noise Dataset", "metric": "SSIM (sRGB)", "model": "Image Unprocessing", "row": 16, "task": "Color Image Denoising", "value": "0.9641" } ] } ]
1811.11155v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "CUB 128 x 128", "metric": "Inception score", "model": "FineGAN", "row": 6, "task": "Image Generation", "value": "52.53" }, { "column": 2, "dataset": "Stanford Dogs", "metric": "Inception score", "model": "FineGAN", "row": 6, "task": "Image Generation", "value": "46.92" }, { "column": 3, "dataset": "Stanford Cars", "metric": "Inception score", "model": "FineGAN", "row": 6, "task": "Image Generation", "value": "32.62" }, { "column": 4, "dataset": "CUB 128 x 128", "metric": "FID", "model": "FineGAN", "row": 6, "task": "Image Generation", "value": "11.25" }, { "column": 5, "dataset": "Stanford Dogs", "metric": "FID", "model": "FineGAN", "row": 6, "task": "Image Generation", "value": "25.66" }, { "column": 6, "dataset": "Stanford Cars", "metric": "FID", "model": "FineGAN", "row": 6, "task": "Image Generation", "value": "16.03" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "CUB Birds", "metric": "NMI", "model": "FineGAN", "row": 6, "task": "Image Clustering", "value": "0.403" }, { "column": 2, "dataset": "Stanford Dogs", "metric": "NMI", "model": "FineGAN", "row": 6, "task": "Image Clustering", "value": "0.233" }, { "column": 3, "dataset": "Stanford Cars", "metric": "NMI", "model": "FineGAN", "row": 6, "task": "Image Clustering", "value": "0.354" }, { "column": 4, "dataset": "CUB Birds", "metric": "Accuracy", "model": "FineGAN", "row": 6, "task": "Image Clustering", "value": "0.126" }, { "column": 5, "dataset": "Stanford Dogs", "metric": "Accuracy", "model": "FineGAN", "row": 6, "task": "Image Clustering", "value": "0.079" }, { "column": 6, "dataset": "Stanford Cars", "metric": "Accuracy", "model": "FineGAN", "row": 6, "task": "Image Clustering", "value": "0.078" } ] } ]
1811.11212v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "CIFAR-10", "metric": "FID", "model": "SS-GAN (sBN)", "row": 4, "task": "Image Generation", "value": "15.65" }, { "column": 2, "dataset": "ImageNet 128x128", "metric": "FID", "model": "SS-GAN (sBN)", "row": 8, "task": "Image Generation", "value": "43.87" }, { "column": 2, "dataset": "LSUN Bedroom 256 x 256", "metric": "FID", "model": "SS-GAN (sBN)", "row": 11, "task": "Image Generation", "value": "13.3" }, { "column": 2, "dataset": "CelebA-HQ 128x128", "metric": "FID", "model": "SS-GAN (sBN)", "row": 14, "task": "Image Generation", "value": "24.36" } ] } ]
1811.12150v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "Market-1501", "metric": "Rank-1", "model": "Parameter-Free Spatial Attention", "row": 12, "task": "Person Re-Identification", "value": "94.7" }, { "column": 2, "dataset": "Market-1501", "metric": "MAP", "model": "Parameter-Free Spatial Attention", "row": 12, "task": "Person Re-Identification", "value": "91.7" }, { "column": 3, "dataset": "DukeMTMC-reID", "metric": "Rank-1", "model": "Parameter-Free Spatial Attention", "row": 12, "task": "Person Re-Identification", "value": "89.0" }, { "column": 4, "dataset": "DukeMTMC-reID", "metric": "MAP", "model": "Parameter-Free Spatial Attention", "row": 12, "task": "Person Re-Identification", "value": "85.9" } ] } ]
1811.12649v2
[ { "index": 4, "records": [ { "column": 2, "dataset": "SOP", "metric": "R@1", "model": "NormSoftmax2048 (ResNet-50)", "row": 20, "task": "Image Retrieval", "value": "79.5" }, { "column": 5, "dataset": "In-Shop", "metric": "R@1", "model": "NormSoftmax2048 (ResNet-50)", "row": 20, "task": "Image Retrieval", "value": "89.4" } ] }, { "index": 5, "records": [ { "column": 2, "dataset": "CARS196", "metric": "R@1", "model": "NormSoftmax2048 (ResNet-50)", "row": 19, "task": "Image Retrieval", "value": "89.3" }, { "column": 6, "dataset": "CUB-200-2011", "metric": "R@1", "model": "NormSoftmax2048 (ResNet-50)", "row": 19, "task": "Image Retrieval", "value": "65.3" } ] } ]
1811.12833v2
[ { "index": 0, "records": [ { "column": 21, "dataset": "GTAV-to-Cityscapes Labels", "metric": "mIoU", "model": "ADVENT", "row": 14, "task": "Synthetic-to-Real Translation", "value": "44.8" } ] }, { "index": 1, "records": [ { "column": 19, "dataset": "SYNTHIA-to-Cityscapes", "metric": "mIoU", "model": "ADVENT", "row": 13, "task": "Image-to-Image Translation", "value": "48" } ] } ]
1812.01387v1
[ { "index": 0, "records": [ { "column": 15, "dataset": "LineMOD", "metric": "Mean ADD", "model": "Keypoint Detector Localization", "row": 4, "task": "6D Pose Estimation using RGB", "value": "72.6" } ] }, { "index": 1, "records": [ { "column": 2, "dataset": "LineMOD", "metric": "Accuracy", "model": "Keypoint Detector Localization", "row": 3, "task": "6D Pose Estimation using RGB", "value": "94.5%" } ] } ]
1812.01598v1
[ { "index": 0, "records": [ { "column": 13, "dataset": "Human3.6M", "metric": "Average MPJPE (mm)", "model": "Monocular Total Capture", "row": 1, "task": "3D Human Pose Estimation", "value": "58.3" } ] } ]
1812.02391v3
[ { "index": 0, "records": [ { "column": 3, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "MTL", "row": 21, "task": "Few-Shot Image Classification", "value": "61.2" }, { "column": 4, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "MTL", "row": 21, "task": "Few-Shot Image Classification", "value": "75.5" } ] }, { "index": 1, "records": [ { "column": 3, "dataset": "FC100 5-way (1-shot)", "metric": "Accuracy", "model": "MTL", "row": 9, "task": "Few-Shot Image Classification", "value": "45.1" }, { "column": 4, "dataset": "FC100 5-way (5-shot)", "metric": "Accuracy", "model": "MTL", "row": 9, "task": "Few-Shot Image Classification", "value": "57.6" }, { "column": 5, "dataset": "FC100 5-way (10-shot)", "metric": "Accuracy", "model": "MTL", "row": 9, "task": "Few-Shot Image Classification", "value": "63.4" } ] } ]
1812.03282v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "Market-1501", "metric": "Rank-1", "model": "st-ReID(RE, RK)", "row": 23, "task": "Person Re-Identification", "value": "98.0" }, { "column": 4, "dataset": "Market-1501", "metric": "MAP", "model": "st-ReID(RE, RK)", "row": 23, "task": "Person Re-Identification", "value": "95.5" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "DukeMTMC-reID", "metric": "Rank-1", "model": "st-ReID(RE, RK,Cam)", "row": 13, "task": "Person Re-Identification", "value": "94.5" }, { "column": 4, "dataset": "DukeMTMC-reID", "metric": "MAP", "model": "st-ReID(RE, RK,Cam)", "row": 13, "task": "Person Re-Identification", "value": "92.7" } ] } ]
1812.03595v3
[ { "index": 3, "records": [ { "column": 1, "dataset": "COCO test-dev", "metric": "AP", "model": "PoseFix", "row": 14, "task": "Pose Estimation", "value": "74.7" }, { "column": 2, "dataset": "COCO test-dev", "metric": "AP50", "model": "PoseFix", "row": 14, "task": "Pose Estimation", "value": "91.2" }, { "column": 3, "dataset": "COCO test-dev", "metric": "AP75", "model": "PoseFix", "row": 14, "task": "Pose Estimation", "value": "81.9" }, { "column": 4, "dataset": "COCO test-dev", "metric": "APM", "model": "PoseFix", "row": 14, "task": "Pose Estimation", "value": "71.1" }, { "column": 5, "dataset": "COCO test-dev", "metric": "APL", "model": "PoseFix", "row": 14, "task": "Pose Estimation", "value": "81.2" }, { "column": 6, "dataset": "COCO test-dev", "metric": "AR", "model": "PoseFix", "row": 14, "task": "Pose Estimation", "value": "79.9" } ] } ]
1812.03664v3
[ { "index": 0, "records": [ { "column": 2, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "feat+ (ProtoNet-ResNet)", "row": 18, "task": "Few-Shot Image Classification", "value": "61.72" }, { "column": 4, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "feat+ (ProtoNet-ResNet)", "row": 18, "task": "Few-Shot Image Classification", "value": "78.38" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "CUB 200 5-way 1-shot", "metric": "Accuracy", "model": "feat (ProtoNet)", "row": 12, "task": "Few-Shot Image Classification", "value": "68.65" }, { "column": 2, "dataset": "CUB 200 5-way 5-shot", "metric": "Accuracy", "model": "feat (ProtoNet)", "row": 12, "task": "Few-Shot Image Classification", "value": "83.03" } ] } ]
1812.03982v3
[ { "index": 9, "records": [ { "column": 3, "dataset": "Kinetics-400", "metric": "Top-1 Accuracy", "model": "SlowFast, R101 + NL", "row": 19, "task": "Action Classification", "value": "79" }, { "column": 4, "dataset": "Kinetics-400", "metric": "Top-5 Accuracy", "model": "SlowFast, R101 + NL", "row": 19, "task": "Action Classification", "value": "93.6" } ] } ]
1812.04287v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "MNIST-full", "metric": "Accuracy", "model": "DDC", "row": 13, "task": "Image Clustering", "value": "0.965" }, { "column": 2, "dataset": "MNIST-full", "metric": "NMI", "model": "DDC", "row": 13, "task": "Image Clustering", "value": "0.932" }, { "column": 3, "dataset": "MNIST-test", "metric": "Accuracy", "model": "DDC", "row": 13, "task": "Image Clustering", "value": "0.965" }, { "column": 4, "dataset": "MNIST-test", "metric": "NMI", "model": "DDC", "row": 13, "task": "Image Clustering", "value": "0.916" }, { "column": 5, "dataset": "USPS", "metric": "Accuracy", "model": "DDC", "row": 13, "task": "Image Clustering", "value": "0.967" }, { "column": 6, "dataset": "USPS", "metric": "NMI", "model": "DDC", "row": 13, "task": "Image Clustering", "value": "0.918" }, { "column": 7, "dataset": "Fashion-MNIST", "metric": "Accuracy", "model": "DDC", "row": 13, "task": "Image Clustering", "value": "0.619" }, { "column": 8, "dataset": "Fashion-MNIST", "metric": "NMI", "model": "DDC", "row": 13, "task": "Image Clustering", "value": "0.682" }, { "column": 9, "dataset": "LetterA-J", "metric": "Accuracy", "model": "DDC", "row": 13, "task": "Image Clustering", "value": "0.573" }, { "column": 10, "dataset": "LetterA-J", "metric": "NMI", "model": "DDC", "row": 13, "task": "Image Clustering", "value": "0.546" }, { "column": 1, "dataset": "MNIST-full", "metric": "Accuracy", "model": "DDC-DA", "row": 14, "task": "Image Clustering", "value": "0.969" }, { "column": 2, "dataset": "MNIST-full", "metric": "NMI", "model": "DDC-DA", "row": 14, "task": "Image Clustering", "value": "0.941" }, { "column": 3, "dataset": "MNIST-test", "metric": "Accuracy", "model": "DDC-DA", "row": 14, "task": "Image Clustering", "value": "0.97" }, { "column": 4, "dataset": "MNIST-test", "metric": "NMI", "model": "DDC-DA", "row": 14, "task": "Image Clustering", "value": "0.927" }, { "column": 5, "dataset": "USPS", "metric": "Accuracy", "model": "DDC-DA", "row": 14, "task": "Image Clustering", "value": "0.977" }, { "column": 6, "dataset": "USPS", "metric": "NMI", "model": "DDC-DA", "row": 14, "task": "Image Clustering", "value": "0.939" }, { "column": 7, "dataset": "Fashion-MNIST", "metric": "Accuracy", "model": "DDC-DA", "row": 14, "task": "Image Clustering", "value": "0.609" }, { "column": 8, "dataset": "Fashion-MNIST", "metric": "NMI", "model": "DDC-DA", "row": 14, "task": "Image Clustering", "value": "0.661" }, { "column": 9, "dataset": "LetterA-J", "metric": "Accuracy", "model": "DDC-DA", "row": 14, "task": "Image Clustering", "value": "0.691" }, { "column": 10, "dataset": "LetterA-J", "metric": "NMI", "model": "DDC-DA", "row": 14, "task": "Image Clustering", "value": "0.629" } ] } ]
1812.06145v2
[ { "index": 3, "records": [ { "column": 2, "dataset": "VIVA Hand Gestures Dataset", "metric": "Accuracy", "model": "MTUT", "row": 6, "task": "Action Recognition In Videos", "value": "86.08" }, { "column": 2, "dataset": "VIVA Hand Gestures Dataset", "metric": "Accuracy", "model": "MTUT", "row": 6, "task": "Hand Gesture Recognition", "value": "86.08" } ] }, { "index": 4, "records": [ { "column": 2, "dataset": "EgoGesture", "metric": "Accuracy", "model": "MTUT", "row": 6, "task": "Action Recognition In Videos", "value": "93.87" }, { "column": 2, "dataset": "EgoGesture", "metric": "Accuracy", "model": "MTUT", "row": 6, "task": "Hand Gesture Recognition", "value": "93.87" } ] }, { "index": 5, "records": [ { "column": 2, "dataset": "NVGesture", "metric": "Accuracy", "model": "MTUT", "row": 12, "task": "Hand Gesture Recognition", "value": "86.93" } ] } ]
1812.06164v2
[ { "index": 2, "records": [ { "column": 1, "dataset": "Recipe1M", "metric": "Mean IoU", "model": "Set Transformer", "row": 4, "task": "Recipe Generation", "value": "32.11" }, { "column": 2, "dataset": "Recipe1M", "metric": "F1", "model": "Set Transformer", "row": 4, "task": "Recipe Generation", "value": "48.61" } ] } ]
1812.06410v2
[ { "index": 3, "records": [ { "column": 3, "dataset": "WN18", "metric": "MRR", "model": "ComplEx NSCaching", "row": 37, "task": "Link Prediction", "value": "0.9355" }, { "column": 4, "dataset": "WN18", "metric": "MR", "model": "ComplEx NSCaching", "row": 37, "task": "Link Prediction", "value": "1072" }, { "column": 5, "dataset": "WN18", "metric": "Hits@10", "model": "ComplEx NSCaching", "row": 37, "task": "Link Prediction", "value": "0.9398" }, { "column": 6, "dataset": "WN18RR", "metric": "MRR", "model": "ComplEx NSCaching", "row": 37, "task": "Link Prediction", "value": "0.4463" }, { "column": 7, "dataset": "WN18RR", "metric": "MR", "model": "ComplEx NSCaching", "row": 37, "task": "Link Prediction", "value": "5365" }, { "column": 8, "dataset": "WN18RR", "metric": "Hits@10", "model": "ComplEx NSCaching", "row": 37, "task": "Link Prediction", "value": "0.5089" }, { "column": 9, "dataset": " FB15k", "metric": "MRR", "model": "ComplEx NSCaching", "row": 37, "task": "Link Prediction", "value": "0.7721" }, { "column": 10, "dataset": "FB15k", "metric": "MR", "model": "ComplEx NSCaching", "row": 37, "task": "Link Prediction", "value": "82" }, { "column": 11, "dataset": "FB15k", "metric": "Hits@10", "model": "ComplEx NSCaching", "row": 37, "task": "Link Prediction", "value": "86.82" }, { "column": 12, "dataset": "FB15k-237", "metric": "MRR", "model": "ComplEx NSCaching", "row": 37, "task": "Link Prediction", "value": "0.3021" }, { "column": 13, "dataset": "FB15k-237", "metric": "MR", "model": "ComplEx NSCaching", "row": 37, "task": "Link Prediction", "value": "221" }, { "column": 14, "dataset": "FB15k-237", "metric": "Hits@10", "model": "ComplEx NSCaching", "row": 37, "task": "Link Prediction", "value": "0.4805" } ] } ]
1812.10464v2
[ { "index": 3, "records": [ { "column": 3, "dataset": "MLDoc Zero-Shot English-to-German", "metric": "Accuracy", "model": "Massively Multilingual Sentence Embeddings", "row": 5, "task": "Cross-Lingual Document Classification", "value": "84.78" }, { "column": 4, "dataset": "MLDoc Zero-Shot English-to-Spanish", "metric": "Accuracy", "model": "Massively Multilingual Sentence Embeddings", "row": 5, "task": "Cross-Lingual Document Classification", "value": "77.33" }, { "column": 5, "dataset": "MLDoc Zero-Shot English-to-French", "metric": "Accuracy", "model": "Massively Multilingual Sentence Embeddings", "row": 5, "task": "Cross-Lingual Document Classification", "value": "77.95" }, { "column": 6, "dataset": "MLDoc Zero-Shot English-to-Italian", "metric": "Accuracy", "model": "Massively Multilingual Sentence Embeddings", "row": 5, "task": "Cross-Lingual Document Classification", "value": "69.43" }, { "column": 7, "dataset": "MLDoc Zero-Shot English-to-Japanese", "metric": "Accuracy", "model": "Massively Multilingual Sentence Embeddings", "row": 5, "task": "Cross-Lingual Document Classification", "value": "60.3" }, { "column": 8, "dataset": "MLDoc Zero-Shot English-to-Russian", "metric": "Accuracy", "model": "Massively Multilingual Sentence Embeddings", "row": 5, "task": "Cross-Lingual Document Classification", "value": "67.78" }, { "column": 9, "dataset": "MLDoc Zero-Shot English-to-Chinese", "metric": "Accuracy", "model": "Massively Multilingual Sentence Embeddings", "row": 5, "task": "Cross-Lingual Document Classification", "value": "71.93" } ] }, { "index": 4, "records": [ { "column": 5, "dataset": "BUCC German-to-English", "metric": "F1 score", "model": "Massively Multilingual Sentence Embeddings", "row": 10, "task": "Cross-Lingual Bitext Mining", "value": "96.19" }, { "column": 6, "dataset": "BUCC French-to-English", "metric": "F1 score", "model": "Massively Multilingual Sentence Embeddings", "row": 10, "task": "Cross-Lingual Bitext Mining", "value": "93.91" }, { "column": 7, "dataset": "BUCC Russian-to-English", "metric": "F1 score", "model": "Massively Multilingual Sentence Embeddings", "row": 10, "task": "Cross-Lingual Bitext Mining", "value": "93.3" }, { "column": 8, "dataset": "BUCC Chinese-to-English", "metric": "F1 score", "model": "Massively Multilingual Sentence Embeddings", "row": 10, "task": "Cross-Lingual Bitext Mining", "value": "92.27" } ] } ]
1812.10477v2
[ { "index": 5, "records": [ { "column": 1, "dataset": "Kodak24 sigma10", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Grayscale Image Denoising", "value": "35.19" }, { "column": 2, "dataset": "Kodak24 sigma30", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Grayscale Image Denoising", "value": "30.02" }, { "column": 3, "dataset": "Kodak24 sigma50", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Grayscale Image Denoising", "value": "27.88" }, { "column": 4, "dataset": "Kodak24 sigma70", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Grayscale Image Denoising", "value": "26.57" }, { "column": 5, "dataset": "BSD68 sigma10", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Grayscale Image Denoising", "value": "34.01" }, { "column": 6, "dataset": "BSD68 sigma30", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Grayscale Image Denoising", "value": "28.58" }, { "column": 7, "dataset": "BSD68 sigma50", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Grayscale Image Denoising", "value": "26.43" }, { "column": 8, "dataset": "BSD68 sigma70", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Grayscale Image Denoising", "value": "25.12" }, { "column": 9, "dataset": "Urban100 sigma10", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Grayscale Image Denoising", "value": "35.45" }, { "column": 10, "dataset": "Urban100 sigma30", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Grayscale Image Denoising", "value": "30.08" }, { "column": 11, "dataset": "Urban100 sigma50", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Grayscale Image Denoising", "value": "27.47" }, { "column": 12, "dataset": "Urban100 sigma70", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Grayscale Image Denoising", "value": "25.71" } ] }, { "index": 6, "records": [ { "column": 1, "dataset": "Kodak24 sigma10", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Color Image Denoising", "value": "37.33" }, { "column": 2, "dataset": "Kodak24 sigma30", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Color Image Denoising", "value": "31.98" }, { "column": 3, "dataset": "Kodak24 sigma50", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Color Image Denoising", "value": "29.7" }, { "column": 4, "dataset": "Kodak24 sigma70", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Color Image Denoising", "value": "28.24" }, { "column": 5, "dataset": "BSD68 sigma10", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Color Image Denoising", "value": "36.49" }, { "column": 6, "dataset": "BSD68 sigma30", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Color Image Denoising", "value": "30.7" }, { "column": 7, "dataset": "BSD68 sigma50", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Color Image Denoising", "value": "28.34" }, { "column": 8, "dataset": "BSD68 sigma70", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Color Image Denoising", "value": "26.88" }, { "column": 9, "dataset": "Urban100 sigma10", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Color Image Denoising", "value": "36.75" }, { "column": 10, "dataset": "Urban100 sigma30", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Color Image Denoising", "value": "31.78" }, { "column": 11, "dataset": "Urban100 sigma50", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Color Image Denoising", "value": "29.38" }, { "column": 12, "dataset": "Urban100 sigma70", "metric": "PSNR", "model": "Residual Dense Network +", "row": 10, "task": "Color Image Denoising", "value": "27.74" } ] }, { "index": 7, "records": [ { "column": 14, "dataset": "LIVE1 Quality 10", "metric": "PSNR", "model": "Residual Dense Network +", "row": 2, "task": "Image Compression Artifact Reduction", "value": "29.7" }, { "column": 15, "dataset": "LIVE1 Quality 10", "metric": "SSIM", "model": "Residual Dense Network +", "row": 2, "task": "Image Compression Artifact Reduction", "value": "0.8252" }, { "column": 14, "dataset": "LIVE1 Quality 20", "metric": "PSNR", "model": "Residual Dense Network +", "row": 3, "task": "Image Compression Artifact Reduction", "value": "32.1" }, { "column": 15, "dataset": "LIVE1 Quality 20", "metric": "SSIM", "model": "Residual Dense Network +", "row": 3, "task": "Image Compression Artifact Reduction", "value": "0.8886" }, { "column": 14, "dataset": "LIVE1 Quality 30", "metric": "PSNR", "model": "Residual Dense Network +", "row": 4, "task": "Image Compression Artifact Reduction", "value": "33.54" }, { "column": 15, "dataset": "LIVE1 Quality 30", "metric": "SSIM", "model": "Residual Dense Network +", "row": 4, "task": "Image Compression Artifact Reduction", "value": "0.9156" }, { "column": 14, "dataset": "LIVE1 Quality 40", "metric": "PSNR", "model": "Residual Dense Network +", "row": 5, "task": "Image Compression Artifact Reduction", "value": "34.54" }, { "column": 15, "dataset": "LIVE1 Quality 40", "metric": "SSIM", "model": "Residual Dense Network +", "row": 5, "task": "Image Compression Artifact Reduction", "value": "0.9304" }, { "column": 14, "dataset": "Classic5 Quality 10", "metric": "PSNR", "model": "Residual Dense Network +", "row": 6, "task": "Image Compression Artifact Reduction", "value": "30.03" }, { "column": 15, "dataset": "Classic5 Quality 10", "metric": "SSIM", "model": "Residual Dense Network +", "row": 6, "task": "Image Compression Artifact Reduction", "value": "0.8194" }, { "column": 14, "dataset": "Classic5 Quality 20", "metric": "PSNR", "model": "Residual Dense Network +", "row": 7, "task": "Image Compression Artifact Reduction", "value": "32.19" }, { "column": 15, "dataset": "Classic5 Quality 20", "metric": "SSIM", "model": "Residual Dense Network +", "row": 7, "task": "Image Compression Artifact Reduction", "value": "0.8704" }, { "column": 14, "dataset": "Classic5 Quality 30", "metric": "PSNR", "model": "Residual Dense Network +", "row": 8, "task": "Image Compression Artifact Reduction", "value": "33.46" }, { "column": 15, "dataset": "Classic5 Quality 30", "metric": "SSIM", "model": "Residual Dense Network +", "row": 8, "task": "Image Compression Artifact Reduction", "value": "0.8932" }, { "column": 14, "dataset": "Classic5 Quality 40", "metric": "PSNR", "model": "Residual Dense Network +", "row": 9, "task": "Image Compression Artifact Reduction", "value": "34.29" }, { "column": 15, "dataset": "Classic5 Quality 40", "metric": "SSIM", "model": "Residual Dense Network +", "row": 9, "task": "Image Compression Artifact Reduction", "value": "0.9063" } ] } ]
1812.11317v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "MegaFace", "metric": "Accuracy", "model": "SV-AM-Softmax", "row": 14, "task": "Face Identification", "value": "97.2" }, { "column": 2, "dataset": "MegaFace", "metric": "Accuracy", "model": "SV-AM-Softmax", "row": 14, "task": "Face Verification", "value": "97.38" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "Trillion Pairs Dataset", "metric": "Accuracy", "model": "SV-AM-Softmax", "row": 14, "task": "Face Identification", "value": "73.56" }, { "column": 2, "dataset": "Trillion Pairs Dataset", "metric": "Accuracy", "model": "SV-AM-Softmax", "row": 14, "task": "Face Verification", "value": "72.71" } ] } ]
1812.11788v1
[ { "index": 0, "records": [ { "column": 6, "dataset": "Occlusion LineMOD", "metric": "Mean ADD", "model": "PVNet", "row": 10, "task": "6D Pose Estimation using RGB", "value": "40.77" } ] }, { "index": 1, "records": [ { "column": 3, "dataset": "LineMOD", "metric": "Accuracy", "model": "PVNet", "row": 16, "task": "6D Pose Estimation using RGB", "value": "99%" } ] }, { "index": 2, "records": [ { "column": 4, "dataset": "LineMOD", "metric": "Mean ADD", "model": "PVNet", "row": 16, "task": "6D Pose Estimation using RGB", "value": "86.27" } ] }, { "index": 3, "records": [ { "column": 4, "dataset": "Occlusion LineMOD", "metric": "Accuracy", "model": "PVNet", "row": 10, "task": "6D Pose Estimation using RGB", "value": "61.06%" } ] }, { "index": 6, "records": [ { "column": 3, "dataset": "YCB-Video", "metric": "Mean AUC", "model": "PVNet", "row": 3, "task": "6D Pose Estimation using RGB", "value": "73.4" } ] } ]
1901.00148v4
[ { "index": 1, "records": [ { "column": 5, "dataset": "COCO minival", "metric": "AP", "model": "MSPN", "row": 5, "task": "Pose Estimation", "value": "75.9" } ] }, { "index": 6, "records": [ { "column": 3, "dataset": "COCO test-dev", "metric": "AP", "model": "MSPN", "row": 8, "task": "Keypoint Detection", "value": "76.1" }, { "column": 4, "dataset": "COCO test-dev", "metric": "AP50", "model": "MSPN", "row": 8, "task": "Keypoint Detection", "value": "93.4" }, { "column": 5, "dataset": "COCO test-dev", "metric": "AP75", "model": "MSPN", "row": 8, "task": "Keypoint Detection", "value": "83.8" }, { "column": 6, "dataset": "COCO test-dev", "metric": "APM", "model": "MSPN", "row": 8, "task": "Keypoint Detection", "value": "72.3" }, { "column": 7, "dataset": "COCO test-dev", "metric": "APL", "model": "MSPN", "row": 8, "task": "Keypoint Detection", "value": "81.5" }, { "column": 8, "dataset": "COCO test-dev", "metric": "AR", "model": "MSPN", "row": 8, "task": "Keypoint Detection", "value": "81.6" }, { "column": 9, "dataset": "COCO test-dev", "metric": "AR50", "model": "MSPN", "row": 8, "task": "Keypoint Detection", "value": "96.3" }, { "column": 10, "dataset": "COCO test-dev", "metric": "AR75", "model": "MSPN", "row": 8, "task": "Keypoint Detection", "value": "88.1" }, { "column": 11, "dataset": "COCO test-dev", "metric": "ARM", "model": "MSPN", "row": 8, "task": "Keypoint Detection", "value": "77.5" }, { "column": 12, "dataset": "COCO test-dev", "metric": "ARL", "model": "MSPN", "row": 8, "task": "Keypoint Detection", "value": "87.1" } ] }, { "index": 7, "records": [ { "column": 3, "dataset": "COCO test-challenge", "metric": "AP", "model": "MSPN+*", "row": 6, "task": "Keypoint Detection", "value": "76.4" }, { "column": 4, "dataset": "COCO test-challenge", "metric": "AP50", "model": "MSPN+*", "row": 6, "task": "Keypoint Detection", "value": "92.9" }, { "column": 5, "dataset": "COCO test-challenge", "metric": "AP75", "model": "MSPN+*", "row": 6, "task": "Keypoint Detection", "value": "82.6" }, { "column": 6, "dataset": "COCO test-challenge", "metric": "ARM", "model": "MSPN+*", "row": 6, "task": "Keypoint Detection", "value": "71.4" }, { "column": 7, "dataset": "COCO test-challenge", "metric": "ARL", "model": "MSPN+*", "row": 6, "task": "Keypoint Detection", "value": "83.2" }, { "column": 8, "dataset": "COCO test-challenge", "metric": "AR", "model": "MSPN+*", "row": 6, "task": "Keypoint Detection", "value": "82.2" }, { "column": 9, "dataset": "COCO test-challenge", "metric": "AR50", "model": "MSPN+*", "row": 6, "task": "Keypoint Detection", "value": "96" }, { "column": 10, "dataset": "COCO test-challenge", "metric": "AR75", "model": "MSPN+*", "row": 6, "task": "Keypoint Detection", "value": "87.7" }, { "column": 11, "dataset": "COCO test-challenge", "metric": "ARM", "model": "MSPN+*", "row": 6, "task": "Keypoint Detection", "value": "77.5" }, { "column": 12, "dataset": "COCO test-challenge", "metric": "APL", "model": "MSPN+*", "row": 6, "task": "Keypoint Detection", "value": "88.6" } ] }, { "index": 8, "records": [ { "column": 8, "dataset": "MPII Human Pose", "metric": "PCKh-0.5", "model": "MSPN", "row": 14, "task": "Pose Estimation", "value": "92.6" } ] } ]
1901.00488v2
[ { "index": 4, "records": [ { "column": 1, "dataset": "CASIA-MFSD", "metric": "EER", "model": "3D Synthesis (balancing sampling)", "row": 12, "task": "Face Anti-Spoofing", "value": "2.22" }, { "column": 2, "dataset": "CASIA-MFSD", "metric": "HTER", "model": "3D Synthesis (balancing sampling)", "row": 12, "task": "Face Anti-Spoofing", "value": "1.67" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "Replay-Attack", "metric": "EER", "model": "3D Synthesis (balancing sampling)", "row": 11, "task": "Face Anti-Spoofing", "value": "0.25" }, { "column": 2, "dataset": "Replay-Attack", "metric": "HTER", "model": "3D Synthesis (balancing sampling)", "row": 11, "task": "Face Anti-Spoofing", "value": "0.63" } ] } ]
1901.00976v2
[ { "index": 0, "records": [ { "column": 7, "dataset": "Office-31", "metric": "Average Accuracy", "model": "Contrastive Adaptation Network", "row": 7, "task": "Domain Adaptation", "value": "90.6" } ] }, { "index": 1, "records": [ { "column": 13, "dataset": "VisDA2017", "metric": "Accuracy", "model": "Contrastive Adaptation Network", "row": 9, "task": "Domain Adaptation", "value": "87.2" } ] } ]
1901.01484v2
[ { "index": 0, "records": [ { "column": 9, "dataset": "Cora with Public Split: fixed 20 nodes per class", "metric": "Accuracy", "model": "LanczosNet", "row": 1, "task": "Node Classification", "value": "79.5" }, { "column": 10, "dataset": "Cora with Public Split: fixed 20 nodes per class", "metric": "Accuracy", "model": "AdaLanczosNet", "row": 1, "task": "Node Classification", "value": "80.4" }, { "column": 9, "dataset": "Cora (3%)", "metric": "Accuracy", "model": "LanczosNet", "row": 2, "task": "Node Classification", "value": "76.3" }, { "column": 10, "dataset": "Cora (3%)", "metric": "Accuracy", "model": "AdaLanczosNet", "row": 2, "task": "Node Classification", "value": "77.7" }, { "column": 9, "dataset": "Cora (1%)", "metric": "Accuracy", "model": "LanczosNet", "row": 3, "task": "Node Classification", "value": "66.1" }, { "column": 10, "dataset": "Cora (1%)", "metric": "Accuracy", "model": "AdaLanczosNet", "row": 3, "task": "Node Classification", "value": "67.5" }, { "column": 9, "dataset": "Cora (0.5%)", "metric": "Accuracy", "model": "LanczosNet", "row": 4, "task": "Node Classification", "value": "58.1" }, { "column": 10, "dataset": "Cora (0.5%)", "metric": "Accuracy", "model": "AdaLanczosNet", "row": 4, "task": "Node Classification", "value": "60.8" }, { "column": 9, "dataset": "CiteSeer with Public Split: fixed 20 nodes per class", "metric": "Accuracy", "model": "LanczosNet", "row": 6, "task": "Node Classification", "value": "66.2" }, { "column": 10, "dataset": "CiteSeer with Public Split: fixed 20 nodes per class", "metric": "Accuracy", "model": "AdaLanczosNet", "row": 6, "task": "Node Classification", "value": "68.7" }, { "column": 9, "dataset": "CiteSeer (1%)", "metric": "Accuracy", "model": "LanczosNet", "row": 7, "task": "Node Classification", "value": "61.3" }, { "column": 10, "dataset": "CiteSeer (1%)", "metric": "Accuracy", "model": "AdaLanczosNet", "row": 7, "task": "Node Classification", "value": "63.3" }, { "column": 9, "dataset": "CiteSeer (0.5%)", "metric": "Accuracy", "model": "LanczosNet", "row": 8, "task": "Node Classification", "value": "53.2" }, { "column": 10, "dataset": "CiteSeer (0.5%)", "metric": "Accuracy", "model": "AdaLanczosNet", "row": 8, "task": "Node Classification", "value": "53.8" }, { "column": 9, "dataset": "PubMed with Public Split: fixed 20 nodes per class", "metric": "Accuracy", "model": "LanczosNet", "row": 11, "task": "Node Classification", "value": "78.3" }, { "column": 10, "dataset": "PubMed with Public Split: fixed 20 nodes per class", "metric": "Accuracy", "model": "AdaLanczosNet", "row": 11, "task": "Node Classification", "value": "78.1" }, { "column": 9, "dataset": "PubMed (0.1%)", "metric": "Accuracy", "model": "LanczosNet", "row": 12, "task": "Node Classification", "value": "73.4" }, { "column": 10, "dataset": "PubMed (0.1%)", "metric": "Accuracy", "model": "AdaLanczosNet", "row": 12, "task": "Node Classification", "value": "72.8" }, { "column": 9, "dataset": "PubMed (0.05%)", "metric": "Accuracy", "model": "LanczosNet", "row": 13, "task": "Node Classification", "value": "68.8" }, { "column": 10, "dataset": "PubMed (0.05%)", "metric": "Accuracy", "model": "AdaLanczosNet", "row": 13, "task": "Node Classification", "value": "66" }, { "column": 9, "dataset": "PubMed (0.03%)", "metric": "Accuracy", "model": "LanczosNet", "row": 14, "task": "Node Classification", "value": "60.4" }, { "column": 10, "dataset": "PubMed (0.03%)", "metric": "Accuracy", "model": "AdaLanczosNet", "row": 14, "task": "Node Classification", "value": "61" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "Quantum Chemistry Regression", "metric": "Validation MAE", "model": "LanczosNet", "row": 10, "task": "Quantum Chemistry Regression", "value": "9.65" }, { "column": 2, "dataset": "Quantum Chemistry Regression", "metric": "Test MAE", "model": "LanczosNet", "row": 10, "task": "Quantum Chemistry Regression", "value": "9.58" } ] } ]
1901.01892v2
[ { "index": 6, "records": [ { "column": 2, "dataset": "COCO test-dev", "metric": "box AP", "model": "TridentNet (ResNet-101)", "row": 6, "task": "Object Detection", "value": "42.7" }, { "column": 3, "dataset": "COCO test-dev", "metric": "AP50", "model": "TridentNet (ResNet-101)", "row": 6, "task": "Object Detection", "value": "63.6" }, { "column": 4, "dataset": "COCO test-dev", "metric": "AP75", "model": "TridentNet (ResNet-101)", "row": 6, "task": "Object Detection", "value": "46.5" }, { "column": 5, "dataset": "COCO test-dev", "metric": "APS", "model": "TridentNet (ResNet-101)", "row": 6, "task": "Object Detection", "value": "23.9" }, { "column": 6, "dataset": "COCO test-dev", "metric": "APM", "model": "TridentNet (ResNet-101)", "row": 6, "task": "Object Detection", "value": "46.6" }, { "column": 7, "dataset": "COCO test-dev", "metric": "APL", "model": "TridentNet (ResNet-101)", "row": 6, "task": "Object Detection", "value": "56.6" }, { "column": 2, "dataset": "COCO test-dev", "metric": "box AP", "model": "TridentNet (ResNet-101-Deformable, Image Pyramid)", "row": 8, "task": "Object Detection", "value": "48.4" }, { "column": 3, "dataset": "COCO test-dev", "metric": "AP50", "model": "TridentNet (ResNet-101-Deformable, Image Pyramid)", "row": 8, "task": "Object Detection", "value": "69.7" }, { "column": 4, "dataset": "COCO test-dev", "metric": "AP75", "model": "TridentNet (ResNet-101-Deformable, Image Pyramid)", "row": 8, "task": "Object Detection", "value": "53.5" }, { "column": 5, "dataset": "COCO test-dev", "metric": "APS", "model": "TridentNet (ResNet-101-Deformable, Image Pyramid)", "row": 8, "task": "Object Detection", "value": "31.8" }, { "column": 6, "dataset": "COCO test-dev", "metric": "APM", "model": "TridentNet (ResNet-101-Deformable, Image Pyramid)", "row": 8, "task": "Object Detection", "value": "51.3" }, { "column": 7, "dataset": "COCO test-dev", "metric": "APL", "model": "TridentNet (ResNet-101-Deformable, Image Pyramid)", "row": 8, "task": "Object Detection", "value": "60.3" } ] }, { "index": 7, "records": [ { "column": 1, "dataset": "COCO minival", "metric": "box AP", "model": "TridentNet (ResNet-101)", "row": 4, "task": "Object Detection", "value": "42" }, { "column": 2, "dataset": "COCO minival", "metric": "AP50", "model": "TridentNet (ResNet-101)", "row": 4, "task": "Object Detection", "value": "63.5" }, { "column": 3, "dataset": "COCO minival", "metric": "AP75", "model": "TridentNet (ResNet-101)", "row": 4, "task": "Object Detection", "value": "45.5" }, { "column": 4, "dataset": "COCO minival", "metric": "APS", "model": "TridentNet (ResNet-101)", "row": 4, "task": "Object Detection", "value": "24.9" }, { "column": 5, "dataset": "COCO minival", "metric": "APM", "model": "TridentNet (ResNet-101)", "row": 4, "task": "Object Detection", "value": "47" }, { "column": 6, "dataset": "COCO minival", "metric": "APL", "model": "TridentNet (ResNet-101)", "row": 4, "task": "Object Detection", "value": "56.9" } ] } ]
1901.02970v2
[ { "index": 1, "records": [ { "column": 2, "dataset": "CAMERA25", "metric": "mAP 3DIou@25", "model": "NOCS (128 bins)", "row": 6, "task": "6D Pose Estimation using RGBD", "value": "91.4" }, { "column": 3, "dataset": "CAMERA25", "metric": "mAP 3DIou@50", "model": "NOCS (128 bins)", "row": 6, "task": "6D Pose Estimation using RGBD", "value": "85.3" }, { "column": 4, "dataset": "CAMERA25", "metric": "mAP 5, 5cm", "model": "NOCS (128 bins)", "row": 6, "task": "6D Pose Estimation using RGBD", "value": "38.8" }, { "column": 5, "dataset": "CAMERA25", "metric": "mAP 10, 5cm", "model": "NOCS (128 bins)", "row": 6, "task": "6D Pose Estimation using RGBD", "value": "61.7" }, { "column": 6, "dataset": "CAMERA25", "metric": "mAP 10, 10cm", "model": "NOCS (128 bins)", "row": 6, "task": "6D Pose Estimation using RGBD", "value": "62.2" }, { "column": 2, "dataset": "REAL275", "metric": "mAP 3DIou@25", "model": "NOCS (128 bins)", "row": 10, "task": "6D Pose Estimation using RGBD", "value": "84.9" }, { "column": 3, "dataset": "REAL275", "metric": "mAP 3DIou@50", "model": "NOCS (128 bins)", "row": 10, "task": "6D Pose Estimation using RGBD", "value": "80.5" }, { "column": 4, "dataset": "REAL275", "metric": "mAP 5, 5cm", "model": "NOCS (128 bins)", "row": 10, "task": "6D Pose Estimation using RGBD", "value": "9.5" }, { "column": 5, "dataset": "REAL275", "metric": "mAP 10, 5cm", "model": "NOCS (128 bins)", "row": 10, "task": "6D Pose Estimation using RGBD", "value": "26.7" }, { "column": 6, "dataset": "REAL275", "metric": "mAP 10, 10cm", "model": "NOCS (128 bins)", "row": 10, "task": "6D Pose Estimation using RGBD", "value": "26.7" } ] } ]
1901.02985v2
[ { "index": 1, "records": [ { "column": 5, "dataset": "Cityscapes val", "metric": "mIoU", "model": "Auto-DeepLab-L", "row": 3, "task": "Semantic Segmentation", "value": "80.33" } ] }, { "index": 3, "records": [ { "column": 3, "dataset": "Cityscapes test", "metric": "Mean IoU (class)", "model": "Auto-DeepLab-L", "row": 7, "task": "Semantic Segmentation", "value": "82.1" } ] }, { "index": 4, "records": [ { "column": 3, "dataset": "PASCAL VOC 2012 val", "metric": "mIoU", "model": "Auto-DeepLab-L", "row": 13, "task": "Semantic Segmentation", "value": "82.04" } ] }, { "index": 5, "records": [ { "column": 3, "dataset": "PASCAL VOC 2012 test", "metric": "mIoU", "model": "Auto-DeepLab-L", "row": 3, "task": "Semantic Segmentation", "value": "85.6" } ] }, { "index": 6, "records": [ { "column": 2, "dataset": "ADE20K val", "metric": "mIoU", "model": "Auto-DeepLab-L", "row": 3, "task": "Semantic Segmentation", "value": "43.98" }, { "column": 3, "dataset": "ADE20K val", "metric": "Pixel Accuracy", "model": "Auto-DeepLab-L", "row": 3, "task": "Semantic Segmentation", "value": "81.72%" } ] } ]
1901.03278v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "COCO test-dev", "metric": "AR100", "model": "GA-RPN (ResNet-50-FPN)", "row": 13, "task": "Region Proposal", "value": "59.2" }, { "column": 3, "dataset": "COCO test-dev", "metric": "AR300", "model": "GA-RPN (ResNet-50-FPN)", "row": 13, "task": "Region Proposal", "value": "65.2" }, { "column": 4, "dataset": "COCO test-dev", "metric": "AR1000", "model": "GA-RPN (ResNet-50-FPN)", "row": 13, "task": "Region Proposal", "value": "68.5" }, { "column": 5, "dataset": "COCO test-dev", "metric": "ARS", "model": "GA-RPN (ResNet-50-FPN)", "row": 13, "task": "Region Proposal", "value": "40.9" }, { "column": 6, "dataset": "COCO test-dev", "metric": "ARM", "model": "GA-RPN (ResNet-50-FPN)", "row": 13, "task": "Region Proposal", "value": "67.8" }, { "column": 7, "dataset": "COCO test-dev", "metric": "ARL", "model": "GA-RPN (ResNet-50-FPN)", "row": 13, "task": "Region Proposal", "value": "79" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "COCO test-dev", "metric": "box AP", "model": "GA-Faster-RCNN", "row": 4, "task": "Object Detection", "value": "39.8" }, { "column": 2, "dataset": "COCO test-dev", "metric": "AP50", "model": "GA-Faster-RCNN", "row": 4, "task": "Object Detection", "value": "59.2" }, { "column": 3, "dataset": "COCO test-dev", "metric": "AP75", "model": "GA-Faster-RCNN", "row": 4, "task": "Object Detection", "value": "43.5" }, { "column": 4, "dataset": "COCO test-dev", "metric": "APS", "model": "GA-Faster-RCNN", "row": 4, "task": "Object Detection", "value": "21.8" }, { "column": 5, "dataset": "COCO test-dev", "metric": "APM", "model": "GA-Faster-RCNN", "row": 4, "task": "Object Detection", "value": "42.6" }, { "column": 6, "dataset": "COCO test-dev", "metric": "APL", "model": "GA-Faster-RCNN", "row": 4, "task": "Object Detection", "value": "50.7" } ] } ]
1901.04095v2
[ { "index": 6, "records": [ { "column": 1, "dataset": "DBLP", "metric": "Accuracy", "model": "attri2vec-ReLU", "row": 9, "task": "Node Clustering", "value": "76.69" }, { "column": 2, "dataset": "DBLP", "metric": "F-Measure", "model": "attri2vec-ReLU", "row": 9, "task": "Node Clustering", "value": "69.67" }, { "column": 3, "dataset": "DBLP", "metric": "NMI", "model": "attri2vec-ReLU", "row": 9, "task": "Node Clustering", "value": "44.34" } ] }, { "index": 7, "records": [ { "column": 1, "dataset": "Facebook", "metric": "Accuracy", "model": "attri2vec-kernel", "row": 10, "task": "Node Clustering", "value": "66.77" }, { "column": 2, "dataset": "Facebook", "metric": "F-Measure", "model": "attri2vec-kernel", "row": 10, "task": "Node Clustering", "value": "50.32" }, { "column": 3, "dataset": "Facebook", "metric": "NMI", "model": "attri2vec-kernel", "row": 10, "task": "Node Clustering", "value": "17.15" } ] } ]
1901.04622v1
[ { "index": 5, "records": [ { "column": 2, "dataset": "Cambridge", "metric": "Accuracy", "model": "Key Frames + Feature Fusion", "row": 12, "task": "Hand Gesture Recognition", "value": "98.23" } ] }, { "index": 6, "records": [ { "column": 2, "dataset": "Northwestern University", "metric": "Accuracy", "model": "Key Frames + Feature Fusion", "row": 3, "task": "Hand Gesture Recognition", "value": "96.89" } ] } ]
1901.04780v1
[ { "index": 0, "records": [ { "column": 9, "dataset": "YCB-Video", "metric": "Mean AUC", "model": "DenseFusion", "row": 23, "task": "6D Pose Estimation using RGB", "value": "93.1" } ] }, { "index": 1, "records": [ { "column": 7, "dataset": "LineMOD", "metric": "Mean ADD", "model": "DeepFusion", "row": 15, "task": "6D Pose Estimation using RGBD", "value": "94.3" } ] } ]
1901.06140v1
[ { "index": 4, "records": [ { "column": 3, "dataset": "DukeMTMC-reID", "metric": "MAP", "model": "SVDNet", "row": 3, "task": "Person Re-Identification", "value": "56.8" } ] } ]
1901.06610v2
[ { "index": 4, "records": [ { "column": 1, "dataset": "Yelp-5", "metric": "Accuracy", "model": "HAHNN (CNN)", "row": 5, "task": "Text Classification", "value": "73.28" }, { "column": 2, "dataset": "IMDb", "metric": "Accuracy", "model": "HAHNN (CNN)", "row": 6, "task": "Text Classification", "value": "95.17" } ] } ]
1901.06631v3
[ { "index": 5, "records": [ { "column": 1, "dataset": "Amazon", "metric": "F1-score", "model": "CommunityGAN", "row": 9, "task": "Community Detection", "value": "0.86" }, { "column": 2, "dataset": "Amazon", "metric": "F1-score", "model": "CommunityGAN", "row": 9, "task": "Community Detection", "value": "0.327" }, { "column": 3, "dataset": "DBLP", "metric": "F1-Score", "model": "CommunityGAN", "row": 9, "task": "Community Detection", "value": "0.456" }, { "column": 1, "dataset": "Amazon", "metric": "F1-score", "model": "CommunityGAN", "row": 19, "task": "Community Detection", "value": "0.853" }, { "column": 2, "dataset": "Amazon", "metric": "F1-score", "model": "CommunityGAN", "row": 19, "task": "Community Detection", "value": "0.091" }, { "column": 3, "dataset": "DBLP", "metric": "F1-Score", "model": "CommunityGAN", "row": 19, "task": "Community Detection", "value": "0.153" } ] }, { "index": 6, "records": [ { "column": 1, "dataset": "arXiv-AstroPh 2-clique", "metric": "AUC", "model": "CommunityGAN", "row": 7, "task": "Clique Prediction", "value": "92.3" }, { "column": 2, "dataset": "arXiv-AstroPh 3-clique", "metric": "AUC", "model": "CommunityGAN", "row": 7, "task": "Clique Prediction", "value": "99" }, { "column": 3, "dataset": "arXiv-AstroPh 4-clique", "metric": "AUC", "model": "CommunityGAN", "row": 7, "task": "Clique Prediction", "value": "97" }, { "column": 1, "dataset": "arXiv-GrQc 2-clique", "metric": "AUC", "model": "CommunityGAN", "row": 15, "task": "Clique Prediction", "value": "90.4" }, { "column": 2, "dataset": "arXiv-GrQc 3-clique", "metric": "AUC", "model": "CommunityGAN", "row": 15, "task": "Clique Prediction", "value": "99.3" }, { "column": 3, "dataset": "arXiv-GrQc 4-clique", "metric": "AUC", "model": "CommunityGAN", "row": 15, "task": "Clique Prediction", "value": "95.6" } ] } ]
1901.06656v2
[ { "index": 0, "records": [ { "column": 5, "dataset": "MNIST", "metric": "Percentage error", "model": "VGG8B + LocalLearning + CO", "row": 4, "task": "Image Classification", "value": "0.26" } ] }, { "index": 1, "records": [ { "column": 5, "dataset": "Fashion-MNIST", "metric": "Percentage error", "model": "VGG8B(2x) + LocalLearning + CO", "row": 5, "task": "Image Classification", "value": "4.14" } ] }, { "index": 2, "records": [ { "column": 5, "dataset": "Kuzushiji-MNIST", "metric": "Percentage error", "model": "VGG8B(2x) + LocalLearning + CO", "row": 4, "task": "Image Classification", "value": "0.99" } ] }, { "index": 3, "records": [ { "column": 5, "dataset": "CIFAR-10", "metric": "Percentage correct", "model": "VGG11B(2x) + LocalLearning + CO", "row": 7, "task": "Image Classification", "value": "96.4" } ] }, { "index": 5, "records": [ { "column": 5, "dataset": "CIFAR-100", "metric": "Percentage correct", "model": "VGG11B(3x) + LocalLearning", "row": 6, "task": "Image Classification", "value": "79.9" } ] }, { "index": 6, "records": [ { "column": 5, "dataset": "SVHN", "metric": "Percentage error", "model": "VGG8B + LocalLearning + CO", "row": 3, "task": "Image Classification", "value": "1.65" } ] }, { "index": 7, "records": [ { "column": 5, "dataset": "STL-10", "metric": "Percentage correct", "model": "VGG8B + LocalLearning + CO", "row": 3, "task": "Image Classification", "value": "80.75" } ] } ]
1901.06706v1
[ { "index": 2, "records": [ { "column": 1, "dataset": "SNLI-VE val", "metric": "Accuracy", "model": "EVE-ROI*", "row": 8, "task": "Visual Entailment", "value": "70.81" }, { "column": 5, "dataset": "SNLI-VE test", "metric": "Accuracy", "model": "EVE-ROI*", "row": 8, "task": "Visual Entailment", "value": "70.47" } ] } ]
1901.06778v2
[ { "index": 0, "records": [ { "column": 4, "dataset": "AFLW2000", "metric": "MAE", "model": "Hybrid Coarse-Fine", "row": 3, "task": "Head Pose Estimation", "value": "5.395" } ] }, { "index": 1, "records": [ { "column": 4, "dataset": "BIWI", "metric": "MAE", "model": "Hybrid Coarse-Fine", "row": 7, "task": "Head Pose Estimation", "value": "3.0174" } ] }, { "index": 2, "records": [ { "column": 4, "dataset": "AFLW", "metric": "MAE", "model": "Hybrid Coarse-Fine", "row": 5, "task": "Head Pose Estimation", "value": "5.09" } ] } ]
1901.06958v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "CapgMyo DB-a", "metric": "Accuracy", "model": "2SRNN", "row": 5, "task": "Gesture Recognition", "value": "97.1" }, { "column": 2, "dataset": "CapgMyo DB-b", "metric": "Accuracy", "model": "2SRNN", "row": 5, "task": "Gesture Recognition", "value": "97.1" }, { "column": 3, "dataset": "CapgMyo DB-c", "metric": "Accuracy", "model": "2SRNN", "row": 5, "task": "Gesture Recognition", "value": "96.8" }, { "column": 4, "dataset": "Ninapro DB-1 12 gestures", "metric": "Accuracy", "model": "2SRNN", "row": 5, "task": "Gesture Recognition", "value": "84.7" }, { "column": 5, "dataset": "Ninapro DB-1 8 gestures", "metric": "Accuracy", "model": "2SRNN", "row": 5, "task": "Gesture Recognition", "value": "90.7" } ] } ]
1901.07261v2
[ { "index": 0, "records": [ { "column": 3, "dataset": "Set5 - 2x upscaling", "metric": "PSNR", "model": "FALSR-A", "row": 12, "task": "Image Super-Resolution", "value": "37.82" }, { "column": 4, "dataset": "Set14 - 2x upscaling", "metric": "PSNR", "model": "FALSR-A", "row": 12, "task": "Image Super-Resolution", "value": "33.55" }, { "column": 5, "dataset": "BSD100 - 2x upscaling", "metric": "PSNR", "model": "FALSR-A", "row": 12, "task": "Image Super-Resolution", "value": "32.12" }, { "column": 6, "dataset": "Urban100 - 2x upscaling", "metric": "PSNR", "model": "FALSR-A", "row": 12, "task": "Image Super-Resolution", "value": "31.93" } ] } ]
1901.07291v1
[ { "index": 1, "records": [ { "column": 3, "dataset": "WMT2016 English-German", "metric": "BLEU", "model": "MLM pretraining for encoder and decoder", "row": 8, "task": "Unsupervised Machine Translation", "value": "26.4" } ] } ]
1901.07752v5
[ { "index": 1, "records": [ { "column": 1, "dataset": "MNIST-full", "metric": "Accuracy", "model": "DynAE", "row": 20, "task": "Image Clustering", "value": "0.987" }, { "column": 2, "dataset": "MNIST-full", "metric": "NMI", "model": "DynAE", "row": 20, "task": "Image Clustering", "value": "0.964" }, { "column": 3, "dataset": "MNIST-test", "metric": "Accuracy", "model": "DynAE", "row": 20, "task": "Image Clustering", "value": "0.987" }, { "column": 4, "dataset": "MNIST-test", "metric": "NMI", "model": "DynAE", "row": 20, "task": "Image Clustering", "value": "0.963" }, { "column": 5, "dataset": "USPS", "metric": "Accuracy", "model": "DynAE", "row": 20, "task": "Image Clustering", "value": "0.981" }, { "column": 6, "dataset": "USPS", "metric": "NMI", "model": "DynAE", "row": 20, "task": "Image Clustering", "value": "0.948" }, { "column": 7, "dataset": "Fashion-MNIST", "metric": "Accuracy", "model": "DynAE", "row": 20, "task": "Image Clustering", "value": "0.591" }, { "column": 8, "dataset": "Fashion-MNIST", "metric": "NMI", "model": "DynAE", "row": 20, "task": "Image Clustering", "value": "0.642" } ] } ]
1901.07884v4
[ { "index": 1, "records": [ { "column": 8, "dataset": "UTKFace", "metric": "MAE", "model": "CORAL", "row": 13, "task": "Age Estimation", "value": "5.39" } ] }, { "index": 3, "records": [ { "column": 2, "dataset": "MORPH Album2", "metric": "MAE", "model": "CORAL", "row": 4, "task": "Age Estimation", "value": "2.59" }, { "column": 3, "dataset": "AFAD", "metric": "MAE", "model": "CORAL", "row": 4, "task": "Age Estimation", "value": "3.48" }, { "column": 5, "dataset": "CACD", "metric": "MAE", "model": "CORAL", "row": 4, "task": "Age Estimation", "value": "5.35" } ] } ]
1901.08211v4
[ { "index": 0, "records": [ { "column": 7, "dataset": "Multi-Modality Whole Heart Segmentation Challenge 2017", "metric": "Average Dice", "model": "SIFA", "row": 9, "task": "Heart Segmentation", "value": "73" }, { "column": 12, "dataset": "Multi-Modality Whole Heart Segmentation Challenge 2017", "metric": "Average ASD", "model": "SIFA", "row": 9, "task": "Heart Segmentation", "value": "8.1" } ] } ]
1901.08907v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "MovieLens 1M", "metric": "AUC", "model": "MKR", "row": 8, "task": "Click-Through Rate Prediction", "value": "0.917" }, { "column": 2, "dataset": "MovieLens 1M", "metric": "Accuracy", "model": "MKR", "row": 8, "task": "Click-Through Rate Prediction", "value": "84.3" }, { "column": 3, "dataset": "Children's Book Test Common noun", "metric": "AUC", "model": "MKR", "row": 8, "task": "Click-Through Rate Prediction", "value": "0.7340000000000001" }, { "column": 4, "dataset": "Children's Book Test Common noun", "metric": "Accuracy", "model": "MKR", "row": 8, "task": "Click-Through Rate Prediction", "value": "70.4" }, { "column": 5, "dataset": "Last.FM", "metric": "AUC", "model": "MKR", "row": 8, "task": "Click-Through Rate Prediction", "value": "0.797" }, { "column": 6, "dataset": "Last.FM", "metric": "Accuracy", "model": "MKR", "row": 8, "task": "Click-Through Rate Prediction", "value": "75.2" }, { "column": 7, "dataset": "Last.FM", "metric": "AUC", "model": "MKR", "row": 8, "task": "Click-Through Rate Prediction", "value": "0.6890000000000001" }, { "column": 8, "dataset": "Last.FM", "metric": "Accuracy", "model": "MKR", "row": 8, "task": "Click-Through Rate Prediction", "value": "64.5" } ] } ]
1901.08971v3
[ { "index": 1, "records": [ { "column": 1, "dataset": "FaceForensics", "metric": "DF", "model": "XceptionNet", "row": 7, "task": "DeepFake Detection", "value": "96.36" }, { "column": 2, "dataset": "FaceForensics", "metric": "FSF", "model": "XceptionNet", "row": 7, "task": "DeepFake Detection", "value": "86.86" }, { "column": 3, "dataset": "FaceForensics", "metric": "FS", "model": "XceptionNet", "row": 7, "task": "DeepFake Detection", "value": "90.29" }, { "column": 4, "dataset": "FaceForensics", "metric": "NT", "model": "XceptionNet", "row": 7, "task": "DeepFake Detection", "value": "80.67" }, { "column": 5, "dataset": "FaceForensics", "metric": "Real", "model": "XceptionNet", "row": 7, "task": "DeepFake Detection", "value": "52.4" }, { "column": 6, "dataset": "FaceForensics", "metric": "Total Accuracy", "model": "XceptionNet", "row": 7, "task": "DeepFake Detection", "value": "70.1" } ] } ]
1901.09346v2
[ { "index": 1, "records": [ { "column": 8, "dataset": "MNIST", "metric": "Accuracy", "model": "CAE", "row": 1, "task": "Feature Selection", "value": "90.6" }, { "column": 8, "dataset": "Fashion-MNIST", "metric": "Accuracy", "model": "CAE", "row": 2, "task": "Feature Selection", "value": "67.7" }, { "column": 8, "dataset": "Coil-20", "metric": "Accuracy", "model": "CAE", "row": 3, "task": "Feature Selection", "value": "58.6" }, { "column": 8, "dataset": "Mice Protein", "metric": "Accuracy", "model": "CAE", "row": 4, "task": "Feature Selection", "value": "13.4" }, { "column": 8, "dataset": "ISOLET", "metric": "Accuracy", "model": "CAE", "row": 5, "task": "Feature Selection", "value": "68.5" }, { "column": 8, "dataset": "Activity", "metric": "Accuracy", "model": "CAE", "row": 6, "task": "Feature Selection", "value": "42" } ] } ]
1901.09891v2
[ { "index": 4, "records": [ { "column": 1, "dataset": "FGVC Aircraft", "metric": "Accuracy", "model": "WS-DAN", "row": 12, "task": "Fine-Grained Image Classification", "value": "93.0" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "Stanford Cars", "metric": "Accuracy", "model": "WS-DAN", "row": 12, "task": "Fine-Grained Image Classification", "value": "94.5" } ] } ]
1901.10125v4
[ { "index": 1, "records": [ { "column": 1, "dataset": "MSRA", "metric": "Precision", "model": "Glyce + BERT", "row": 7, "task": "Chinese Named Entity Recognition", "value": "81.87" }, { "column": 2, "dataset": "MSRA", "metric": "Recall", "model": "Glyce + BERT", "row": 7, "task": "Chinese Named Entity Recognition", "value": "81.4" }, { "column": 3, "dataset": "MSRA", "metric": "F1", "model": "Glyce + BERT", "row": 7, "task": "Chinese Named Entity Recognition", "value": "80.62" }, { "column": 1, "dataset": "MSRA", "metric": "Precision", "model": "Glyce + BERT", "row": 16, "task": "Chinese Named Entity Recognition", "value": "95.57" }, { "column": 2, "dataset": "MSRA", "metric": "Recall", "model": "Glyce + BERT", "row": 16, "task": "Chinese Named Entity Recognition", "value": "95.51" }, { "column": 3, "dataset": "MSRA", "metric": "F1", "model": "Glyce + BERT", "row": 16, "task": "Chinese Named Entity Recognition", "value": "95.54" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "Weibo NER", "metric": "Precision", "model": "Glyce + BERT", "row": 7, "task": "Chinese Named Entity Recognition", "value": "67.68" }, { "column": 2, "dataset": "Weibo NER", "metric": "Recall", "model": "Glyce + BERT", "row": 7, "task": "Chinese Named Entity Recognition", "value": "67.71" }, { "column": 3, "dataset": "Weibo NER", "metric": "F1", "model": "Glyce + BERT", "row": 7, "task": "Chinese Named Entity Recognition", "value": "67.6" }, { "column": 1, "dataset": "Resume NER", "metric": "Precision", "model": "Glyce + BERT", "row": 16, "task": "Chinese Named Entity Recognition", "value": "96.62" }, { "column": 2, "dataset": "Resume NER", "metric": "Recall", "model": "Glyce + BERT", "row": 16, "task": "Chinese Named Entity Recognition", "value": "96.48" }, { "column": 3, "dataset": "Resume NER", "metric": "F1", "model": "Glyce + BERT", "row": 16, "task": "Chinese Named Entity Recognition", "value": "96.54" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "PKU", "metric": "Precision", "model": "Glyce + BERT", "row": 6, "task": "Chinese Word Segmentation", "value": "97.1" }, { "column": 2, "dataset": "PKU", "metric": "Recall", "model": "Glyce + BERT", "row": 6, "task": "Chinese Word Segmentation", "value": "96.4" }, { "column": 3, "dataset": "PKU", "metric": "F1", "model": "Glyce + BERT", "row": 6, "task": "Chinese Word Segmentation", "value": "96.7" }, { "column": 1, "dataset": "MSR", "metric": "Precision", "model": "Glyce + BERT", "row": 14, "task": "Chinese Word Segmentation", "value": "98.2" }, { "column": 2, "dataset": "MSR", "metric": "Recall", "model": "Glyce + BERT", "row": 14, "task": "Chinese Word Segmentation", "value": "98.3" }, { "column": 3, "dataset": "MSR", "metric": "F1", "model": "Glyce + BERT", "row": 14, "task": "Chinese Word Segmentation", "value": "98.3" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "CITYU", "metric": "Precision", "model": "Glyce + BERT", "row": 6, "task": "Chinese Word Segmentation", "value": "97.9" }, { "column": 2, "dataset": "CITYU", "metric": "Recall", "model": "Glyce + BERT", "row": 6, "task": "Chinese Word Segmentation", "value": "98" }, { "column": 3, "dataset": "CITYU", "metric": "F1", "model": "Glyce + BERT", "row": 6, "task": "Chinese Word Segmentation", "value": "97.9" }, { "column": 1, "dataset": "AS", "metric": "Precision", "model": "Glyce + BERT", "row": 14, "task": "Chinese Word Segmentation", "value": "96.6" }, { "column": 2, "dataset": "AS", "metric": "Recall", "model": "Glyce + BERT", "row": 14, "task": "Chinese Word Segmentation", "value": "96.8" }, { "column": 3, "dataset": "AS", "metric": "F1", "model": "Glyce + BERT", "row": 14, "task": "Chinese Word Segmentation", "value": "96.7" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "CTB5", "metric": "Precision", "model": "Glyce + BERT", "row": 8, "task": "Chinese Part-of-Speech Tagging", "value": "96.5" }, { "column": 2, "dataset": "CTB5", "metric": "Recall", "model": "Glyce + BERT", "row": 8, "task": "Chinese Part-of-Speech Tagging", "value": "96.74" }, { "column": 3, "dataset": "CTB5", "metric": "F1", "model": "Glyce + BERT", "row": 8, "task": "Chinese Part-of-Speech Tagging", "value": "96.61" }, { "column": 1, "dataset": "CTB6", "metric": "Precision", "model": "Glyce + BERT", "row": 17, "task": "Chinese Part-of-Speech Tagging", "value": "95.56" }, { "column": 2, "dataset": "CTB6", "metric": "Recall", "model": "Glyce + BERT", "row": 17, "task": "Chinese Part-of-Speech Tagging", "value": "95.26" }, { "column": 3, "dataset": "CTB6", "metric": "F1", "model": "Glyce + BERT", "row": 17, "task": "Chinese Part-of-Speech Tagging", "value": "95.41" } ] }, { "index": 6, "records": [ { "column": 1, "dataset": "CTB9", "metric": "Precision", "model": "Glyce + BERT", "row": 8, "task": "Chinese Part-of-Speech Tagging", "value": "93.49" }, { "column": 2, "dataset": "CTB9", "metric": "Recall", "model": "Glyce + BERT", "row": 8, "task": "Chinese Part-of-Speech Tagging", "value": "92.84" }, { "column": 3, "dataset": "CTB9", "metric": "F1", "model": "Glyce + BERT", "row": 8, "task": "Chinese Part-of-Speech Tagging", "value": "93.15" }, { "column": 1, "dataset": "UD1", "metric": "Precision", "model": "Glyce + BERT", "row": 18, "task": "Chinese Part-of-Speech Tagging", "value": "96.19" }, { "column": 2, "dataset": "UD1", "metric": "Recall", "model": "Glyce + BERT", "row": 18, "task": "Chinese Part-of-Speech Tagging", "value": "96.1" }, { "column": 3, "dataset": "UD1", "metric": "F1", "model": "Glyce + BERT", "row": 18, "task": "Chinese Part-of-Speech Tagging", "value": "96.14" } ] }, { "index": 7, "records": [ { "column": 1, "dataset": "BQ", "metric": "Precision", "model": "Glyce + BERT", "row": 6, "task": "Chinese Sentence Pair Classification", "value": "84.2" }, { "column": 2, "dataset": "BQ", "metric": "Recall", "model": "Glyce + BERT", "row": 6, "task": "Chinese Sentence Pair Classification", "value": "86.9" }, { "column": 3, "dataset": "BQ", "metric": "F1", "model": "Glyce + BERT", "row": 6, "task": "Chinese Sentence Pair Classification", "value": "85.5" }, { "column": 4, "dataset": "BQ", "metric": "Accuracy", "model": "Glyce + BERT", "row": 6, "task": "Chinese Sentence Pair Classification", "value": "85.8" }, { "column": 4, "dataset": "XNLI", "metric": "Accuracy", "model": "Glyce + BERT", "row": 14, "task": "Chinese Sentence Pair Classification", "value": "79.2" } ] }, { "index": 8, "records": [ { "column": 1, "dataset": "LCQMC", "metric": "Precision", "model": "Glyce + BERT", "row": 6, "task": "Chinese Sentence Pair Classification", "value": "86.8" }, { "column": 2, "dataset": "LCQMC", "metric": "Recall", "model": "Glyce + BERT", "row": 6, "task": "Chinese Sentence Pair Classification", "value": "91.2" }, { "column": 3, "dataset": "LCQMC", "metric": "F1", "model": "Glyce + BERT", "row": 6, "task": "Chinese Sentence Pair Classification", "value": "88.8" }, { "column": 4, "dataset": "LCQMC", "metric": "Accuracy", "model": "Glyce + BERT", "row": 6, "task": "Chinese Sentence Pair Classification", "value": "0.887" }, { "column": 1, "dataset": "NLPCC-DBQA", "metric": "Precision", "model": "Glyce + BERT", "row": 14, "task": "Chinese Sentence Pair Classification", "value": "81.1" }, { "column": 2, "dataset": "NLPCC-DBQA", "metric": "Recall", "model": "Glyce + BERT", "row": 14, "task": "Chinese Sentence Pair Classification", "value": "85.8" }, { "column": 3, "dataset": "NLPCC-DBQA", "metric": "F1", "model": "Glyce + BERT", "row": 14, "task": "Chinese Sentence Pair Classification", "value": "83.4" } ] }, { "index": 9, "records": [ { "column": 1, "dataset": "ChnSentiCorp", "metric": "Accuracy", "model": "Glyce + BERT", "row": 5, "task": "Chinese Sentence Pair Classification", "value": "95.9" }, { "column": 2, "dataset": "Fudan corpus", "metric": "Accuracy", "model": "Glyce + BERT", "row": 5, "task": "Chinese Sentence Pair Classification", "value": "99.8" }, { "column": 3, "dataset": "iFeng", "metric": "Accuracy", "model": "Glyce + BERT", "row": 5, "task": "Chinese Sentence Pair Classification", "value": "87.5" } ] }, { "index": 10, "records": [ { "column": 1, "dataset": "Chinese Pennbank", "metric": "UAS", "model": "Biaffine + Glyce", "row": 6, "task": "Chinese Dependency Parsing", "value": "90.2" }, { "column": 2, "dataset": "Chinese Pennbank", "metric": "LAS", "model": "Biaffine + Glyce", "row": 6, "task": "Chinese Dependency Parsing", "value": "89" } ] }, { "index": 11, "records": [ { "column": 1, "dataset": "CoNLL-2009", "metric": "Precision", "model": "k-order pruning + Glyce", "row": 5, "task": "Chinese Semantic Role Labeling", "value": "85.4" }, { "column": 2, "dataset": "CoNLL-2009", "metric": "Recall", "model": "k-order pruning + Glyce", "row": 5, "task": "Chinese Semantic Role Labeling", "value": "82.1" }, { "column": 3, "dataset": "CoNLL-2009", "metric": "F1", "model": "k-order pruning + Glyce", "row": 5, "task": "Chinese Semantic Role Labeling", "value": "83.7" } ] } ]
1901.10234v2
[ { "index": 2, "records": [ { "column": 1, "dataset": "DBLP", "metric": "AUC", "model": "Event2vec", "row": 1, "task": "Link Prediction", "value": "90.1" }, { "column": 2, "dataset": "Douban", "metric": "AUC", "model": "Event2vec", "row": 1, "task": "Link Prediction", "value": "82.3" }, { "column": 3, "dataset": "IMDb", "metric": "AUC", "model": "Event2vec", "row": 1, "task": "Link Prediction", "value": "89.4" }, { "column": 4, "dataset": "Yelp", "metric": "AUC", "model": "Event2vec", "row": 1, "task": "Link Prediction", "value": "86.2" } ] } ]
1901.10323v3
[ { "index": 2, "records": [ { "column": 3, "dataset": "EgoGesture", "metric": "Accuracy", "model": "ResNeXt-101", "row": 7, "task": "Hand Gesture Recognition", "value": "94.03" } ] }, { "index": 5, "records": [ { "column": 2, "dataset": "NVGesture", "metric": "Accuracy", "model": "ResNeXt-101", "row": 4, "task": "Hand Gesture Recognition", "value": "83.82" } ] } ]
1901.10430v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "WMT2014 English-French", "metric": "BLEU score", "model": "LightConv", "row": 7, "task": "Machine Translation", "value": "28.9" }, { "column": 3, "dataset": "WMT2014 English-French", "metric": "BLEU score", "model": "LightConv", "row": 7, "task": "Machine Translation", "value": "43.1" }, { "column": 2, "dataset": "WMT2014 English-German", "metric": "BLEU score", "model": "DynamicConv", "row": 8, "task": "Machine Translation", "value": "29.7" }, { "column": 3, "dataset": "WMT2014 English-German", "metric": "BLEU score", "model": "DynamicConv", "row": 8, "task": "Machine Translation", "value": "43.2" } ] }, { "index": 1, "records": [ { "column": 2, "dataset": "IWSLT2014 German-English", "metric": "BLEU score", "model": "LightConv", "row": 4, "task": "Machine Translation", "value": "34.8" }, { "column": 3, "dataset": "WMT 2017 English-Chinese", "metric": "BLEU score", "model": "LightConv", "row": 4, "task": "Machine Translation", "value": "24.3" }, { "column": 2, "dataset": "IWSLT2014 German-English", "metric": "BLEU score", "model": "DynamicConv", "row": 5, "task": "Machine Translation", "value": "35.2" }, { "column": 3, "dataset": "WMT 2017 English-Chinese", "metric": "BLEU score", "model": "DynamicConv", "row": 5, "task": "Machine Translation", "value": "24.4" } ] }, { "index": 3, "records": [ { "column": 3, "dataset": "One Billion Word", "metric": "PPL", "model": "DynamicConv", "row": 5, "task": "Language Modelling", "value": "26.67" } ] }, { "index": 4, "records": [ { "column": 2, "dataset": "CNN / Daily Mail", "metric": "ROUGE-1", "model": "LightConv", "row": 4, "task": "Document Summarization", "value": "39.52" }, { "column": 3, "dataset": "CNN / Daily Mail", "metric": "ROUGE-2", "model": "LightConv", "row": 4, "task": "Document Summarization", "value": "15.97" }, { "column": 4, "dataset": "CNN / Daily Mail", "metric": "ROUGE-L", "model": "LightConv", "row": 4, "task": "Document Summarization", "value": "36.51" }, { "column": 2, "dataset": "CNN / Daily Mail", "metric": "ROUGE-1", "model": "DynamicConv", "row": 5, "task": "Document Summarization", "value": "39.84" }, { "column": 3, "dataset": "CNN / Daily Mail", "metric": "ROUGE-2", "model": "DynamicConv", "row": 5, "task": "Document Summarization", "value": "16.25" }, { "column": 4, "dataset": "CNN / Daily Mail", "metric": "ROUGE-L", "model": "DynamicConv", "row": 5, "task": "Document Summarization", "value": "36.73" } ] } ]
1901.10995v2
[ { "index": 4, "records": [ { "column": 1, "dataset": "Atari 2600 Montezuma's Revenge", "metric": "Score", "model": "Go-Explore", "row": 26, "task": "Atari Games", "value": "43763" }, { "column": 2, "dataset": "Atari 2600 Pitfall!", "metric": "Score", "model": "Go-Explore", "row": 28, "task": "Atari Games", "value": "107363" } ] } ]
1901.11117v4
[ { "index": 1, "records": [ { "column": 7, "dataset": "WMT2014 English-German", "metric": "BLEU score", "model": "Evolved Transformer Base", "row": 1, "task": "Machine Translation", "value": "28.4" }, { "column": 7, "dataset": "WMT2014 English-German", "metric": "BLEU score", "model": "Evolved Transformer Big", "row": 2, "task": "Machine Translation", "value": "29.3" }, { "column": 7, "dataset": "WMT2014 English-French", "metric": "BLEU score", "model": "Evolved Transformer Base", "row": 4, "task": "Machine Translation", "value": "40.6" }, { "column": 7, "dataset": "WMT2014 English-French", "metric": "BLEU score", "model": "Evolved Transformer Big", "row": 5, "task": "Machine Translation", "value": "41.3" }, { "column": 7, "dataset": "WMT2014 English-Czech", "metric": "BLEU score", "model": "Evolved Transformer Base", "row": 6, "task": "Machine Translation", "value": "27.6" }, { "column": 7, "dataset": "WMT2014 English-Czech", "metric": "BLEU score", "model": "Evolved Transformer Big", "row": 7, "task": "Machine Translation", "value": "28.2" }, { "column": 5, "dataset": "One Billion Word", "metric": "PPL", "model": "Evolved Transformer Big", "row": 8, "task": "Language Modelling", "value": "28.6" } ] }, { "index": 3, "records": [ { "column": 2, "dataset": "WMT2014 English-German", "metric": "BLEU score", "model": "Evolved Transformer", "row": 8, "task": "Machine Translation", "value": "29.8" }, { "column": 3, "dataset": "WMT2014 English-German", "metric": "SacreBLEU", "model": "Evolved Transformer", "row": 8, "task": "Machine Translation", "value": "29.2" } ] } ]
1901.11195v2
[ { "index": 0, "records": [ { "column": 4, "dataset": "CASIA", "metric": "F1", "model": "IrisParseNet (ASPP) CASIA", "row": 11, "task": "Iris Segmentation", "value": "94.30" }, { "column": 6, "dataset": "CASIA", "metric": "mIoU", "model": "IrisParseNet (ASPP) CASIA", "row": 11, "task": "Iris Segmentation", "value": "89.4" }, { "column": 4, "dataset": "UBIRIS", "metric": "F1", "model": "IrisParseNet (ASPP)", "row": 12, "task": "Iris Segmentation", "value": "91.82" }, { "column": 6, "dataset": "UBIRIS", "metric": "mIoU", "model": "IrisParseNet (ASPP)", "row": 12, "task": "Iris Segmentation", "value": "85.39" }, { "column": 4, "dataset": "MICHE", "metric": "F1", "model": "IrisParseNet (PSP)", "row": 16, "task": "Iris Segmentation", "value": "91.5" }, { "column": 6, "dataset": "MICHE", "metric": "mIoU", "model": "IrisParseNet (PSP)", "row": 16, "task": "Iris Segmentation", "value": "85.07" } ] } ]
1901.11365v2
[ { "index": 1, "records": [ { "column": 1, "dataset": "Hanzi", "metric": "PSNR", "model": "DnCNN (n2t)", "row": 9, "task": "Color Image Denoising", "value": "13.9" }, { "column": 2, "dataset": "ImageNet", "metric": "PSNR", "model": "DnCNN (n2t)", "row": 9, "task": "Color Image Denoising", "value": "22" }, { "column": 3, "dataset": "CellNet", "metric": "PSNR", "model": "DnCNN (n2t)", "row": 9, "task": "Color Image Denoising", "value": "34.4" } ] } ]
1901.11504v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "SST-2 Binary classification", "metric": "Accuracy", "model": "MT-DNN", "row": 6, "task": "Sentiment Analysis", "value": "95.6" } ] } ]
1902.00038v2
[ { "index": 2, "records": [ { "column": 1, "dataset": "VQA v2 test-dev", "metric": "Accuracy", "model": "BLOCK", "row": 10, "task": "Visual Question Answering", "value": "67.58" }, { "column": 5, "dataset": "VQA v2 test-std", "metric": "Accuracy", "model": "BLOCK", "row": 10, "task": "Visual Question Answering", "value": "67.92" } ] }, { "index": 4, "records": [ { "column": 2, "dataset": "VRD Predicate Detection", "metric": "R@50", "model": "BLOCK", "row": 10, "task": "Visual Relationship Detection", "value": "86.58" }, { "column": 3, "dataset": "VRD Predicate Detection", "metric": "R@100", "model": "BLOCK", "row": 10, "task": "Visual Relationship Detection", "value": "92.58" }, { "column": 4, "dataset": "VRD Phrase Detection", "metric": "R@50", "model": "BLOCK", "row": 10, "task": "Visual Relationship Detection", "value": "26.32" }, { "column": 5, "dataset": "VRD Phrase Detection", "metric": "R@100", "model": "BLOCK", "row": 10, "task": "Visual Relationship Detection", "value": "28.96" }, { "column": 6, "dataset": "VRD Relationship Detection", "metric": "R@50", "model": "BLOCK", "row": 10, "task": "Visual Relationship Detection", "value": "19.06" }, { "column": 7, "dataset": "VRD Relationship Detection", "metric": "R@100", "model": "BLOCK", "row": 10, "task": "Visual Relationship Detection", "value": "20.96" } ] } ]
1902.00301v2
[ { "index": 0, "records": [ { "column": 6, "dataset": "HYDICE DC Mall", "metric": "MPSNR", "model": "Deep HS (prior 3D)", "row": 3, "task": "Hyperspectral Image Denoising", "value": "23.24" }, { "column": 6, "dataset": "HYDICE DC Mall", "metric": "MSSIM", "model": "Deep HS (prior 3D)", "row": 4, "task": "Hyperspectral Image Denoising", "value": "0.852" }, { "column": 6, "dataset": "HYDICE DC Mall", "metric": "SAM", "model": "Deep HS (prior 3D)", "row": 5, "task": "Hyperspectral Image Denoising", "value": "9.91" }, { "column": 6, "dataset": "Indian Pines", "metric": "MPSNR", "model": "Deep HS (prior 3D)", "row": 9, "task": "Hyperspectral Image Inpainting", "value": "35.34" }, { "column": 6, "dataset": "Indian Pines", "metric": "MSSIM", "model": "Deep HS (prior 3D)", "row": 10, "task": "Hyperspectral Image Inpainting", "value": "0.966" }, { "column": 6, "dataset": "Indian Pines", "metric": "SAM", "model": "Deep HS (prior 3D)", "row": 11, "task": "Hyperspectral Image Inpainting", "value": "1.133" }, { "column": 6, "dataset": "ROSIS-03", "metric": "MPSNR", "model": "Deep HS (prior 3D)", "row": 15, "task": "Hyperspectral Image Super-Resolution", "value": "32.31" }, { "column": 6, "dataset": "ROSIS-03", "metric": "MSSIM", "model": "Deep HS (prior 3D)", "row": 16, "task": "Hyperspectral Image Super-Resolution", "value": "0.945" }, { "column": 6, "dataset": "ROSIS-03", "metric": "SAM", "model": "Deep HS (prior 3D)", "row": 17, "task": "Hyperspectral Image Super-Resolution", "value": "4.692" } ] } ]
1902.01019v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "FER2013", "metric": "Accuracy", "model": "DeepEmotion", "row": 5, "task": "Facial Expression Recognition", "value": "70.02" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "FERG", "metric": "Accuracy", "model": "DeepEmotion", "row": 4, "task": "Facial Expression Recognition", "value": "99.3" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "JAFFE", "metric": "Accuracy", "model": "DeepEmotion", "row": 4, "task": "Facial Expression Recognition", "value": "92.8" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "CK+", "metric": "Accuracy (10-fold)", "model": "DeepEmotion", "row": 9, "task": "Facial Expression Recognition", "value": "98" } ] } ]
1902.01275v2
[ { "index": 3, "records": [ { "column": 7, "dataset": "T-LESS", "metric": "Mean Recall", "model": "Augmented Autoencoder", "row": 33, "task": "6D Pose Estimation using RGB", "value": "36.79" }, { "column": 8, "dataset": "T-LESS", "metric": "Mean Recall", "model": "Augmented Autoencoder", "row": 33, "task": "6D Pose Estimation using RGBD", "value": "72.76" } ] }, { "index": 4, "records": [ { "column": 2, "dataset": "LineMOD", "metric": "Mean ADD", "model": "Augmented Autoencoder", "row": 16, "task": "6D Pose Estimation using RGB", "value": "28.65" }, { "column": 6, "dataset": "LineMOD", "metric": "Mean ADD", "model": "Augmented Autoencoder", "row": 16, "task": "6D Pose Estimation using RGBD", "value": "64.67" } ] } ]
1902.01378v2
[ { "index": 2, "records": [ { "column": 1, "dataset": "Obstacle Tower (No Gen) fixed", "metric": "Score", "model": "PPO", "row": 1, "task": "General Reinforcement Learning", "value": "5" }, { "column": 2, "dataset": "Obstacle Tower (No Gen) varied", "metric": "Score", "model": "PPO", "row": 1, "task": "General Reinforcement Learning", "value": "1" }, { "column": 3, "dataset": "Obstacle Tower (No Gen) fixed", "metric": "Score", "model": "RNB", "row": 1, "task": "General Reinforcement Learning", "value": "7" }, { "column": 4, "dataset": "Obstacle Tower (No Gen) varied", "metric": "Score", "model": "RNB", "row": 1, "task": "General Reinforcement Learning", "value": "4.8" }, { "column": 1, "dataset": "Obstacle Tower (Weak Gen) fixed", "metric": "Score", "model": "PPO", "row": 2, "task": "General Reinforcement Learning", "value": "1.2" }, { "column": 2, "dataset": "Obstacle Tower (Weak Gen) varied", "metric": "Score", "model": "PPO", "row": 2, "task": "General Reinforcement Learning", "value": "0.8" }, { "column": 3, "dataset": "Obstacle Tower (Weak Gen) fixed", "metric": "Score", "model": "RNB", "row": 2, "task": "General Reinforcement Learning", "value": "1" }, { "column": 4, "dataset": "Obstacle Tower (Weak Gen) varied", "metric": "Score", "model": "RNB", "row": 2, "task": "General Reinforcement Learning", "value": "3.4" }, { "column": 1, "dataset": "Obstacle Tower (Strong Gen) fixed", "metric": "Score", "model": "PPO", "row": 3, "task": "General Reinforcement Learning", "value": "0.6" }, { "column": 2, "dataset": "Obstacle Tower (Strong Gen) varied", "metric": "Score", "model": "PPO", "row": 3, "task": "General Reinforcement Learning", "value": "0.6" }, { "column": 3, "dataset": "Obstacle Tower (Strong Gen) fixed", "metric": "Score", "model": "RNB", "row": 3, "task": "General Reinforcement Learning", "value": "0.6" }, { "column": 4, "dataset": "Obstacle Tower (Strong Gen) varied", "metric": "Score", "model": "RNB", "row": 3, "task": "General Reinforcement Learning", "value": "0.8" } ] } ]
1902.01831v2
[ { "index": 0, "records": [ { "column": 5, "dataset": "300W", "metric": "Fullset (public)", "model": "3DDE (Inter-pupil Norm)", "row": 22, "task": "Face Alignment", "value": "4.39" }, { "column": 6, "dataset": "300W", "metric": "Fullset (public)", "model": "3DDE (Inter-ocular Norm)", "row": 22, "task": "Face Alignment", "value": "3.13" }, { "column": 6, "dataset": "300W", "metric": "NME", "model": "3DDE (Inter-ocular Norm)", "row": 22, "task": "Facial Landmark Detection", "value": "3.13" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "COFW", "metric": "Mean Error Rate", "model": "3DDE (Inter-pupil Norm)", "row": 10, "task": "Face Alignment", "value": "5.11" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "WFLW", "metric": "ME (%, all) ", "model": "3DDE (Inter-ocular Norm)", "row": 7, "task": "Face Alignment", "value": "4.68" }, { "column": 2, "dataset": "WFLW", "metric": "[email protected] (all)", "model": "3DDE (Inter-ocular Norm)", "row": 7, "task": "Face Alignment", "value": "0.5544" }, { "column": 3, "dataset": "WFLW", "metric": "[email protected](%, all)", "model": "3DDE (Inter-ocular Norm)", "row": 7, "task": "Face Alignment", "value": "5.04" } ] } ]
1902.02527v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "OMNIGLOT - 1-Shot, 5-way", "metric": "Accuracy", "model": "APL", "row": 7, "task": "Few-Shot Image Classification", "value": "97.9" }, { "column": 2, "dataset": "OMNIGLOT - 5-Shot, 5-way", "metric": "Accuracy", "model": "APL", "row": 7, "task": "Few-Shot Image Classification", "value": "99.9" }, { "column": 3, "dataset": "OMNIGLOT - 1-Shot, 20-way", "metric": "Accuracy", "model": "APL", "row": 7, "task": "Few-Shot Image Classification", "value": "97.2" }, { "column": 4, "dataset": "OMNIGLOT - 5-Shot, 20-way", "metric": "Accuracy", "model": "APL", "row": 7, "task": "Few-Shot Image Classification", "value": "97.6" }, { "column": 5, "dataset": "OMNIGLOT - 1-Shot, 423 way", "metric": "Accuracy", "model": "APL", "row": 7, "task": "Few-Shot Image Classification", "value": "73.5" }, { "column": 6, "dataset": "OMNIGLOT - 5-Shot, 423 way", "metric": "Accuracy", "model": "APL", "row": 7, "task": "Few-Shot Image Classification", "value": "88" }, { "column": 7, "dataset": "OMNIGLOT - 1-Shot, 1000 way", "metric": "Accuracy", "model": "APL", "row": 7, "task": "Few-Shot Image Classification", "value": "68.9" }, { "column": 8, "dataset": "OMNIGLOT - 5-Shot, 1000 way", "metric": "Accuracy", "model": "APL", "row": 7, "task": "Few-Shot Image Classification", "value": "78.9" } ] } ]
1902.02721v4
[ { "index": 0, "records": [ { "column": 1, "dataset": "MUTAG", "metric": "Accuracy", "model": "VRGC", "row": 9, "task": "Graph Classification", "value": "86.3" }, { "column": 2, "dataset": "ENZYMES", "metric": "Accuracy", "model": "VRGC", "row": 9, "task": "Graph Classification", "value": "48.4" }, { "column": 3, "dataset": "PROTEINS", "metric": "Accuracy", "model": "VRGC", "row": 9, "task": "Graph Classification", "value": "74.8" }, { "column": 4, "dataset": "NCI1", "metric": "Accuracy", "model": "VRGC", "row": 9, "task": "Graph Classification", "value": "80.7" } ] } ]
1902.02804v2
[ { "index": 1, "records": [ { "column": 1, "dataset": "OTB-2013", "metric": "AUC", "model": "SiamVGG", "row": 7, "task": "Visual Object Tracking", "value": "0.665" }, { "column": 2, "dataset": "OTB-50", "metric": "AUC", "model": "SiamVGG", "row": 7, "task": "Visual Object Tracking", "value": "0.61" }, { "column": 3, "dataset": "OTB-100", "metric": "AUC", "model": "SiamVGG", "row": 7, "task": "Visual Object Tracking", "value": "0.654" } ] } ]
1902.02860v3
[ { "index": 0, "records": [ { "column": 4, "dataset": "2018 Syngenta (2016 val)", "metric": "RMSE", "model": "DNN", "row": 1, "task": "Crop Yield Prediction", "value": "12.79" } ] } ]
1902.03356v3
[ { "index": 1, "records": [ { "column": 1, "dataset": "OMNIGLOT - 1-Shot, 5-way", "metric": "Accuracy", "model": "MC2+", "row": 8, "task": "Few-Shot Image Classification", "value": "99.97" }, { "column": 2, "dataset": "OMNIGLOT - 5-Shot, 5-way", "metric": "Accuracy", "model": "MC2+", "row": 8, "task": "Few-Shot Image Classification", "value": "99.89" }, { "column": 3, "dataset": "OMNIGLOT - 1-Shot, 20-way", "metric": "Accuracy", "model": "MC2+", "row": 8, "task": "Few-Shot Image Classification", "value": "88" }, { "column": 4, "dataset": "OMNIGLOT - 5-Shot, 20-way", "metric": "Accuracy", "model": "MC2+", "row": 8, "task": "Few-Shot Image Classification", "value": "99.65" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "MC2+", "row": 10, "task": "Few-Shot Image Classification", "value": "54.9" }, { "column": 2, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "MC2+", "row": 10, "task": "Few-Shot Image Classification", "value": "55.73" }, { "column": 3, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "MC2+", "row": 10, "task": "Few-Shot Image Classification", "value": "69.46" }, { "column": 4, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "MC2+", "row": 10, "task": "Few-Shot Image Classification", "value": "70.33" } ] } ]
1902.03748v3
[ { "index": 0, "records": [ { "column": 2, "dataset": "ActEV", "metric": "ADE-8/12", "model": "Next", "row": 6, "task": "Trajectory Prediction", "value": "17.99" }, { "column": 3, "dataset": "ActEV", "metric": "FDE-8/12", "model": "Next", "row": 6, "task": "Trajectory Prediction", "value": "37.24" } ] }, { "index": 1, "records": [ { "column": 3, "dataset": "ActEV", "metric": "mAP", "model": "Next", "row": 1, "task": "Activity Prediction", "value": "0.192" } ] }, { "index": 2, "records": [ { "column": 7, "dataset": "ETH/UCY", "metric": "ADE-8/12", "model": "Next", "row": 8, "task": "Trajectory Prediction", "value": "0.46" } ] } ]
1902.04103v3
[ { "index": 1, "records": [ { "column": 1, "dataset": "PASCAL VOC 2007", "metric": "MAP", "model": "YOLOv3 (sync. BN + rand. shapes + cos. lr + lbl. smoothing + mixup)", "row": 7, "task": "Object Detection", "value": "83.68" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "PASCAL VOC 2007", "metric": "MAP", "model": "Faster-RCNN (cos. lr, label smoothing, mixup)", "row": 5, "task": "Object Detection", "value": "81.32" } ] } ]
1902.04478v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "ScanNet", "metric": "mAP", "model": "MASC", "row": 4, "task": "3D Instance Segmentation", "value": "0.447" } ] } ]