arxiv_id
stringlengths 11
12
| tables
listlengths 1
11
|
---|---|
1809.04184v1 | [
{
"index": 1,
"records": [
{
"column": 20,
"dataset": "Cityscapes test",
"metric": "Mean IoU (class)",
"model": "Dense Prediction Cell",
"row": 4,
"task": "Semantic Segmentation",
"value": "82.7"
}
]
},
{
"index": 2,
"records": [
{
"column": 8,
"dataset": "PASCAL-Person-Part",
"metric": "mIoU",
"model": "DPC",
"row": 4,
"task": "Human Part Segmentation",
"value": "71.34"
}
]
},
{
"index": 3,
"records": [
{
"column": 21,
"dataset": "PASCAL VOC 2012 test",
"metric": "Mean IoU",
"model": "DPC",
"row": 6,
"task": "Semantic Segmentation",
"value": "87.9"
}
]
}
] |
1809.04427v1 | [
{
"index": 2,
"records": [
{
"column": 2,
"dataset": "MOT16",
"metric": "MOTA",
"model": "MOTDT",
"row": 9,
"task": "Online Multi-Object Tracking",
"value": "47.6"
}
]
}
] |
1809.04474v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "Atari-57",
"metric": "Medium Human-Normalized Score",
"model": "PopArt-IMPALA",
"row": 3,
"task": "Atari Games",
"value": "110.7"
},
{
"column": 6,
"dataset": "Dmlab-30",
"metric": "Medium Human-Normalized Score",
"model": "PopArt-IMPALA",
"row": 3,
"task": "Visual Navigation",
"value": "72.8%"
}
]
}
] |
1809.04987v3 | [
{
"index": 1,
"records": [
{
"column": 16,
"dataset": "Human3.6M",
"metric": "Average MPJPE (mm)",
"model": "Synthetic Occlusion Aug+ Vol Heatmaps",
"row": 15,
"task": "3D Human Pose Estimation",
"value": "54.2"
}
]
}
] |
1809.08545v3 | [
{
"index": 3,
"records": [
{
"column": 7,
"dataset": "COCO test-dev",
"metric": "box AP",
"model": "ResNet-50-FPN Mask R-CNN + KL Loss + var voting + soft-NMS",
"row": 12,
"task": "Object Detection",
"value": "40.4"
}
]
}
] |
1809.09478v3 | [
{
"index": 0,
"records": [
{
"column": 22,
"dataset": "GTAV-to-Cityscapes Labels",
"metric": "mIoU",
"model": "CLAN",
"row": 15,
"task": "Synthetic-to-Real Translation",
"value": "43.2"
}
]
}
] |
1810.01367v3 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "UCI POWER",
"metric": "NLL",
"model": "FFJORD",
"row": 3,
"task": "Density Estimation",
"value": "-0.46"
},
{
"column": 2,
"dataset": "UCI GAS",
"metric": "NLL",
"model": "FFJORD",
"row": 3,
"task": "Density Estimation",
"value": "-8.59"
},
{
"column": 3,
"dataset": "UCI HEPMASS",
"metric": "NLL",
"model": "FFJORD",
"row": 3,
"task": "Density Estimation",
"value": "14.92"
},
{
"column": 4,
"dataset": "UCI MINIBOONE",
"metric": "NLL",
"model": "FFJORD",
"row": 3,
"task": "Density Estimation",
"value": "10.43"
},
{
"column": 5,
"dataset": "BSDS300",
"metric": "NLL",
"model": "FFJORD",
"row": 3,
"task": "Density Estimation",
"value": "-157.4"
},
{
"column": 6,
"dataset": "MNIST",
"metric": "NLL",
"model": "FFJORD",
"row": 3,
"task": "Density Estimation",
"value": "0.99"
},
{
"column": 7,
"dataset": "CIFAR-10",
"metric": "NLL",
"model": "FFJORD",
"row": 3,
"task": "Density Estimation",
"value": "3.4"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "MNIST",
"metric": "Negative ELBO",
"model": "FFJORD",
"row": 5,
"task": "Density Estimation",
"value": "82.82"
},
{
"column": 2,
"dataset": "OMNIGLOT",
"metric": "Negative ELBO",
"model": "FFJORD",
"row": 5,
"task": "Density Estimation",
"value": "98.33"
},
{
"column": 3,
"dataset": "Freyfaces",
"metric": "Negative ELBO",
"model": "FFJORD",
"row": 5,
"task": "Density Estimation",
"value": "4.39"
},
{
"column": 4,
"dataset": "Caltech-101",
"metric": "Negative ELBO",
"model": "FFJORD",
"row": 5,
"task": "Density Estimation",
"value": "104.03"
}
]
}
] |
1810.04246v2 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "USPS",
"metric": "NMI",
"model": "SR-K-means",
"row": 3,
"task": "Image Clustering",
"value": "0.936"
},
{
"column": 2,
"dataset": "USPS",
"metric": "Accuracy",
"model": "SR-K-means",
"row": 3,
"task": "Image Clustering",
"value": "0.974"
},
{
"column": 3,
"dataset": "MNIST-test",
"metric": "NMI",
"model": "SR-K-means",
"row": 3,
"task": "Image Clustering",
"value": "0.873"
},
{
"column": 4,
"dataset": "MNIST-test",
"metric": "Accuracy",
"model": "SR-K-means",
"row": 3,
"task": "Image Clustering",
"value": "0.863"
},
{
"column": 5,
"dataset": "MNIST-full",
"metric": "NMI",
"model": "SR-K-means",
"row": 3,
"task": "Image Clustering",
"value": "0.866"
},
{
"column": 6,
"dataset": "MNIST-full",
"metric": "Accuracy",
"model": "SR-K-means",
"row": 3,
"task": "Image Clustering",
"value": "0.939"
},
{
"column": 7,
"dataset": "YouTube Faces DB",
"metric": "NMI",
"model": "SR-K-means",
"row": 3,
"task": "Image Clustering",
"value": "0.806"
},
{
"column": 8,
"dataset": "YouTube Faces DB",
"metric": "Accuracy",
"model": "SR-K-means",
"row": 3,
"task": "Image Clustering",
"value": "0.605"
},
{
"column": 9,
"dataset": "CMU-PIE",
"metric": "NMI",
"model": "SR-K-means",
"row": 3,
"task": "Image Clustering",
"value": "0.945"
},
{
"column": 10,
"dataset": "CMU-PIE",
"metric": "Accuracy",
"model": "SR-K-means",
"row": 3,
"task": "Image Clustering",
"value": "0.902"
},
{
"column": 11,
"dataset": "FRGC",
"metric": "NMI",
"model": "SR-K-means",
"row": 3,
"task": "Image Clustering",
"value": "0.487"
},
{
"column": 12,
"dataset": "FRGC",
"metric": "Accuracy",
"model": "SR-K-means",
"row": 3,
"task": "Image Clustering",
"value": "0.413"
}
]
}
] |
1810.04805v2 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "Quora Question Pairs",
"metric": "Accuracy",
"model": "BERT (single model)",
"row": 6,
"task": "Question Answering",
"value": "72.1"
}
]
},
{
"index": 1,
"records": [
{
"column": 4,
"dataset": "SQuAD1.1 dev",
"metric": "F1",
"model": "BERT base (single)",
"row": 8,
"task": "Question Answering",
"value": "88.5"
},
{
"column": 1,
"dataset": "SQuAD1.1 dev",
"metric": "EM",
"model": "BERT base (single)",
"row": 10,
"task": "Question Answering",
"value": "80.8"
},
{
"column": 1,
"dataset": "SQuAD1.1 dev",
"metric": "EM",
"model": "BERT large (single)",
"row": 11,
"task": "Question Answering",
"value": "84.1"
},
{
"column": 2,
"dataset": "SQuAD1.1 dev",
"metric": "F1",
"model": "BERT large (single)",
"row": 11,
"task": "Question Answering",
"value": "90.9"
},
{
"column": 1,
"dataset": "SQuAD1.1 dev",
"metric": "EM",
"model": "BERT large (+TriviaQA)",
"row": 13,
"task": "Question Answering",
"value": "84.2"
},
{
"column": 2,
"dataset": "SQuAD1.1 dev",
"metric": "F1",
"model": "BERT large (+TriviaQA)",
"row": 13,
"task": "Question Answering",
"value": "91.1"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "SQuAD2.0 dev",
"metric": "EM",
"model": "BERT large",
"row": 10,
"task": "Question Answering",
"value": "78.7"
},
{
"column": 2,
"dataset": "SQuAD2.0 dev",
"metric": "F1",
"model": "BERT large",
"row": 10,
"task": "Question Answering",
"value": "81.9"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "SWAG",
"metric": "Dev",
"model": "BERT Base",
"row": 4,
"task": "Common Sense Reasoning",
"value": "81.6"
},
{
"column": 1,
"dataset": "SWAG",
"metric": "Dev",
"model": "BERT Large",
"row": 5,
"task": "Common Sense Reasoning",
"value": "86.6"
},
{
"column": 2,
"dataset": "SWAG",
"metric": "Test",
"model": "BERT Large",
"row": 5,
"task": "Common Sense Reasoning",
"value": "86.3"
}
]
},
{
"index": 6,
"records": [
{
"column": 2,
"dataset": "CoNLL 2003 (English)",
"metric": "F1",
"model": "BERT Large",
"row": 5,
"task": "Named Entity Recognition",
"value": "92.8"
},
{
"column": 2,
"dataset": "CoNLL 2003 (English)",
"metric": "F1",
"model": "BERT Base",
"row": 6,
"task": "Named Entity Recognition",
"value": "92.4"
}
]
}
] |
1810.09155v2 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "MUTAG",
"metric": "Accuracy",
"model": "SF + RFC",
"row": 6,
"task": "Graph Classification",
"value": "88.4"
},
{
"column": 2,
"dataset": "PTC",
"metric": "Accuracy",
"model": "SF + RFC",
"row": 6,
"task": "Graph Classification",
"value": "62.8"
},
{
"column": 3,
"dataset": "ENZYMES",
"metric": "Accuracy",
"model": "SF + RFC",
"row": 6,
"task": "Graph Classification",
"value": "43.7"
},
{
"column": 4,
"dataset": "PROTEINS",
"metric": "Accuracy",
"model": "SF + RFC",
"row": 6,
"task": "Graph Classification",
"value": "73.6"
},
{
"column": 5,
"dataset": "D&D",
"metric": "Accuracy",
"model": "SF + RFC",
"row": 6,
"task": "Graph Classification",
"value": "24.6"
},
{
"column": 6,
"dataset": "NCI1",
"metric": "Accuracy",
"model": "SF + RFC",
"row": 6,
"task": "Graph Classification",
"value": "75.2"
}
]
}
] |
1810.09502v3 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "OMNIGLOT - 1-Shot, 20-way",
"metric": "Accuracy",
"model": "MAML++",
"row": 11,
"task": "Few-Shot Image Classification",
"value": "97.65"
},
{
"column": 2,
"dataset": "OMNIGLOT - 5-Shot, 20-way",
"metric": "Accuracy",
"model": "MAML++",
"row": 11,
"task": "Few-Shot Image Classification",
"value": "99.33"
}
]
},
{
"index": 1,
"records": [
{
"column": 2,
"dataset": "Mini-Imagenet 5-way (1-shot)",
"metric": "Accuracy",
"model": "MAML++",
"row": 12,
"task": "Few-Shot Image Classification",
"value": "52.40"
},
{
"column": 3,
"dataset": "Mini-Imagenet 5-way (5-shot)",
"metric": "Accuracy",
"model": "MAML++",
"row": 12,
"task": "Few-Shot Image Classification",
"value": "67.15"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "OMNIGLOT - 1-Shot, 5-way",
"metric": "Accuracy",
"model": "MAML++",
"row": 11,
"task": "Few-Shot Image Classification",
"value": "99.47"
},
{
"column": 2,
"dataset": "OMNIGLOT - 5-Shot, 5-way",
"metric": "Accuracy",
"model": "MAML++",
"row": 11,
"task": "Few-Shot Image Classification",
"value": "99.85"
}
]
}
] |
1810.11921v2 | [
{
"index": 1,
"records": [
{
"column": 2,
"dataset": "Criteo",
"metric": "AUC",
"model": "AutoInt",
"row": 10,
"task": "Click-Through Rate Prediction",
"value": "0.8061"
},
{
"column": 3,
"dataset": "Criteo",
"metric": "Log Loss",
"model": "AutoInt",
"row": 10,
"task": "Click-Through Rate Prediction",
"value": "0.4454"
},
{
"column": 4,
"dataset": "Avazu",
"metric": "AUC",
"model": "AutoInt",
"row": 10,
"task": "Click-Through Rate Prediction",
"value": "0.7752"
},
{
"column": 5,
"dataset": "Avazu",
"metric": "LogLoss",
"model": "AutoInt",
"row": 10,
"task": "Click-Through Rate Prediction",
"value": "0.3823"
},
{
"column": 6,
"dataset": "KDD12",
"metric": "AUC",
"model": "AutoInt",
"row": 10,
"task": "Click-Through Rate Prediction",
"value": "0.7881"
},
{
"column": 7,
"dataset": "KDD12",
"metric": "Log Loss",
"model": "AutoInt",
"row": 10,
"task": "Click-Through Rate Prediction",
"value": "0.1545"
},
{
"column": 8,
"dataset": "MovieLens 1M",
"metric": "AUC",
"model": "AutoInt",
"row": 10,
"task": "Click-Through Rate Prediction",
"value": "0.846"
},
{
"column": 9,
"dataset": "MovieLens 1M",
"metric": "Log Loss",
"model": "AutoInt",
"row": 10,
"task": "Click-Through Rate Prediction",
"value": "0.3784"
}
]
}
] |
1810.12575v1 | [
{
"index": 0,
"records": [
{
"column": 3,
"dataset": "Urban100 sigma25",
"metric": "PSNR",
"model": "N3Net",
"row": 7,
"task": "Grayscale Image Denoising",
"value": "30.19"
},
{
"column": 4,
"dataset": "Urban100 sigma25",
"metric": "SSIM",
"model": "N3Net",
"row": 7,
"task": "Grayscale Image Denoising",
"value": "0.892"
}
]
},
{
"index": 2,
"records": [
{
"column": 9,
"dataset": "Set12 sigma25",
"metric": "PSNR",
"model": "N3Net",
"row": 1,
"task": "Grayscale Image Denoising",
"value": "30.55"
},
{
"column": 9,
"dataset": "Set12 sigma50",
"metric": "PSNR",
"model": "N3Net",
"row": 2,
"task": "Grayscale Image Denoising",
"value": "27.43"
},
{
"column": 9,
"dataset": "Set12 sigma70",
"metric": "PSNR",
"model": "N3Net",
"row": 3,
"task": "Grayscale Image Denoising",
"value": "25.9"
},
{
"column": 9,
"dataset": "BSD68 sigma25",
"metric": "PSNR",
"model": "N3Net",
"row": 4,
"task": "Grayscale Image Denoising",
"value": "29.3"
},
{
"column": 9,
"dataset": "BSD68 sigma50",
"metric": "PSNR",
"model": "N3Net",
"row": 5,
"task": "Grayscale Image Denoising",
"value": "26.39"
},
{
"column": 9,
"dataset": "BSD68 sigma70",
"metric": "PSNR",
"model": "N3Net",
"row": 6,
"task": "Grayscale Image Denoising",
"value": "25.14"
},
{
"column": 9,
"dataset": "Urban100 sigma50",
"metric": "PSNR",
"model": "N3Net",
"row": 8,
"task": "Grayscale Image Denoising",
"value": "26.82"
},
{
"column": 9,
"dataset": "Urban100 sigma70",
"metric": "PSNR",
"model": "N3Net",
"row": 9,
"task": "Grayscale Image Denoising",
"value": "25.15"
}
]
},
{
"index": 4,
"records": [
{
"column": 7,
"dataset": "Set5 - 2x upscaling",
"metric": "PSNR",
"model": "N3Net",
"row": 1,
"task": "Image Super-Resolution",
"value": "37.57"
},
{
"column": 7,
"dataset": "Set5 - 3x upscaling",
"metric": "PSNR",
"model": "N3Net",
"row": 2,
"task": "Image Super-Resolution",
"value": "33.84"
},
{
"column": 7,
"dataset": "Set5 - 4x upscaling",
"metric": "PSNR",
"model": "N3Net",
"row": 3,
"task": "Image Super-Resolution",
"value": "31.5"
}
]
}
] |
1810.12894v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "Atari 2600 Gravitar",
"metric": "Score",
"model": "RND",
"row": 1,
"task": "Atari Games",
"value": "3906"
},
{
"column": 2,
"dataset": "Atari 2600 Montezuma's Revenge",
"metric": "Score",
"model": "RND",
"row": 1,
"task": "Atari Games",
"value": "8152"
},
{
"column": 3,
"dataset": "Atari 2600 Pitfall!",
"metric": "Score",
"model": "RND",
"row": 1,
"task": "Atari Games",
"value": "-3"
},
{
"column": 4,
"dataset": "Atari 2600 Private Eye",
"metric": "Score",
"model": "RND",
"row": 1,
"task": "Atari Games",
"value": "8666"
},
{
"column": 5,
"dataset": "Atari 2600 Solaris",
"metric": "Score",
"model": "RND",
"row": 1,
"task": "Atari Games",
"value": "3282"
},
{
"column": 6,
"dataset": "Atari 2600 Venture",
"metric": "Score",
"model": "RND",
"row": 1,
"task": "Atari Games",
"value": "1859"
}
]
}
] |
1811.00270v1 | [
{
"index": 0,
"records": [
{
"column": 9,
"dataset": "BIT",
"metric": "Accuracy",
"model": "H-LSTCM",
"row": 13,
"task": "Human Interaction Recognition",
"value": "94.03"
}
]
},
{
"index": 1,
"records": [
{
"column": 7,
"dataset": "UT",
"metric": "Accuracy",
"model": "H-LSTCM",
"row": 18,
"task": "Human Interaction Recognition",
"value": "98.33"
}
]
},
{
"index": 2,
"records": [
{
"column": 6,
"dataset": "Collective Activity",
"metric": "Accuracy",
"model": "H-LSTCM",
"row": 20,
"task": "Group Activity Recognition",
"value": "83.75"
}
]
},
{
"index": 3,
"records": [
{
"column": 9,
"dataset": "Volleyball",
"metric": "Accuracy",
"model": "H-LSTCM",
"row": 10,
"task": "Group Activity Recognition",
"value": "88.4"
}
]
}
] |
1811.00706v1 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "SNLI",
"metric": "% Test Accuracy",
"model": "Bi-LSTM sentence encoder (max-pooling)",
"row": 18,
"task": "Natural Language Inference",
"value": "84.5"
},
{
"column": 2,
"dataset": "MultiNLI",
"metric": "Matched",
"model": "Bi-LSTM sentence encoder (max-pooling)",
"row": 18,
"task": "Natural Language Inference",
"value": "70.7"
},
{
"column": 3,
"dataset": "MultiNLI",
"metric": "Mismatched",
"model": "Bi-LSTM sentence encoder (max-pooling)",
"row": 18,
"task": "Natural Language Inference",
"value": "71.1"
},
{
"column": 1,
"dataset": "SNLI",
"metric": "% Test Accuracy",
"model": "Stacked Bi-LSTMs (shortcut connections, max-pooling)",
"row": 22,
"task": "Natural Language Inference",
"value": "84.8"
},
{
"column": 2,
"dataset": "MultiNLI",
"metric": "Matched",
"model": "Stacked Bi-LSTMs (shortcut connections, max-pooling)",
"row": 22,
"task": "Natural Language Inference",
"value": "71.4"
},
{
"column": 3,
"dataset": "MultiNLI",
"metric": "Mismatched",
"model": "Stacked Bi-LSTMs (shortcut connections, max-pooling)",
"row": 22,
"task": "Natural Language Inference",
"value": "72.2"
},
{
"column": 1,
"dataset": "SNLI",
"metric": "% Test Accuracy",
"model": "Stacked Bi-LSTMs (shortcut connections, max-pooling, attention)",
"row": 24,
"task": "Natural Language Inference",
"value": "84.4"
},
{
"column": 2,
"dataset": "MultiNLI",
"metric": "Matched",
"model": "Stacked Bi-LSTMs (shortcut connections, max-pooling, attention)",
"row": 24,
"task": "Natural Language Inference",
"value": "70.7"
},
{
"column": 3,
"dataset": "MultiNLI",
"metric": "Mismatched",
"model": "Stacked Bi-LSTMs (shortcut connections, max-pooling, attention)",
"row": 24,
"task": "Natural Language Inference",
"value": "70.5"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "FNC-1",
"metric": "Weighted Accuracy",
"model": "Bi-LSTM (max-pooling, attention)",
"row": 17,
"task": "Fake News Detection",
"value": "82.23"
},
{
"column": 2,
"dataset": "FNC-1",
"metric": "Per-class Accuracy (Unrelated)",
"model": "Bi-LSTM (max-pooling, attention)",
"row": 17,
"task": "Fake News Detection",
"value": "96.74"
},
{
"column": 3,
"dataset": "FNC-1",
"metric": "Per-class Accuracy (Discuss)",
"model": "Bi-LSTM (max-pooling, attention)",
"row": 17,
"task": "Fake News Detection",
"value": "81.52"
},
{
"column": 4,
"dataset": "FNC-1",
"metric": "Per-class Accuracy (Agree)",
"model": "Bi-LSTM (max-pooling, attention)",
"row": 17,
"task": "Fake News Detection",
"value": "51.34"
},
{
"column": 5,
"dataset": "FNC-1",
"metric": "Per-class Accuracy (Disagree)",
"model": "Bi-LSTM (max-pooling, attention)",
"row": 17,
"task": "Fake News Detection",
"value": "10.33"
}
]
}
] |
1811.00839v2 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "Wiki-Vote",
"metric": "AUC",
"model": "Asymmetric Transitivity Preservation",
"row": 9,
"task": "Link Prediction",
"value": "94.81"
},
{
"column": 3,
"dataset": "Cit-HepPH",
"metric": "AUC",
"model": "Asymmetric Transitivity Preservation",
"row": 9,
"task": "Link Prediction",
"value": "89.16"
},
{
"column": 4,
"dataset": "Gnutella",
"metric": "AUC",
"model": "Asymmetric Transitivity Preservation",
"row": 9,
"task": "Link Prediction",
"value": "93.14"
}
]
}
] |
1811.00937v2 | [
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "CommonsenseQA",
"metric": "Accuracy",
"model": "BERT-LARGE",
"row": 6,
"task": "Common Sense Reasoning",
"value": "55.9"
}
]
}
] |
1811.04441v2 | [
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "FB15k-237",
"metric": "Hits@10",
"model": "Structure-Aware Convolutional Networks",
"row": 8,
"task": "Link Prediction",
"value": "0.54"
},
{
"column": 2,
"dataset": "FB15k-237",
"metric": "Hits@3",
"model": "Structure-Aware Convolutional Networks",
"row": 8,
"task": "Link Prediction",
"value": "0.39"
},
{
"column": 3,
"dataset": "FB15k-237",
"metric": "Hits@1",
"model": "Structure-Aware Convolutional Networks",
"row": 8,
"task": "Link Prediction",
"value": "0.26"
},
{
"column": 4,
"dataset": "FB15k-237",
"metric": "MRR",
"model": "Structure-Aware Convolutional Networks",
"row": 8,
"task": "Link Prediction",
"value": "0.35"
},
{
"column": 5,
"dataset": "WN18RR",
"metric": "Hits@10",
"model": "Structure-Aware Convolutional Networks",
"row": 8,
"task": "Link Prediction",
"value": "0.54"
},
{
"column": 6,
"dataset": "WN18RR",
"metric": "Hits@3",
"model": "Structure-Aware Convolutional Networks",
"row": 8,
"task": "Link Prediction",
"value": "0.48"
},
{
"column": 7,
"dataset": "WN18RR",
"metric": "Hits@1",
"model": "Structure-Aware Convolutional Networks",
"row": 8,
"task": "Link Prediction",
"value": "0.43"
},
{
"column": 8,
"dataset": "WN18RR",
"metric": "MRR",
"model": "Structure-Aware Convolutional Networks",
"row": 8,
"task": "Link Prediction",
"value": "0.47"
}
]
}
] |
1811.04588v1 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "YAGO39K",
"metric": "MRR",
"model": "TransC (bern)",
"row": 11,
"task": "Link Prediction",
"value": "0.11199999999999999"
},
{
"column": 2,
"dataset": "YAGO39K",
"metric": "MRR",
"model": "TransC (bern)",
"row": 11,
"task": "Link Prediction",
"value": "0.42"
},
{
"column": 3,
"dataset": "YAGO39K",
"metric": "Hits@1",
"model": "TransC (bern)",
"row": 11,
"task": "Link Prediction",
"value": "0.298"
},
{
"column": 4,
"dataset": "YAGO39K",
"metric": "Hits@3",
"model": "TransC (bern)",
"row": 11,
"task": "Link Prediction",
"value": "0.502"
},
{
"column": 5,
"dataset": "YAGO39K",
"metric": "Hits@10",
"model": "TransC (bern)",
"row": 11,
"task": "Link Prediction",
"value": "0.698"
},
{
"column": 6,
"dataset": "YAGO39K",
"metric": "Accuracy",
"model": "TransC (bern)",
"row": 11,
"task": "Triple Classification",
"value": "93.8"
},
{
"column": 7,
"dataset": "YAGO39K",
"metric": "Precision",
"model": "TransC (bern)",
"row": 11,
"task": "Triple Classification",
"value": "94.8"
},
{
"column": 8,
"dataset": "YAGO39K",
"metric": "Recall",
"model": "TransC (bern)",
"row": 11,
"task": "Triple Classification",
"value": "92.7"
},
{
"column": 9,
"dataset": "YAGO39K",
"metric": "F1-Score",
"model": "TransC (bern)",
"row": 11,
"task": "Triple Classification",
"value": "93.7"
}
]
}
] |
1811.07081v2 | [
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "ChaLearn 2013",
"metric": "Accuracy",
"model": "3S Net TTM",
"row": 8,
"task": "Gesture Recognition",
"value": "92.08"
}
]
},
{
"index": 6,
"records": [
{
"column": 1,
"dataset": "ChaLearn 2016",
"metric": "Accuracy",
"model": "3S Net TTM",
"row": 8,
"task": "Gesture Recognition",
"value": "39.95"
}
]
},
{
"index": 7,
"records": [
{
"column": 1,
"dataset": "MSRC-12",
"metric": "Accuracy",
"model": "3S Net TTM",
"row": 8,
"task": "Gesture Recognition",
"value": "99.01"
}
]
}
] |
1811.07100v2 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "Mini-Imagenet 5-way (1-shot)",
"metric": "Accuracy",
"model": "Deep Comparison Network",
"row": 16,
"task": "Few-Shot Image Classification",
"value": "62.88"
},
{
"column": 2,
"dataset": "Mini-Imagenet 5-way (5-shot)",
"metric": "Accuracy",
"model": "Deep Comparison Network",
"row": 16,
"task": "Few-Shot Image Classification",
"value": "75.84"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "Mini-Imagenet 20-way (1-shot)",
"metric": "Accuracy",
"model": "Deep Comparison Network",
"row": 6,
"task": "Few-Shot Image Classification",
"value": "32.07"
},
{
"column": 2,
"dataset": "Mini-Imagenet 20-way (5-shot)",
"metric": "Accuracy",
"model": "Deep Comparison Network",
"row": 6,
"task": "Few-Shot Image Classification",
"value": "47.31"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "Tiered ImageNet 5-way (1-shot)",
"metric": "Accuracy",
"model": "Deep Comparison Network",
"row": 8,
"task": "Few-Shot Image Classification",
"value": "68.83"
},
{
"column": 2,
"dataset": "Tiered ImageNet 5-way (5-shot)",
"metric": "Accuracy",
"model": "Deep Comparison Network",
"row": 8,
"task": "Few-Shot Image Classification",
"value": "79.62"
}
]
}
] |
1811.07130v2 | [
{
"index": 0,
"records": [
{
"column": 5,
"dataset": "DukeMTMC-reID",
"metric": "Rank-1",
"model": "SVDNet + Random Erasing",
"row": 7,
"task": "Person Re-Identification",
"value": "79.3"
},
{
"column": 6,
"dataset": "DukeMTMC-reID",
"metric": "MAP",
"model": "SVDNet + Random Erasing",
"row": 7,
"task": "Person Re-Identification",
"value": "62.4"
}
]
}
] |
1811.07258v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "MOT16",
"metric": "MOTA",
"model": "TNT",
"row": 8,
"task": "Multi-Object Tracking",
"value": "56.1"
},
{
"column": 2,
"dataset": "MOT16",
"metric": "MOTA",
"model": "TNT",
"row": 8,
"task": "Multi-Object Tracking",
"value": "49.2"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "MOT17",
"metric": "MOTA",
"model": "TNT",
"row": 8,
"task": "Multi-Object Tracking",
"value": "58"
},
{
"column": 2,
"dataset": "MOT17",
"metric": "MOTA",
"model": "TNT",
"row": 8,
"task": "Multi-Object Tracking",
"value": "51.9"
}
]
}
] |
1811.07456v2 | [
{
"index": 0,
"records": [
{
"column": 13,
"dataset": "VisDA2017",
"metric": "Accuracy",
"model": "IAFN",
"row": 7,
"task": "Domain Adaptation",
"value": "76.1"
}
]
},
{
"index": 1,
"records": [
{
"column": 7,
"dataset": "Office-31",
"metric": "Average Accuracy",
"model": "IAFN+ENT",
"row": 12,
"task": "Domain Adaptation",
"value": "87.1"
}
]
},
{
"index": 2,
"records": [
{
"column": 7,
"dataset": "ImageCLEF-DA",
"metric": "Accuracy",
"model": "IAFN+ENT",
"row": 8,
"task": "Domain Adaptation",
"value": "88.9"
}
]
},
{
"index": 3,
"records": [
{
"column": 13,
"dataset": "Office-Home",
"metric": "Accuracy",
"model": "IAFN (ResNet-50)",
"row": 8,
"task": "Domain Adaptation",
"value": "71.83"
}
]
}
] |
1811.08605v1 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "ICDAR 2017 MLT",
"metric": "Recall",
"model": "SPCNET",
"row": 9,
"task": "Scene Text Detection",
"value": "68.6"
},
{
"column": 2,
"dataset": "ICDAR 2017 MLT",
"metric": "Precision",
"model": "SPCNET",
"row": 9,
"task": "Scene Text Detection",
"value": "80.6"
},
{
"column": 3,
"dataset": "ICDAR 2017 MLT",
"metric": "F-Measure",
"model": "SPCNET",
"row": 9,
"task": "Scene Text Detection",
"value": "74.1"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "ICDAR 2015",
"metric": "Recall",
"model": "SPCNET",
"row": 15,
"task": "Scene Text Detection",
"value": "85.8"
},
{
"column": 2,
"dataset": "ICDAR 2015",
"metric": "Precision",
"model": "SPCNET",
"row": 15,
"task": "Scene Text Detection",
"value": "88.7"
},
{
"column": 3,
"dataset": "ICDAR 2015",
"metric": "F-Measure",
"model": "SPCNET",
"row": 15,
"task": "Scene Text Detection",
"value": "87.2"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "ICDAR 2013",
"metric": "Recall",
"model": "SPCNET",
"row": 12,
"task": "Scene Text Detection",
"value": "90.5"
},
{
"column": 2,
"dataset": "ICDAR 2013",
"metric": "Precision",
"model": "SPCNET",
"row": 12,
"task": "Scene Text Detection",
"value": "93.8"
},
{
"column": 3,
"dataset": "ICDAR 2013",
"metric": "F-Measure",
"model": "SPCNET",
"row": 12,
"task": "Scene Text Detection",
"value": "92.1"
}
]
},
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "Total-Text",
"metric": "Recall",
"model": "SPCNET",
"row": 7,
"task": "Scene Text Detection",
"value": "82.8"
},
{
"column": 2,
"dataset": "Total-Text",
"metric": "Precision",
"model": "SPCNET",
"row": 7,
"task": "Scene Text Detection",
"value": "83"
},
{
"column": 3,
"dataset": "Total-Text",
"metric": "F-Measure",
"model": "SPCNET",
"row": 7,
"task": "Scene Text Detection",
"value": "82.9"
}
]
}
] |
1811.09058v1 | [
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "ICDAR 2017 MLT",
"metric": "Recall",
"model": "PAN",
"row": 1,
"task": "Scene Text Detection",
"value": "69.8"
},
{
"column": 2,
"dataset": "ICDAR 2017 MLT",
"metric": "Precision",
"model": "PAN",
"row": 1,
"task": "Scene Text Detection",
"value": "80"
},
{
"column": 3,
"dataset": "ICDAR 2017 MLT",
"metric": "F-Measure",
"model": "PAN",
"row": 1,
"task": "Scene Text Detection",
"value": "74.3"
}
]
},
{
"index": 4,
"records": [
{
"column": 2,
"dataset": "ICDAR 2015",
"metric": "Recall",
"model": "PAN",
"row": 1,
"task": "Scene Text Detection",
"value": "81.5"
},
{
"column": 3,
"dataset": "ICDAR 2015",
"metric": "Precision",
"model": "PAN",
"row": 1,
"task": "Scene Text Detection",
"value": "90.8"
},
{
"column": 4,
"dataset": "ICDAR 2015",
"metric": "F-Measure",
"model": "PAN",
"row": 1,
"task": "Scene Text Detection",
"value": "85.9"
}
]
},
{
"index": 5,
"records": [
{
"column": 1,
"dataset": "SCUT-CTW1500",
"metric": "Recall",
"model": "PAN",
"row": 1,
"task": "Scene Text Detection",
"value": "83.2"
},
{
"column": 2,
"dataset": "SCUT-CTW1500",
"metric": "Precision",
"model": "PAN",
"row": 1,
"task": "Scene Text Detection",
"value": "86.8"
},
{
"column": 3,
"dataset": "SCUT-CTW1500",
"metric": "F-Measure",
"model": "PAN",
"row": 1,
"task": "Scene Text Detection",
"value": "85"
}
]
}
] |
1811.10144v3 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "Market-1501",
"metric": "MAP",
"model": "Self-Similarity Grouping (one shot)",
"row": 13,
"task": "Unsupervised Person Re-Identification",
"value": "71.5"
},
{
"column": 2,
"dataset": "Market-1501",
"metric": "Rank-1",
"model": "Self-Similarity Grouping (one shot)",
"row": 13,
"task": "Unsupervised Person Re-Identification",
"value": "87.5"
},
{
"column": 3,
"dataset": "Market-1501",
"metric": "Rank-5",
"model": "Self-Similarity Grouping (one shot)",
"row": 13,
"task": "Unsupervised Person Re-Identification",
"value": "95.2"
},
{
"column": 4,
"dataset": "Market-1501",
"metric": "Rank-10",
"model": "Self-Similarity Grouping (one shot)",
"row": 13,
"task": "Unsupervised Person Re-Identification",
"value": "96.8"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "DukeMTMC-reID",
"metric": "mAP",
"model": "Self-Similarity Grouping (one shot)",
"row": 13,
"task": "Unsupervised Person Re-Identification",
"value": "55.9"
},
{
"column": 2,
"dataset": "DukeMTMC-reID",
"metric": "Rank-1",
"model": "Self-Similarity Grouping (one shot)",
"row": 13,
"task": "Unsupervised Person Re-Identification",
"value": "72.4"
},
{
"column": 3,
"dataset": "DukeMTMC-reID",
"metric": "Rank-5",
"model": "Self-Similarity Grouping (one shot)",
"row": 13,
"task": "Unsupervised Person Re-Identification",
"value": "84"
},
{
"column": 4,
"dataset": "DukeMTMC-reID",
"metric": "Rank-10",
"model": "Self-Similarity Grouping (one shot)",
"row": 13,
"task": "Unsupervised Person Re-Identification",
"value": "87.7"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "DukeMTMC-reID->MSMT17",
"metric": "mAP",
"model": "Self-Similarity Grouping (one shot)",
"row": 3,
"task": "Unsupervised Person Re-Identification",
"value": "23.6"
},
{
"column": 2,
"dataset": "DukeMTMC-reID->MSMT17",
"metric": "Rank-1",
"model": "Self-Similarity Grouping (one shot)",
"row": 3,
"task": "Unsupervised Person Re-Identification",
"value": "43.6"
},
{
"column": 3,
"dataset": "DukeMTMC-reID->MSMT17",
"metric": "Rank-10",
"model": "Self-Similarity Grouping (one shot)",
"row": 3,
"task": "Unsupervised Person Re-Identification",
"value": "61.8"
},
{
"column": 1,
"dataset": "Market-1501->MSMT17",
"metric": "mAP",
"model": "Self-Similarity Grouping (one shot)",
"row": 7,
"task": "Unsupervised Person Re-Identification",
"value": "11.8"
},
{
"column": 2,
"dataset": "Market-1501->MSMT17",
"metric": "Rank-1",
"model": "Self-Similarity Grouping (one shot)",
"row": 7,
"task": "Unsupervised Person Re-Identification",
"value": "27.6"
},
{
"column": 3,
"dataset": "Market-1501->MSMT17",
"metric": "Rank-10",
"model": "Self-Similarity Grouping (one shot)",
"row": 7,
"task": "Unsupervised Person Re-Identification",
"value": "45.7"
}
]
}
] |
1811.10636v2 | [
{
"index": 0,
"records": [
{
"column": 3,
"dataset": "Moments in Time",
"metric": "Top 1 Accuracy",
"model": "EvaNet",
"row": 6,
"task": "Action Classification",
"value": "31.8"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "HMDB-51",
"metric": "Average accuracy of 3 splits",
"model": "EvaNet",
"row": 9,
"task": "Action Recognition In Videos",
"value": "82.1"
}
]
}
] |
1811.11127v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "Darmstadt Noise Dataset",
"metric": "PSNR (Raw)",
"model": "Image Unprocessing",
"row": 16,
"task": "Color Image Denoising",
"value": "48.88"
},
{
"column": 3,
"dataset": "Darmstadt Noise Dataset",
"metric": "SSIM (Raw)",
"model": "Image Unprocessing",
"row": 16,
"task": "Color Image Denoising",
"value": "0.9821"
},
{
"column": 5,
"dataset": "Darmstadt Noise Dataset",
"metric": "PSNR (sRGB)",
"model": "Image Unprocessing",
"row": 16,
"task": "Color Image Denoising",
"value": "40.35"
},
{
"column": 7,
"dataset": "Darmstadt Noise Dataset",
"metric": "SSIM (sRGB)",
"model": "Image Unprocessing",
"row": 16,
"task": "Color Image Denoising",
"value": "0.9641"
}
]
}
] |
1811.11155v2 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "CUB 128 x 128",
"metric": "Inception score",
"model": "FineGAN",
"row": 6,
"task": "Image Generation",
"value": "52.53"
},
{
"column": 2,
"dataset": "Stanford Dogs",
"metric": "Inception score",
"model": "FineGAN",
"row": 6,
"task": "Image Generation",
"value": "46.92"
},
{
"column": 3,
"dataset": "Stanford Cars",
"metric": "Inception score",
"model": "FineGAN",
"row": 6,
"task": "Image Generation",
"value": "32.62"
},
{
"column": 4,
"dataset": "CUB 128 x 128",
"metric": "FID",
"model": "FineGAN",
"row": 6,
"task": "Image Generation",
"value": "11.25"
},
{
"column": 5,
"dataset": "Stanford Dogs",
"metric": "FID",
"model": "FineGAN",
"row": 6,
"task": "Image Generation",
"value": "25.66"
},
{
"column": 6,
"dataset": "Stanford Cars",
"metric": "FID",
"model": "FineGAN",
"row": 6,
"task": "Image Generation",
"value": "16.03"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "CUB Birds",
"metric": "NMI",
"model": "FineGAN",
"row": 6,
"task": "Image Clustering",
"value": "0.403"
},
{
"column": 2,
"dataset": "Stanford Dogs",
"metric": "NMI",
"model": "FineGAN",
"row": 6,
"task": "Image Clustering",
"value": "0.233"
},
{
"column": 3,
"dataset": "Stanford Cars",
"metric": "NMI",
"model": "FineGAN",
"row": 6,
"task": "Image Clustering",
"value": "0.354"
},
{
"column": 4,
"dataset": "CUB Birds",
"metric": "Accuracy",
"model": "FineGAN",
"row": 6,
"task": "Image Clustering",
"value": "0.126"
},
{
"column": 5,
"dataset": "Stanford Dogs",
"metric": "Accuracy",
"model": "FineGAN",
"row": 6,
"task": "Image Clustering",
"value": "0.079"
},
{
"column": 6,
"dataset": "Stanford Cars",
"metric": "Accuracy",
"model": "FineGAN",
"row": 6,
"task": "Image Clustering",
"value": "0.078"
}
]
}
] |
1811.11212v2 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "CIFAR-10",
"metric": "FID",
"model": "SS-GAN (sBN)",
"row": 4,
"task": "Image Generation",
"value": "15.65"
},
{
"column": 2,
"dataset": "ImageNet 128x128",
"metric": "FID",
"model": "SS-GAN (sBN)",
"row": 8,
"task": "Image Generation",
"value": "43.87"
},
{
"column": 2,
"dataset": "LSUN Bedroom 256 x 256",
"metric": "FID",
"model": "SS-GAN (sBN)",
"row": 11,
"task": "Image Generation",
"value": "13.3"
},
{
"column": 2,
"dataset": "CelebA-HQ 128x128",
"metric": "FID",
"model": "SS-GAN (sBN)",
"row": 14,
"task": "Image Generation",
"value": "24.36"
}
]
}
] |
1811.12150v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "Market-1501",
"metric": "Rank-1",
"model": "Parameter-Free Spatial Attention",
"row": 12,
"task": "Person Re-Identification",
"value": "94.7"
},
{
"column": 2,
"dataset": "Market-1501",
"metric": "MAP",
"model": "Parameter-Free Spatial Attention",
"row": 12,
"task": "Person Re-Identification",
"value": "91.7"
},
{
"column": 3,
"dataset": "DukeMTMC-reID",
"metric": "Rank-1",
"model": "Parameter-Free Spatial Attention",
"row": 12,
"task": "Person Re-Identification",
"value": "89.0"
},
{
"column": 4,
"dataset": "DukeMTMC-reID",
"metric": "MAP",
"model": "Parameter-Free Spatial Attention",
"row": 12,
"task": "Person Re-Identification",
"value": "85.9"
}
]
}
] |
1811.12649v2 | [
{
"index": 4,
"records": [
{
"column": 2,
"dataset": "SOP",
"metric": "R@1",
"model": "NormSoftmax2048 (ResNet-50)",
"row": 20,
"task": "Image Retrieval",
"value": "79.5"
},
{
"column": 5,
"dataset": "In-Shop",
"metric": "R@1",
"model": "NormSoftmax2048 (ResNet-50)",
"row": 20,
"task": "Image Retrieval",
"value": "89.4"
}
]
},
{
"index": 5,
"records": [
{
"column": 2,
"dataset": "CARS196",
"metric": "R@1",
"model": "NormSoftmax2048 (ResNet-50)",
"row": 19,
"task": "Image Retrieval",
"value": "89.3"
},
{
"column": 6,
"dataset": "CUB-200-2011",
"metric": "R@1",
"model": "NormSoftmax2048 (ResNet-50)",
"row": 19,
"task": "Image Retrieval",
"value": "65.3"
}
]
}
] |
1811.12833v2 | [
{
"index": 0,
"records": [
{
"column": 21,
"dataset": "GTAV-to-Cityscapes Labels",
"metric": "mIoU",
"model": "ADVENT",
"row": 14,
"task": "Synthetic-to-Real Translation",
"value": "44.8"
}
]
},
{
"index": 1,
"records": [
{
"column": 19,
"dataset": "SYNTHIA-to-Cityscapes",
"metric": "mIoU",
"model": "ADVENT",
"row": 13,
"task": "Image-to-Image Translation",
"value": "48"
}
]
}
] |
1812.01387v1 | [
{
"index": 0,
"records": [
{
"column": 15,
"dataset": "LineMOD",
"metric": "Mean ADD",
"model": "Keypoint Detector Localization",
"row": 4,
"task": "6D Pose Estimation using RGB",
"value": "72.6"
}
]
},
{
"index": 1,
"records": [
{
"column": 2,
"dataset": "LineMOD",
"metric": "Accuracy",
"model": "Keypoint Detector Localization",
"row": 3,
"task": "6D Pose Estimation using RGB",
"value": "94.5%"
}
]
}
] |
1812.01598v1 | [
{
"index": 0,
"records": [
{
"column": 13,
"dataset": "Human3.6M",
"metric": "Average MPJPE (mm)",
"model": "Monocular Total Capture",
"row": 1,
"task": "3D Human Pose Estimation",
"value": "58.3"
}
]
}
] |
1812.02391v3 | [
{
"index": 0,
"records": [
{
"column": 3,
"dataset": "Mini-Imagenet 5-way (1-shot)",
"metric": "Accuracy",
"model": "MTL",
"row": 21,
"task": "Few-Shot Image Classification",
"value": "61.2"
},
{
"column": 4,
"dataset": "Mini-Imagenet 5-way (5-shot)",
"metric": "Accuracy",
"model": "MTL",
"row": 21,
"task": "Few-Shot Image Classification",
"value": "75.5"
}
]
},
{
"index": 1,
"records": [
{
"column": 3,
"dataset": "FC100 5-way (1-shot)",
"metric": "Accuracy",
"model": "MTL",
"row": 9,
"task": "Few-Shot Image Classification",
"value": "45.1"
},
{
"column": 4,
"dataset": "FC100 5-way (5-shot)",
"metric": "Accuracy",
"model": "MTL",
"row": 9,
"task": "Few-Shot Image Classification",
"value": "57.6"
},
{
"column": 5,
"dataset": "FC100 5-way (10-shot)",
"metric": "Accuracy",
"model": "MTL",
"row": 9,
"task": "Few-Shot Image Classification",
"value": "63.4"
}
]
}
] |
1812.03282v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "Market-1501",
"metric": "Rank-1",
"model": "st-ReID(RE, RK)",
"row": 23,
"task": "Person Re-Identification",
"value": "98.0"
},
{
"column": 4,
"dataset": "Market-1501",
"metric": "MAP",
"model": "st-ReID(RE, RK)",
"row": 23,
"task": "Person Re-Identification",
"value": "95.5"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "DukeMTMC-reID",
"metric": "Rank-1",
"model": "st-ReID(RE, RK,Cam)",
"row": 13,
"task": "Person Re-Identification",
"value": "94.5"
},
{
"column": 4,
"dataset": "DukeMTMC-reID",
"metric": "MAP",
"model": "st-ReID(RE, RK,Cam)",
"row": 13,
"task": "Person Re-Identification",
"value": "92.7"
}
]
}
] |
1812.03595v3 | [
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "COCO test-dev",
"metric": "AP",
"model": "PoseFix",
"row": 14,
"task": "Pose Estimation",
"value": "74.7"
},
{
"column": 2,
"dataset": "COCO test-dev",
"metric": "AP50",
"model": "PoseFix",
"row": 14,
"task": "Pose Estimation",
"value": "91.2"
},
{
"column": 3,
"dataset": "COCO test-dev",
"metric": "AP75",
"model": "PoseFix",
"row": 14,
"task": "Pose Estimation",
"value": "81.9"
},
{
"column": 4,
"dataset": "COCO test-dev",
"metric": "APM",
"model": "PoseFix",
"row": 14,
"task": "Pose Estimation",
"value": "71.1"
},
{
"column": 5,
"dataset": "COCO test-dev",
"metric": "APL",
"model": "PoseFix",
"row": 14,
"task": "Pose Estimation",
"value": "81.2"
},
{
"column": 6,
"dataset": "COCO test-dev",
"metric": "AR",
"model": "PoseFix",
"row": 14,
"task": "Pose Estimation",
"value": "79.9"
}
]
}
] |
1812.03664v3 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "Mini-Imagenet 5-way (1-shot)",
"metric": "Accuracy",
"model": "feat+ (ProtoNet-ResNet)",
"row": 18,
"task": "Few-Shot Image Classification",
"value": "61.72"
},
{
"column": 4,
"dataset": "Mini-Imagenet 5-way (5-shot)",
"metric": "Accuracy",
"model": "feat+ (ProtoNet-ResNet)",
"row": 18,
"task": "Few-Shot Image Classification",
"value": "78.38"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "CUB 200 5-way 1-shot",
"metric": "Accuracy",
"model": "feat (ProtoNet)",
"row": 12,
"task": "Few-Shot Image Classification",
"value": "68.65"
},
{
"column": 2,
"dataset": "CUB 200 5-way 5-shot",
"metric": "Accuracy",
"model": "feat (ProtoNet)",
"row": 12,
"task": "Few-Shot Image Classification",
"value": "83.03"
}
]
}
] |
1812.03982v3 | [
{
"index": 9,
"records": [
{
"column": 3,
"dataset": "Kinetics-400",
"metric": "Top-1 Accuracy",
"model": "SlowFast, R101 + NL",
"row": 19,
"task": "Action Classification",
"value": "79"
},
{
"column": 4,
"dataset": "Kinetics-400",
"metric": "Top-5 Accuracy",
"model": "SlowFast, R101 + NL",
"row": 19,
"task": "Action Classification",
"value": "93.6"
}
]
}
] |
1812.04287v1 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "MNIST-full",
"metric": "Accuracy",
"model": "DDC",
"row": 13,
"task": "Image Clustering",
"value": "0.965"
},
{
"column": 2,
"dataset": "MNIST-full",
"metric": "NMI",
"model": "DDC",
"row": 13,
"task": "Image Clustering",
"value": "0.932"
},
{
"column": 3,
"dataset": "MNIST-test",
"metric": "Accuracy",
"model": "DDC",
"row": 13,
"task": "Image Clustering",
"value": "0.965"
},
{
"column": 4,
"dataset": "MNIST-test",
"metric": "NMI",
"model": "DDC",
"row": 13,
"task": "Image Clustering",
"value": "0.916"
},
{
"column": 5,
"dataset": "USPS",
"metric": "Accuracy",
"model": "DDC",
"row": 13,
"task": "Image Clustering",
"value": "0.967"
},
{
"column": 6,
"dataset": "USPS",
"metric": "NMI",
"model": "DDC",
"row": 13,
"task": "Image Clustering",
"value": "0.918"
},
{
"column": 7,
"dataset": "Fashion-MNIST",
"metric": "Accuracy",
"model": "DDC",
"row": 13,
"task": "Image Clustering",
"value": "0.619"
},
{
"column": 8,
"dataset": "Fashion-MNIST",
"metric": "NMI",
"model": "DDC",
"row": 13,
"task": "Image Clustering",
"value": "0.682"
},
{
"column": 9,
"dataset": "LetterA-J",
"metric": "Accuracy",
"model": "DDC",
"row": 13,
"task": "Image Clustering",
"value": "0.573"
},
{
"column": 10,
"dataset": "LetterA-J",
"metric": "NMI",
"model": "DDC",
"row": 13,
"task": "Image Clustering",
"value": "0.546"
},
{
"column": 1,
"dataset": "MNIST-full",
"metric": "Accuracy",
"model": "DDC-DA",
"row": 14,
"task": "Image Clustering",
"value": "0.969"
},
{
"column": 2,
"dataset": "MNIST-full",
"metric": "NMI",
"model": "DDC-DA",
"row": 14,
"task": "Image Clustering",
"value": "0.941"
},
{
"column": 3,
"dataset": "MNIST-test",
"metric": "Accuracy",
"model": "DDC-DA",
"row": 14,
"task": "Image Clustering",
"value": "0.97"
},
{
"column": 4,
"dataset": "MNIST-test",
"metric": "NMI",
"model": "DDC-DA",
"row": 14,
"task": "Image Clustering",
"value": "0.927"
},
{
"column": 5,
"dataset": "USPS",
"metric": "Accuracy",
"model": "DDC-DA",
"row": 14,
"task": "Image Clustering",
"value": "0.977"
},
{
"column": 6,
"dataset": "USPS",
"metric": "NMI",
"model": "DDC-DA",
"row": 14,
"task": "Image Clustering",
"value": "0.939"
},
{
"column": 7,
"dataset": "Fashion-MNIST",
"metric": "Accuracy",
"model": "DDC-DA",
"row": 14,
"task": "Image Clustering",
"value": "0.609"
},
{
"column": 8,
"dataset": "Fashion-MNIST",
"metric": "NMI",
"model": "DDC-DA",
"row": 14,
"task": "Image Clustering",
"value": "0.661"
},
{
"column": 9,
"dataset": "LetterA-J",
"metric": "Accuracy",
"model": "DDC-DA",
"row": 14,
"task": "Image Clustering",
"value": "0.691"
},
{
"column": 10,
"dataset": "LetterA-J",
"metric": "NMI",
"model": "DDC-DA",
"row": 14,
"task": "Image Clustering",
"value": "0.629"
}
]
}
] |
1812.06145v2 | [
{
"index": 3,
"records": [
{
"column": 2,
"dataset": "VIVA Hand Gestures Dataset",
"metric": "Accuracy",
"model": "MTUT",
"row": 6,
"task": "Action Recognition In Videos",
"value": "86.08"
},
{
"column": 2,
"dataset": "VIVA Hand Gestures Dataset",
"metric": "Accuracy",
"model": "MTUT",
"row": 6,
"task": "Hand Gesture Recognition",
"value": "86.08"
}
]
},
{
"index": 4,
"records": [
{
"column": 2,
"dataset": "EgoGesture",
"metric": "Accuracy",
"model": "MTUT",
"row": 6,
"task": "Action Recognition In Videos",
"value": "93.87"
},
{
"column": 2,
"dataset": "EgoGesture",
"metric": "Accuracy",
"model": "MTUT",
"row": 6,
"task": "Hand Gesture Recognition",
"value": "93.87"
}
]
},
{
"index": 5,
"records": [
{
"column": 2,
"dataset": "NVGesture",
"metric": "Accuracy",
"model": "MTUT",
"row": 12,
"task": "Hand Gesture Recognition",
"value": "86.93"
}
]
}
] |
1812.06164v2 | [
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "Recipe1M",
"metric": "Mean IoU",
"model": "Set Transformer",
"row": 4,
"task": "Recipe Generation",
"value": "32.11"
},
{
"column": 2,
"dataset": "Recipe1M",
"metric": "F1",
"model": "Set Transformer",
"row": 4,
"task": "Recipe Generation",
"value": "48.61"
}
]
}
] |
1812.06410v2 | [
{
"index": 3,
"records": [
{
"column": 3,
"dataset": "WN18",
"metric": "MRR",
"model": "ComplEx NSCaching",
"row": 37,
"task": "Link Prediction",
"value": "0.9355"
},
{
"column": 4,
"dataset": "WN18",
"metric": "MR",
"model": "ComplEx NSCaching",
"row": 37,
"task": "Link Prediction",
"value": "1072"
},
{
"column": 5,
"dataset": "WN18",
"metric": "Hits@10",
"model": "ComplEx NSCaching",
"row": 37,
"task": "Link Prediction",
"value": "0.9398"
},
{
"column": 6,
"dataset": "WN18RR",
"metric": "MRR",
"model": "ComplEx NSCaching",
"row": 37,
"task": "Link Prediction",
"value": "0.4463"
},
{
"column": 7,
"dataset": "WN18RR",
"metric": "MR",
"model": "ComplEx NSCaching",
"row": 37,
"task": "Link Prediction",
"value": "5365"
},
{
"column": 8,
"dataset": "WN18RR",
"metric": "Hits@10",
"model": "ComplEx NSCaching",
"row": 37,
"task": "Link Prediction",
"value": "0.5089"
},
{
"column": 9,
"dataset": " FB15k",
"metric": "MRR",
"model": "ComplEx NSCaching",
"row": 37,
"task": "Link Prediction",
"value": "0.7721"
},
{
"column": 10,
"dataset": "FB15k",
"metric": "MR",
"model": "ComplEx NSCaching",
"row": 37,
"task": "Link Prediction",
"value": "82"
},
{
"column": 11,
"dataset": "FB15k",
"metric": "Hits@10",
"model": "ComplEx NSCaching",
"row": 37,
"task": "Link Prediction",
"value": "86.82"
},
{
"column": 12,
"dataset": "FB15k-237",
"metric": "MRR",
"model": "ComplEx NSCaching",
"row": 37,
"task": "Link Prediction",
"value": "0.3021"
},
{
"column": 13,
"dataset": "FB15k-237",
"metric": "MR",
"model": "ComplEx NSCaching",
"row": 37,
"task": "Link Prediction",
"value": "221"
},
{
"column": 14,
"dataset": "FB15k-237",
"metric": "Hits@10",
"model": "ComplEx NSCaching",
"row": 37,
"task": "Link Prediction",
"value": "0.4805"
}
]
}
] |
1812.10464v2 | [
{
"index": 3,
"records": [
{
"column": 3,
"dataset": "MLDoc Zero-Shot English-to-German",
"metric": "Accuracy",
"model": "Massively Multilingual Sentence Embeddings",
"row": 5,
"task": "Cross-Lingual Document Classification",
"value": "84.78"
},
{
"column": 4,
"dataset": "MLDoc Zero-Shot English-to-Spanish",
"metric": "Accuracy",
"model": "Massively Multilingual Sentence Embeddings",
"row": 5,
"task": "Cross-Lingual Document Classification",
"value": "77.33"
},
{
"column": 5,
"dataset": "MLDoc Zero-Shot English-to-French",
"metric": "Accuracy",
"model": "Massively Multilingual Sentence Embeddings",
"row": 5,
"task": "Cross-Lingual Document Classification",
"value": "77.95"
},
{
"column": 6,
"dataset": "MLDoc Zero-Shot English-to-Italian",
"metric": "Accuracy",
"model": "Massively Multilingual Sentence Embeddings",
"row": 5,
"task": "Cross-Lingual Document Classification",
"value": "69.43"
},
{
"column": 7,
"dataset": "MLDoc Zero-Shot English-to-Japanese",
"metric": "Accuracy",
"model": "Massively Multilingual Sentence Embeddings",
"row": 5,
"task": "Cross-Lingual Document Classification",
"value": "60.3"
},
{
"column": 8,
"dataset": "MLDoc Zero-Shot English-to-Russian",
"metric": "Accuracy",
"model": "Massively Multilingual Sentence Embeddings",
"row": 5,
"task": "Cross-Lingual Document Classification",
"value": "67.78"
},
{
"column": 9,
"dataset": "MLDoc Zero-Shot English-to-Chinese",
"metric": "Accuracy",
"model": "Massively Multilingual Sentence Embeddings",
"row": 5,
"task": "Cross-Lingual Document Classification",
"value": "71.93"
}
]
},
{
"index": 4,
"records": [
{
"column": 5,
"dataset": "BUCC German-to-English",
"metric": "F1 score",
"model": "Massively Multilingual Sentence Embeddings",
"row": 10,
"task": "Cross-Lingual Bitext Mining",
"value": "96.19"
},
{
"column": 6,
"dataset": "BUCC French-to-English",
"metric": "F1 score",
"model": "Massively Multilingual Sentence Embeddings",
"row": 10,
"task": "Cross-Lingual Bitext Mining",
"value": "93.91"
},
{
"column": 7,
"dataset": "BUCC Russian-to-English",
"metric": "F1 score",
"model": "Massively Multilingual Sentence Embeddings",
"row": 10,
"task": "Cross-Lingual Bitext Mining",
"value": "93.3"
},
{
"column": 8,
"dataset": "BUCC Chinese-to-English",
"metric": "F1 score",
"model": "Massively Multilingual Sentence Embeddings",
"row": 10,
"task": "Cross-Lingual Bitext Mining",
"value": "92.27"
}
]
}
] |
1812.10477v2 | [
{
"index": 5,
"records": [
{
"column": 1,
"dataset": "Kodak24 sigma10",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Grayscale Image Denoising",
"value": "35.19"
},
{
"column": 2,
"dataset": "Kodak24 sigma30",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Grayscale Image Denoising",
"value": "30.02"
},
{
"column": 3,
"dataset": "Kodak24 sigma50",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Grayscale Image Denoising",
"value": "27.88"
},
{
"column": 4,
"dataset": "Kodak24 sigma70",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Grayscale Image Denoising",
"value": "26.57"
},
{
"column": 5,
"dataset": "BSD68 sigma10",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Grayscale Image Denoising",
"value": "34.01"
},
{
"column": 6,
"dataset": "BSD68 sigma30",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Grayscale Image Denoising",
"value": "28.58"
},
{
"column": 7,
"dataset": "BSD68 sigma50",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Grayscale Image Denoising",
"value": "26.43"
},
{
"column": 8,
"dataset": "BSD68 sigma70",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Grayscale Image Denoising",
"value": "25.12"
},
{
"column": 9,
"dataset": "Urban100 sigma10",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Grayscale Image Denoising",
"value": "35.45"
},
{
"column": 10,
"dataset": "Urban100 sigma30",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Grayscale Image Denoising",
"value": "30.08"
},
{
"column": 11,
"dataset": "Urban100 sigma50",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Grayscale Image Denoising",
"value": "27.47"
},
{
"column": 12,
"dataset": "Urban100 sigma70",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Grayscale Image Denoising",
"value": "25.71"
}
]
},
{
"index": 6,
"records": [
{
"column": 1,
"dataset": "Kodak24 sigma10",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Color Image Denoising",
"value": "37.33"
},
{
"column": 2,
"dataset": "Kodak24 sigma30",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Color Image Denoising",
"value": "31.98"
},
{
"column": 3,
"dataset": "Kodak24 sigma50",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Color Image Denoising",
"value": "29.7"
},
{
"column": 4,
"dataset": "Kodak24 sigma70",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Color Image Denoising",
"value": "28.24"
},
{
"column": 5,
"dataset": "BSD68 sigma10",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Color Image Denoising",
"value": "36.49"
},
{
"column": 6,
"dataset": "BSD68 sigma30",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Color Image Denoising",
"value": "30.7"
},
{
"column": 7,
"dataset": "BSD68 sigma50",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Color Image Denoising",
"value": "28.34"
},
{
"column": 8,
"dataset": "BSD68 sigma70",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Color Image Denoising",
"value": "26.88"
},
{
"column": 9,
"dataset": "Urban100 sigma10",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Color Image Denoising",
"value": "36.75"
},
{
"column": 10,
"dataset": "Urban100 sigma30",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Color Image Denoising",
"value": "31.78"
},
{
"column": 11,
"dataset": "Urban100 sigma50",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Color Image Denoising",
"value": "29.38"
},
{
"column": 12,
"dataset": "Urban100 sigma70",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 10,
"task": "Color Image Denoising",
"value": "27.74"
}
]
},
{
"index": 7,
"records": [
{
"column": 14,
"dataset": "LIVE1 Quality 10",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 2,
"task": "Image Compression Artifact Reduction",
"value": "29.7"
},
{
"column": 15,
"dataset": "LIVE1 Quality 10",
"metric": "SSIM",
"model": "Residual Dense Network +",
"row": 2,
"task": "Image Compression Artifact Reduction",
"value": "0.8252"
},
{
"column": 14,
"dataset": "LIVE1 Quality 20",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 3,
"task": "Image Compression Artifact Reduction",
"value": "32.1"
},
{
"column": 15,
"dataset": "LIVE1 Quality 20",
"metric": "SSIM",
"model": "Residual Dense Network +",
"row": 3,
"task": "Image Compression Artifact Reduction",
"value": "0.8886"
},
{
"column": 14,
"dataset": "LIVE1 Quality 30",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 4,
"task": "Image Compression Artifact Reduction",
"value": "33.54"
},
{
"column": 15,
"dataset": "LIVE1 Quality 30",
"metric": "SSIM",
"model": "Residual Dense Network +",
"row": 4,
"task": "Image Compression Artifact Reduction",
"value": "0.9156"
},
{
"column": 14,
"dataset": "LIVE1 Quality 40",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 5,
"task": "Image Compression Artifact Reduction",
"value": "34.54"
},
{
"column": 15,
"dataset": "LIVE1 Quality 40",
"metric": "SSIM",
"model": "Residual Dense Network +",
"row": 5,
"task": "Image Compression Artifact Reduction",
"value": "0.9304"
},
{
"column": 14,
"dataset": "Classic5 Quality 10",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 6,
"task": "Image Compression Artifact Reduction",
"value": "30.03"
},
{
"column": 15,
"dataset": "Classic5 Quality 10",
"metric": "SSIM",
"model": "Residual Dense Network +",
"row": 6,
"task": "Image Compression Artifact Reduction",
"value": "0.8194"
},
{
"column": 14,
"dataset": "Classic5 Quality 20",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 7,
"task": "Image Compression Artifact Reduction",
"value": "32.19"
},
{
"column": 15,
"dataset": "Classic5 Quality 20",
"metric": "SSIM",
"model": "Residual Dense Network +",
"row": 7,
"task": "Image Compression Artifact Reduction",
"value": "0.8704"
},
{
"column": 14,
"dataset": "Classic5 Quality 30",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 8,
"task": "Image Compression Artifact Reduction",
"value": "33.46"
},
{
"column": 15,
"dataset": "Classic5 Quality 30",
"metric": "SSIM",
"model": "Residual Dense Network +",
"row": 8,
"task": "Image Compression Artifact Reduction",
"value": "0.8932"
},
{
"column": 14,
"dataset": "Classic5 Quality 40",
"metric": "PSNR",
"model": "Residual Dense Network +",
"row": 9,
"task": "Image Compression Artifact Reduction",
"value": "34.29"
},
{
"column": 15,
"dataset": "Classic5 Quality 40",
"metric": "SSIM",
"model": "Residual Dense Network +",
"row": 9,
"task": "Image Compression Artifact Reduction",
"value": "0.9063"
}
]
}
] |
1812.11317v1 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "MegaFace",
"metric": "Accuracy",
"model": "SV-AM-Softmax",
"row": 14,
"task": "Face Identification",
"value": "97.2"
},
{
"column": 2,
"dataset": "MegaFace",
"metric": "Accuracy",
"model": "SV-AM-Softmax",
"row": 14,
"task": "Face Verification",
"value": "97.38"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "Trillion Pairs Dataset",
"metric": "Accuracy",
"model": "SV-AM-Softmax",
"row": 14,
"task": "Face Identification",
"value": "73.56"
},
{
"column": 2,
"dataset": "Trillion Pairs Dataset",
"metric": "Accuracy",
"model": "SV-AM-Softmax",
"row": 14,
"task": "Face Verification",
"value": "72.71"
}
]
}
] |
1812.11788v1 | [
{
"index": 0,
"records": [
{
"column": 6,
"dataset": "Occlusion LineMOD",
"metric": "Mean ADD",
"model": "PVNet",
"row": 10,
"task": "6D Pose Estimation using RGB",
"value": "40.77"
}
]
},
{
"index": 1,
"records": [
{
"column": 3,
"dataset": "LineMOD",
"metric": "Accuracy",
"model": "PVNet",
"row": 16,
"task": "6D Pose Estimation using RGB",
"value": "99%"
}
]
},
{
"index": 2,
"records": [
{
"column": 4,
"dataset": "LineMOD",
"metric": "Mean ADD",
"model": "PVNet",
"row": 16,
"task": "6D Pose Estimation using RGB",
"value": "86.27"
}
]
},
{
"index": 3,
"records": [
{
"column": 4,
"dataset": "Occlusion LineMOD",
"metric": "Accuracy",
"model": "PVNet",
"row": 10,
"task": "6D Pose Estimation using RGB",
"value": "61.06%"
}
]
},
{
"index": 6,
"records": [
{
"column": 3,
"dataset": "YCB-Video",
"metric": "Mean AUC",
"model": "PVNet",
"row": 3,
"task": "6D Pose Estimation using RGB",
"value": "73.4"
}
]
}
] |
1901.00148v4 | [
{
"index": 1,
"records": [
{
"column": 5,
"dataset": "COCO minival",
"metric": "AP",
"model": "MSPN",
"row": 5,
"task": "Pose Estimation",
"value": "75.9"
}
]
},
{
"index": 6,
"records": [
{
"column": 3,
"dataset": "COCO test-dev",
"metric": "AP",
"model": "MSPN",
"row": 8,
"task": "Keypoint Detection",
"value": "76.1"
},
{
"column": 4,
"dataset": "COCO test-dev",
"metric": "AP50",
"model": "MSPN",
"row": 8,
"task": "Keypoint Detection",
"value": "93.4"
},
{
"column": 5,
"dataset": "COCO test-dev",
"metric": "AP75",
"model": "MSPN",
"row": 8,
"task": "Keypoint Detection",
"value": "83.8"
},
{
"column": 6,
"dataset": "COCO test-dev",
"metric": "APM",
"model": "MSPN",
"row": 8,
"task": "Keypoint Detection",
"value": "72.3"
},
{
"column": 7,
"dataset": "COCO test-dev",
"metric": "APL",
"model": "MSPN",
"row": 8,
"task": "Keypoint Detection",
"value": "81.5"
},
{
"column": 8,
"dataset": "COCO test-dev",
"metric": "AR",
"model": "MSPN",
"row": 8,
"task": "Keypoint Detection",
"value": "81.6"
},
{
"column": 9,
"dataset": "COCO test-dev",
"metric": "AR50",
"model": "MSPN",
"row": 8,
"task": "Keypoint Detection",
"value": "96.3"
},
{
"column": 10,
"dataset": "COCO test-dev",
"metric": "AR75",
"model": "MSPN",
"row": 8,
"task": "Keypoint Detection",
"value": "88.1"
},
{
"column": 11,
"dataset": "COCO test-dev",
"metric": "ARM",
"model": "MSPN",
"row": 8,
"task": "Keypoint Detection",
"value": "77.5"
},
{
"column": 12,
"dataset": "COCO test-dev",
"metric": "ARL",
"model": "MSPN",
"row": 8,
"task": "Keypoint Detection",
"value": "87.1"
}
]
},
{
"index": 7,
"records": [
{
"column": 3,
"dataset": "COCO test-challenge",
"metric": "AP",
"model": "MSPN+*",
"row": 6,
"task": "Keypoint Detection",
"value": "76.4"
},
{
"column": 4,
"dataset": "COCO test-challenge",
"metric": "AP50",
"model": "MSPN+*",
"row": 6,
"task": "Keypoint Detection",
"value": "92.9"
},
{
"column": 5,
"dataset": "COCO test-challenge",
"metric": "AP75",
"model": "MSPN+*",
"row": 6,
"task": "Keypoint Detection",
"value": "82.6"
},
{
"column": 6,
"dataset": "COCO test-challenge",
"metric": "ARM",
"model": "MSPN+*",
"row": 6,
"task": "Keypoint Detection",
"value": "71.4"
},
{
"column": 7,
"dataset": "COCO test-challenge",
"metric": "ARL",
"model": "MSPN+*",
"row": 6,
"task": "Keypoint Detection",
"value": "83.2"
},
{
"column": 8,
"dataset": "COCO test-challenge",
"metric": "AR",
"model": "MSPN+*",
"row": 6,
"task": "Keypoint Detection",
"value": "82.2"
},
{
"column": 9,
"dataset": "COCO test-challenge",
"metric": "AR50",
"model": "MSPN+*",
"row": 6,
"task": "Keypoint Detection",
"value": "96"
},
{
"column": 10,
"dataset": "COCO test-challenge",
"metric": "AR75",
"model": "MSPN+*",
"row": 6,
"task": "Keypoint Detection",
"value": "87.7"
},
{
"column": 11,
"dataset": "COCO test-challenge",
"metric": "ARM",
"model": "MSPN+*",
"row": 6,
"task": "Keypoint Detection",
"value": "77.5"
},
{
"column": 12,
"dataset": "COCO test-challenge",
"metric": "APL",
"model": "MSPN+*",
"row": 6,
"task": "Keypoint Detection",
"value": "88.6"
}
]
},
{
"index": 8,
"records": [
{
"column": 8,
"dataset": "MPII Human Pose",
"metric": "PCKh-0.5",
"model": "MSPN",
"row": 14,
"task": "Pose Estimation",
"value": "92.6"
}
]
}
] |
1901.00488v2 | [
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "CASIA-MFSD",
"metric": "EER",
"model": "3D Synthesis (balancing sampling)",
"row": 12,
"task": "Face Anti-Spoofing",
"value": "2.22"
},
{
"column": 2,
"dataset": "CASIA-MFSD",
"metric": "HTER",
"model": "3D Synthesis (balancing sampling)",
"row": 12,
"task": "Face Anti-Spoofing",
"value": "1.67"
}
]
},
{
"index": 5,
"records": [
{
"column": 1,
"dataset": "Replay-Attack",
"metric": "EER",
"model": "3D Synthesis (balancing sampling)",
"row": 11,
"task": "Face Anti-Spoofing",
"value": "0.25"
},
{
"column": 2,
"dataset": "Replay-Attack",
"metric": "HTER",
"model": "3D Synthesis (balancing sampling)",
"row": 11,
"task": "Face Anti-Spoofing",
"value": "0.63"
}
]
}
] |
1901.00976v2 | [
{
"index": 0,
"records": [
{
"column": 7,
"dataset": "Office-31",
"metric": "Average Accuracy",
"model": "Contrastive Adaptation Network",
"row": 7,
"task": "Domain Adaptation",
"value": "90.6"
}
]
},
{
"index": 1,
"records": [
{
"column": 13,
"dataset": "VisDA2017",
"metric": "Accuracy",
"model": "Contrastive Adaptation Network",
"row": 9,
"task": "Domain Adaptation",
"value": "87.2"
}
]
}
] |
1901.01484v2 | [
{
"index": 0,
"records": [
{
"column": 9,
"dataset": "Cora with Public Split: fixed 20 nodes per class",
"metric": "Accuracy",
"model": "LanczosNet",
"row": 1,
"task": "Node Classification",
"value": "79.5"
},
{
"column": 10,
"dataset": "Cora with Public Split: fixed 20 nodes per class",
"metric": "Accuracy",
"model": "AdaLanczosNet",
"row": 1,
"task": "Node Classification",
"value": "80.4"
},
{
"column": 9,
"dataset": "Cora (3%)",
"metric": "Accuracy",
"model": "LanczosNet",
"row": 2,
"task": "Node Classification",
"value": "76.3"
},
{
"column": 10,
"dataset": "Cora (3%)",
"metric": "Accuracy",
"model": "AdaLanczosNet",
"row": 2,
"task": "Node Classification",
"value": "77.7"
},
{
"column": 9,
"dataset": "Cora (1%)",
"metric": "Accuracy",
"model": "LanczosNet",
"row": 3,
"task": "Node Classification",
"value": "66.1"
},
{
"column": 10,
"dataset": "Cora (1%)",
"metric": "Accuracy",
"model": "AdaLanczosNet",
"row": 3,
"task": "Node Classification",
"value": "67.5"
},
{
"column": 9,
"dataset": "Cora (0.5%)",
"metric": "Accuracy",
"model": "LanczosNet",
"row": 4,
"task": "Node Classification",
"value": "58.1"
},
{
"column": 10,
"dataset": "Cora (0.5%)",
"metric": "Accuracy",
"model": "AdaLanczosNet",
"row": 4,
"task": "Node Classification",
"value": "60.8"
},
{
"column": 9,
"dataset": "CiteSeer with Public Split: fixed 20 nodes per class",
"metric": "Accuracy",
"model": "LanczosNet",
"row": 6,
"task": "Node Classification",
"value": "66.2"
},
{
"column": 10,
"dataset": "CiteSeer with Public Split: fixed 20 nodes per class",
"metric": "Accuracy",
"model": "AdaLanczosNet",
"row": 6,
"task": "Node Classification",
"value": "68.7"
},
{
"column": 9,
"dataset": "CiteSeer (1%)",
"metric": "Accuracy",
"model": "LanczosNet",
"row": 7,
"task": "Node Classification",
"value": "61.3"
},
{
"column": 10,
"dataset": "CiteSeer (1%)",
"metric": "Accuracy",
"model": "AdaLanczosNet",
"row": 7,
"task": "Node Classification",
"value": "63.3"
},
{
"column": 9,
"dataset": "CiteSeer (0.5%)",
"metric": "Accuracy",
"model": "LanczosNet",
"row": 8,
"task": "Node Classification",
"value": "53.2"
},
{
"column": 10,
"dataset": "CiteSeer (0.5%)",
"metric": "Accuracy",
"model": "AdaLanczosNet",
"row": 8,
"task": "Node Classification",
"value": "53.8"
},
{
"column": 9,
"dataset": "PubMed with Public Split: fixed 20 nodes per class",
"metric": "Accuracy",
"model": "LanczosNet",
"row": 11,
"task": "Node Classification",
"value": "78.3"
},
{
"column": 10,
"dataset": "PubMed with Public Split: fixed 20 nodes per class",
"metric": "Accuracy",
"model": "AdaLanczosNet",
"row": 11,
"task": "Node Classification",
"value": "78.1"
},
{
"column": 9,
"dataset": "PubMed (0.1%)",
"metric": "Accuracy",
"model": "LanczosNet",
"row": 12,
"task": "Node Classification",
"value": "73.4"
},
{
"column": 10,
"dataset": "PubMed (0.1%)",
"metric": "Accuracy",
"model": "AdaLanczosNet",
"row": 12,
"task": "Node Classification",
"value": "72.8"
},
{
"column": 9,
"dataset": "PubMed (0.05%)",
"metric": "Accuracy",
"model": "LanczosNet",
"row": 13,
"task": "Node Classification",
"value": "68.8"
},
{
"column": 10,
"dataset": "PubMed (0.05%)",
"metric": "Accuracy",
"model": "AdaLanczosNet",
"row": 13,
"task": "Node Classification",
"value": "66"
},
{
"column": 9,
"dataset": "PubMed (0.03%)",
"metric": "Accuracy",
"model": "LanczosNet",
"row": 14,
"task": "Node Classification",
"value": "60.4"
},
{
"column": 10,
"dataset": "PubMed (0.03%)",
"metric": "Accuracy",
"model": "AdaLanczosNet",
"row": 14,
"task": "Node Classification",
"value": "61"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "Quantum Chemistry Regression",
"metric": "Validation MAE",
"model": "LanczosNet",
"row": 10,
"task": "Quantum Chemistry Regression",
"value": "9.65"
},
{
"column": 2,
"dataset": "Quantum Chemistry Regression",
"metric": "Test MAE",
"model": "LanczosNet",
"row": 10,
"task": "Quantum Chemistry Regression",
"value": "9.58"
}
]
}
] |
1901.01892v2 | [
{
"index": 6,
"records": [
{
"column": 2,
"dataset": "COCO test-dev",
"metric": "box AP",
"model": "TridentNet (ResNet-101)",
"row": 6,
"task": "Object Detection",
"value": "42.7"
},
{
"column": 3,
"dataset": "COCO test-dev",
"metric": "AP50",
"model": "TridentNet (ResNet-101)",
"row": 6,
"task": "Object Detection",
"value": "63.6"
},
{
"column": 4,
"dataset": "COCO test-dev",
"metric": "AP75",
"model": "TridentNet (ResNet-101)",
"row": 6,
"task": "Object Detection",
"value": "46.5"
},
{
"column": 5,
"dataset": "COCO test-dev",
"metric": "APS",
"model": "TridentNet (ResNet-101)",
"row": 6,
"task": "Object Detection",
"value": "23.9"
},
{
"column": 6,
"dataset": "COCO test-dev",
"metric": "APM",
"model": "TridentNet (ResNet-101)",
"row": 6,
"task": "Object Detection",
"value": "46.6"
},
{
"column": 7,
"dataset": "COCO test-dev",
"metric": "APL",
"model": "TridentNet (ResNet-101)",
"row": 6,
"task": "Object Detection",
"value": "56.6"
},
{
"column": 2,
"dataset": "COCO test-dev",
"metric": "box AP",
"model": "TridentNet (ResNet-101-Deformable, Image Pyramid)",
"row": 8,
"task": "Object Detection",
"value": "48.4"
},
{
"column": 3,
"dataset": "COCO test-dev",
"metric": "AP50",
"model": "TridentNet (ResNet-101-Deformable, Image Pyramid)",
"row": 8,
"task": "Object Detection",
"value": "69.7"
},
{
"column": 4,
"dataset": "COCO test-dev",
"metric": "AP75",
"model": "TridentNet (ResNet-101-Deformable, Image Pyramid)",
"row": 8,
"task": "Object Detection",
"value": "53.5"
},
{
"column": 5,
"dataset": "COCO test-dev",
"metric": "APS",
"model": "TridentNet (ResNet-101-Deformable, Image Pyramid)",
"row": 8,
"task": "Object Detection",
"value": "31.8"
},
{
"column": 6,
"dataset": "COCO test-dev",
"metric": "APM",
"model": "TridentNet (ResNet-101-Deformable, Image Pyramid)",
"row": 8,
"task": "Object Detection",
"value": "51.3"
},
{
"column": 7,
"dataset": "COCO test-dev",
"metric": "APL",
"model": "TridentNet (ResNet-101-Deformable, Image Pyramid)",
"row": 8,
"task": "Object Detection",
"value": "60.3"
}
]
},
{
"index": 7,
"records": [
{
"column": 1,
"dataset": "COCO minival",
"metric": "box AP",
"model": "TridentNet (ResNet-101)",
"row": 4,
"task": "Object Detection",
"value": "42"
},
{
"column": 2,
"dataset": "COCO minival",
"metric": "AP50",
"model": "TridentNet (ResNet-101)",
"row": 4,
"task": "Object Detection",
"value": "63.5"
},
{
"column": 3,
"dataset": "COCO minival",
"metric": "AP75",
"model": "TridentNet (ResNet-101)",
"row": 4,
"task": "Object Detection",
"value": "45.5"
},
{
"column": 4,
"dataset": "COCO minival",
"metric": "APS",
"model": "TridentNet (ResNet-101)",
"row": 4,
"task": "Object Detection",
"value": "24.9"
},
{
"column": 5,
"dataset": "COCO minival",
"metric": "APM",
"model": "TridentNet (ResNet-101)",
"row": 4,
"task": "Object Detection",
"value": "47"
},
{
"column": 6,
"dataset": "COCO minival",
"metric": "APL",
"model": "TridentNet (ResNet-101)",
"row": 4,
"task": "Object Detection",
"value": "56.9"
}
]
}
] |
1901.02970v2 | [
{
"index": 1,
"records": [
{
"column": 2,
"dataset": "CAMERA25",
"metric": "mAP 3DIou@25",
"model": "NOCS (128 bins)",
"row": 6,
"task": "6D Pose Estimation using RGBD",
"value": "91.4"
},
{
"column": 3,
"dataset": "CAMERA25",
"metric": "mAP 3DIou@50",
"model": "NOCS (128 bins)",
"row": 6,
"task": "6D Pose Estimation using RGBD",
"value": "85.3"
},
{
"column": 4,
"dataset": "CAMERA25",
"metric": "mAP 5, 5cm",
"model": "NOCS (128 bins)",
"row": 6,
"task": "6D Pose Estimation using RGBD",
"value": "38.8"
},
{
"column": 5,
"dataset": "CAMERA25",
"metric": "mAP 10, 5cm",
"model": "NOCS (128 bins)",
"row": 6,
"task": "6D Pose Estimation using RGBD",
"value": "61.7"
},
{
"column": 6,
"dataset": "CAMERA25",
"metric": "mAP 10, 10cm",
"model": "NOCS (128 bins)",
"row": 6,
"task": "6D Pose Estimation using RGBD",
"value": "62.2"
},
{
"column": 2,
"dataset": "REAL275",
"metric": "mAP 3DIou@25",
"model": "NOCS (128 bins)",
"row": 10,
"task": "6D Pose Estimation using RGBD",
"value": "84.9"
},
{
"column": 3,
"dataset": "REAL275",
"metric": "mAP 3DIou@50",
"model": "NOCS (128 bins)",
"row": 10,
"task": "6D Pose Estimation using RGBD",
"value": "80.5"
},
{
"column": 4,
"dataset": "REAL275",
"metric": "mAP 5, 5cm",
"model": "NOCS (128 bins)",
"row": 10,
"task": "6D Pose Estimation using RGBD",
"value": "9.5"
},
{
"column": 5,
"dataset": "REAL275",
"metric": "mAP 10, 5cm",
"model": "NOCS (128 bins)",
"row": 10,
"task": "6D Pose Estimation using RGBD",
"value": "26.7"
},
{
"column": 6,
"dataset": "REAL275",
"metric": "mAP 10, 10cm",
"model": "NOCS (128 bins)",
"row": 10,
"task": "6D Pose Estimation using RGBD",
"value": "26.7"
}
]
}
] |
1901.02985v2 | [
{
"index": 1,
"records": [
{
"column": 5,
"dataset": "Cityscapes val",
"metric": "mIoU",
"model": "Auto-DeepLab-L",
"row": 3,
"task": "Semantic Segmentation",
"value": "80.33"
}
]
},
{
"index": 3,
"records": [
{
"column": 3,
"dataset": "Cityscapes test",
"metric": "Mean IoU (class)",
"model": "Auto-DeepLab-L",
"row": 7,
"task": "Semantic Segmentation",
"value": "82.1"
}
]
},
{
"index": 4,
"records": [
{
"column": 3,
"dataset": "PASCAL VOC 2012 val",
"metric": "mIoU",
"model": "Auto-DeepLab-L",
"row": 13,
"task": "Semantic Segmentation",
"value": "82.04"
}
]
},
{
"index": 5,
"records": [
{
"column": 3,
"dataset": "PASCAL VOC 2012 test",
"metric": "mIoU",
"model": "Auto-DeepLab-L",
"row": 3,
"task": "Semantic Segmentation",
"value": "85.6"
}
]
},
{
"index": 6,
"records": [
{
"column": 2,
"dataset": "ADE20K val",
"metric": "mIoU",
"model": "Auto-DeepLab-L",
"row": 3,
"task": "Semantic Segmentation",
"value": "43.98"
},
{
"column": 3,
"dataset": "ADE20K val",
"metric": "Pixel Accuracy",
"model": "Auto-DeepLab-L",
"row": 3,
"task": "Semantic Segmentation",
"value": "81.72%"
}
]
}
] |
1901.03278v2 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "COCO test-dev",
"metric": "AR100",
"model": "GA-RPN (ResNet-50-FPN)",
"row": 13,
"task": "Region Proposal",
"value": "59.2"
},
{
"column": 3,
"dataset": "COCO test-dev",
"metric": "AR300",
"model": "GA-RPN (ResNet-50-FPN)",
"row": 13,
"task": "Region Proposal",
"value": "65.2"
},
{
"column": 4,
"dataset": "COCO test-dev",
"metric": "AR1000",
"model": "GA-RPN (ResNet-50-FPN)",
"row": 13,
"task": "Region Proposal",
"value": "68.5"
},
{
"column": 5,
"dataset": "COCO test-dev",
"metric": "ARS",
"model": "GA-RPN (ResNet-50-FPN)",
"row": 13,
"task": "Region Proposal",
"value": "40.9"
},
{
"column": 6,
"dataset": "COCO test-dev",
"metric": "ARM",
"model": "GA-RPN (ResNet-50-FPN)",
"row": 13,
"task": "Region Proposal",
"value": "67.8"
},
{
"column": 7,
"dataset": "COCO test-dev",
"metric": "ARL",
"model": "GA-RPN (ResNet-50-FPN)",
"row": 13,
"task": "Region Proposal",
"value": "79"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "COCO test-dev",
"metric": "box AP",
"model": "GA-Faster-RCNN",
"row": 4,
"task": "Object Detection",
"value": "39.8"
},
{
"column": 2,
"dataset": "COCO test-dev",
"metric": "AP50",
"model": "GA-Faster-RCNN",
"row": 4,
"task": "Object Detection",
"value": "59.2"
},
{
"column": 3,
"dataset": "COCO test-dev",
"metric": "AP75",
"model": "GA-Faster-RCNN",
"row": 4,
"task": "Object Detection",
"value": "43.5"
},
{
"column": 4,
"dataset": "COCO test-dev",
"metric": "APS",
"model": "GA-Faster-RCNN",
"row": 4,
"task": "Object Detection",
"value": "21.8"
},
{
"column": 5,
"dataset": "COCO test-dev",
"metric": "APM",
"model": "GA-Faster-RCNN",
"row": 4,
"task": "Object Detection",
"value": "42.6"
},
{
"column": 6,
"dataset": "COCO test-dev",
"metric": "APL",
"model": "GA-Faster-RCNN",
"row": 4,
"task": "Object Detection",
"value": "50.7"
}
]
}
] |
1901.04095v2 | [
{
"index": 6,
"records": [
{
"column": 1,
"dataset": "DBLP",
"metric": "Accuracy",
"model": "attri2vec-ReLU",
"row": 9,
"task": "Node Clustering",
"value": "76.69"
},
{
"column": 2,
"dataset": "DBLP",
"metric": "F-Measure",
"model": "attri2vec-ReLU",
"row": 9,
"task": "Node Clustering",
"value": "69.67"
},
{
"column": 3,
"dataset": "DBLP",
"metric": "NMI",
"model": "attri2vec-ReLU",
"row": 9,
"task": "Node Clustering",
"value": "44.34"
}
]
},
{
"index": 7,
"records": [
{
"column": 1,
"dataset": "Facebook",
"metric": "Accuracy",
"model": "attri2vec-kernel",
"row": 10,
"task": "Node Clustering",
"value": "66.77"
},
{
"column": 2,
"dataset": "Facebook",
"metric": "F-Measure",
"model": "attri2vec-kernel",
"row": 10,
"task": "Node Clustering",
"value": "50.32"
},
{
"column": 3,
"dataset": "Facebook",
"metric": "NMI",
"model": "attri2vec-kernel",
"row": 10,
"task": "Node Clustering",
"value": "17.15"
}
]
}
] |
1901.04622v1 | [
{
"index": 5,
"records": [
{
"column": 2,
"dataset": "Cambridge",
"metric": "Accuracy",
"model": "Key Frames + Feature Fusion",
"row": 12,
"task": "Hand Gesture Recognition",
"value": "98.23"
}
]
},
{
"index": 6,
"records": [
{
"column": 2,
"dataset": "Northwestern University",
"metric": "Accuracy",
"model": "Key Frames + Feature Fusion",
"row": 3,
"task": "Hand Gesture Recognition",
"value": "96.89"
}
]
}
] |
1901.04780v1 | [
{
"index": 0,
"records": [
{
"column": 9,
"dataset": "YCB-Video",
"metric": "Mean AUC",
"model": "DenseFusion",
"row": 23,
"task": "6D Pose Estimation using RGB",
"value": "93.1"
}
]
},
{
"index": 1,
"records": [
{
"column": 7,
"dataset": "LineMOD",
"metric": "Mean ADD",
"model": "DeepFusion",
"row": 15,
"task": "6D Pose Estimation using RGBD",
"value": "94.3"
}
]
}
] |
1901.06140v1 | [
{
"index": 4,
"records": [
{
"column": 3,
"dataset": "DukeMTMC-reID",
"metric": "MAP",
"model": "SVDNet",
"row": 3,
"task": "Person Re-Identification",
"value": "56.8"
}
]
}
] |
1901.06610v2 | [
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "Yelp-5",
"metric": "Accuracy",
"model": "HAHNN (CNN)",
"row": 5,
"task": "Text Classification",
"value": "73.28"
},
{
"column": 2,
"dataset": "IMDb",
"metric": "Accuracy",
"model": "HAHNN (CNN)",
"row": 6,
"task": "Text Classification",
"value": "95.17"
}
]
}
] |
1901.06631v3 | [
{
"index": 5,
"records": [
{
"column": 1,
"dataset": "Amazon",
"metric": "F1-score",
"model": "CommunityGAN",
"row": 9,
"task": "Community Detection",
"value": "0.86"
},
{
"column": 2,
"dataset": "Amazon",
"metric": "F1-score",
"model": "CommunityGAN",
"row": 9,
"task": "Community Detection",
"value": "0.327"
},
{
"column": 3,
"dataset": "DBLP",
"metric": "F1-Score",
"model": "CommunityGAN",
"row": 9,
"task": "Community Detection",
"value": "0.456"
},
{
"column": 1,
"dataset": "Amazon",
"metric": "F1-score",
"model": "CommunityGAN",
"row": 19,
"task": "Community Detection",
"value": "0.853"
},
{
"column": 2,
"dataset": "Amazon",
"metric": "F1-score",
"model": "CommunityGAN",
"row": 19,
"task": "Community Detection",
"value": "0.091"
},
{
"column": 3,
"dataset": "DBLP",
"metric": "F1-Score",
"model": "CommunityGAN",
"row": 19,
"task": "Community Detection",
"value": "0.153"
}
]
},
{
"index": 6,
"records": [
{
"column": 1,
"dataset": "arXiv-AstroPh 2-clique",
"metric": "AUC",
"model": "CommunityGAN",
"row": 7,
"task": "Clique Prediction",
"value": "92.3"
},
{
"column": 2,
"dataset": "arXiv-AstroPh 3-clique",
"metric": "AUC",
"model": "CommunityGAN",
"row": 7,
"task": "Clique Prediction",
"value": "99"
},
{
"column": 3,
"dataset": "arXiv-AstroPh 4-clique",
"metric": "AUC",
"model": "CommunityGAN",
"row": 7,
"task": "Clique Prediction",
"value": "97"
},
{
"column": 1,
"dataset": "arXiv-GrQc 2-clique",
"metric": "AUC",
"model": "CommunityGAN",
"row": 15,
"task": "Clique Prediction",
"value": "90.4"
},
{
"column": 2,
"dataset": "arXiv-GrQc 3-clique",
"metric": "AUC",
"model": "CommunityGAN",
"row": 15,
"task": "Clique Prediction",
"value": "99.3"
},
{
"column": 3,
"dataset": "arXiv-GrQc 4-clique",
"metric": "AUC",
"model": "CommunityGAN",
"row": 15,
"task": "Clique Prediction",
"value": "95.6"
}
]
}
] |
1901.06656v2 | [
{
"index": 0,
"records": [
{
"column": 5,
"dataset": "MNIST",
"metric": "Percentage error",
"model": "VGG8B + LocalLearning + CO",
"row": 4,
"task": "Image Classification",
"value": "0.26"
}
]
},
{
"index": 1,
"records": [
{
"column": 5,
"dataset": "Fashion-MNIST",
"metric": "Percentage error",
"model": "VGG8B(2x) + LocalLearning + CO",
"row": 5,
"task": "Image Classification",
"value": "4.14"
}
]
},
{
"index": 2,
"records": [
{
"column": 5,
"dataset": "Kuzushiji-MNIST",
"metric": "Percentage error",
"model": "VGG8B(2x) + LocalLearning + CO",
"row": 4,
"task": "Image Classification",
"value": "0.99"
}
]
},
{
"index": 3,
"records": [
{
"column": 5,
"dataset": "CIFAR-10",
"metric": "Percentage correct",
"model": "VGG11B(2x) + LocalLearning + CO",
"row": 7,
"task": "Image Classification",
"value": "96.4"
}
]
},
{
"index": 5,
"records": [
{
"column": 5,
"dataset": "CIFAR-100",
"metric": "Percentage correct",
"model": "VGG11B(3x) + LocalLearning",
"row": 6,
"task": "Image Classification",
"value": "79.9"
}
]
},
{
"index": 6,
"records": [
{
"column": 5,
"dataset": "SVHN",
"metric": "Percentage error",
"model": "VGG8B + LocalLearning + CO",
"row": 3,
"task": "Image Classification",
"value": "1.65"
}
]
},
{
"index": 7,
"records": [
{
"column": 5,
"dataset": "STL-10",
"metric": "Percentage correct",
"model": "VGG8B + LocalLearning + CO",
"row": 3,
"task": "Image Classification",
"value": "80.75"
}
]
}
] |
1901.06706v1 | [
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "SNLI-VE val",
"metric": "Accuracy",
"model": "EVE-ROI*",
"row": 8,
"task": "Visual Entailment",
"value": "70.81"
},
{
"column": 5,
"dataset": "SNLI-VE test",
"metric": "Accuracy",
"model": "EVE-ROI*",
"row": 8,
"task": "Visual Entailment",
"value": "70.47"
}
]
}
] |
1901.06778v2 | [
{
"index": 0,
"records": [
{
"column": 4,
"dataset": "AFLW2000",
"metric": "MAE",
"model": "Hybrid Coarse-Fine",
"row": 3,
"task": "Head Pose Estimation",
"value": "5.395"
}
]
},
{
"index": 1,
"records": [
{
"column": 4,
"dataset": "BIWI",
"metric": "MAE",
"model": "Hybrid Coarse-Fine",
"row": 7,
"task": "Head Pose Estimation",
"value": "3.0174"
}
]
},
{
"index": 2,
"records": [
{
"column": 4,
"dataset": "AFLW",
"metric": "MAE",
"model": "Hybrid Coarse-Fine",
"row": 5,
"task": "Head Pose Estimation",
"value": "5.09"
}
]
}
] |
1901.06958v2 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "CapgMyo DB-a",
"metric": "Accuracy",
"model": "2SRNN",
"row": 5,
"task": "Gesture Recognition",
"value": "97.1"
},
{
"column": 2,
"dataset": "CapgMyo DB-b",
"metric": "Accuracy",
"model": "2SRNN",
"row": 5,
"task": "Gesture Recognition",
"value": "97.1"
},
{
"column": 3,
"dataset": "CapgMyo DB-c",
"metric": "Accuracy",
"model": "2SRNN",
"row": 5,
"task": "Gesture Recognition",
"value": "96.8"
},
{
"column": 4,
"dataset": "Ninapro DB-1 12 gestures",
"metric": "Accuracy",
"model": "2SRNN",
"row": 5,
"task": "Gesture Recognition",
"value": "84.7"
},
{
"column": 5,
"dataset": "Ninapro DB-1 8 gestures",
"metric": "Accuracy",
"model": "2SRNN",
"row": 5,
"task": "Gesture Recognition",
"value": "90.7"
}
]
}
] |
1901.07261v2 | [
{
"index": 0,
"records": [
{
"column": 3,
"dataset": "Set5 - 2x upscaling",
"metric": "PSNR",
"model": "FALSR-A",
"row": 12,
"task": "Image Super-Resolution",
"value": "37.82"
},
{
"column": 4,
"dataset": "Set14 - 2x upscaling",
"metric": "PSNR",
"model": "FALSR-A",
"row": 12,
"task": "Image Super-Resolution",
"value": "33.55"
},
{
"column": 5,
"dataset": "BSD100 - 2x upscaling",
"metric": "PSNR",
"model": "FALSR-A",
"row": 12,
"task": "Image Super-Resolution",
"value": "32.12"
},
{
"column": 6,
"dataset": "Urban100 - 2x upscaling",
"metric": "PSNR",
"model": "FALSR-A",
"row": 12,
"task": "Image Super-Resolution",
"value": "31.93"
}
]
}
] |
1901.07291v1 | [
{
"index": 1,
"records": [
{
"column": 3,
"dataset": "WMT2016 English-German",
"metric": "BLEU",
"model": "MLM pretraining for encoder and decoder",
"row": 8,
"task": "Unsupervised Machine Translation",
"value": "26.4"
}
]
}
] |
1901.07752v5 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "MNIST-full",
"metric": "Accuracy",
"model": "DynAE",
"row": 20,
"task": "Image Clustering",
"value": "0.987"
},
{
"column": 2,
"dataset": "MNIST-full",
"metric": "NMI",
"model": "DynAE",
"row": 20,
"task": "Image Clustering",
"value": "0.964"
},
{
"column": 3,
"dataset": "MNIST-test",
"metric": "Accuracy",
"model": "DynAE",
"row": 20,
"task": "Image Clustering",
"value": "0.987"
},
{
"column": 4,
"dataset": "MNIST-test",
"metric": "NMI",
"model": "DynAE",
"row": 20,
"task": "Image Clustering",
"value": "0.963"
},
{
"column": 5,
"dataset": "USPS",
"metric": "Accuracy",
"model": "DynAE",
"row": 20,
"task": "Image Clustering",
"value": "0.981"
},
{
"column": 6,
"dataset": "USPS",
"metric": "NMI",
"model": "DynAE",
"row": 20,
"task": "Image Clustering",
"value": "0.948"
},
{
"column": 7,
"dataset": "Fashion-MNIST",
"metric": "Accuracy",
"model": "DynAE",
"row": 20,
"task": "Image Clustering",
"value": "0.591"
},
{
"column": 8,
"dataset": "Fashion-MNIST",
"metric": "NMI",
"model": "DynAE",
"row": 20,
"task": "Image Clustering",
"value": "0.642"
}
]
}
] |
1901.07884v4 | [
{
"index": 1,
"records": [
{
"column": 8,
"dataset": "UTKFace",
"metric": "MAE",
"model": "CORAL",
"row": 13,
"task": "Age Estimation",
"value": "5.39"
}
]
},
{
"index": 3,
"records": [
{
"column": 2,
"dataset": "MORPH Album2",
"metric": "MAE",
"model": "CORAL",
"row": 4,
"task": "Age Estimation",
"value": "2.59"
},
{
"column": 3,
"dataset": "AFAD",
"metric": "MAE",
"model": "CORAL",
"row": 4,
"task": "Age Estimation",
"value": "3.48"
},
{
"column": 5,
"dataset": "CACD",
"metric": "MAE",
"model": "CORAL",
"row": 4,
"task": "Age Estimation",
"value": "5.35"
}
]
}
] |
1901.08211v4 | [
{
"index": 0,
"records": [
{
"column": 7,
"dataset": "Multi-Modality Whole Heart Segmentation Challenge 2017",
"metric": "Average Dice",
"model": "SIFA",
"row": 9,
"task": "Heart Segmentation",
"value": "73"
},
{
"column": 12,
"dataset": "Multi-Modality Whole Heart Segmentation Challenge 2017",
"metric": "Average ASD",
"model": "SIFA",
"row": 9,
"task": "Heart Segmentation",
"value": "8.1"
}
]
}
] |
1901.08907v1 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "MovieLens 1M",
"metric": "AUC",
"model": "MKR",
"row": 8,
"task": "Click-Through Rate Prediction",
"value": "0.917"
},
{
"column": 2,
"dataset": "MovieLens 1M",
"metric": "Accuracy",
"model": "MKR",
"row": 8,
"task": "Click-Through Rate Prediction",
"value": "84.3"
},
{
"column": 3,
"dataset": "Children's Book Test Common noun",
"metric": "AUC",
"model": "MKR",
"row": 8,
"task": "Click-Through Rate Prediction",
"value": "0.7340000000000001"
},
{
"column": 4,
"dataset": "Children's Book Test Common noun",
"metric": "Accuracy",
"model": "MKR",
"row": 8,
"task": "Click-Through Rate Prediction",
"value": "70.4"
},
{
"column": 5,
"dataset": "Last.FM",
"metric": "AUC",
"model": "MKR",
"row": 8,
"task": "Click-Through Rate Prediction",
"value": "0.797"
},
{
"column": 6,
"dataset": "Last.FM",
"metric": "Accuracy",
"model": "MKR",
"row": 8,
"task": "Click-Through Rate Prediction",
"value": "75.2"
},
{
"column": 7,
"dataset": "Last.FM",
"metric": "AUC",
"model": "MKR",
"row": 8,
"task": "Click-Through Rate Prediction",
"value": "0.6890000000000001"
},
{
"column": 8,
"dataset": "Last.FM",
"metric": "Accuracy",
"model": "MKR",
"row": 8,
"task": "Click-Through Rate Prediction",
"value": "64.5"
}
]
}
] |
1901.08971v3 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "FaceForensics",
"metric": "DF",
"model": "XceptionNet",
"row": 7,
"task": "DeepFake Detection",
"value": "96.36"
},
{
"column": 2,
"dataset": "FaceForensics",
"metric": "FSF",
"model": "XceptionNet",
"row": 7,
"task": "DeepFake Detection",
"value": "86.86"
},
{
"column": 3,
"dataset": "FaceForensics",
"metric": "FS",
"model": "XceptionNet",
"row": 7,
"task": "DeepFake Detection",
"value": "90.29"
},
{
"column": 4,
"dataset": "FaceForensics",
"metric": "NT",
"model": "XceptionNet",
"row": 7,
"task": "DeepFake Detection",
"value": "80.67"
},
{
"column": 5,
"dataset": "FaceForensics",
"metric": "Real",
"model": "XceptionNet",
"row": 7,
"task": "DeepFake Detection",
"value": "52.4"
},
{
"column": 6,
"dataset": "FaceForensics",
"metric": "Total Accuracy",
"model": "XceptionNet",
"row": 7,
"task": "DeepFake Detection",
"value": "70.1"
}
]
}
] |
1901.09346v2 | [
{
"index": 1,
"records": [
{
"column": 8,
"dataset": "MNIST",
"metric": "Accuracy",
"model": "CAE",
"row": 1,
"task": "Feature Selection",
"value": "90.6"
},
{
"column": 8,
"dataset": "Fashion-MNIST",
"metric": "Accuracy",
"model": "CAE",
"row": 2,
"task": "Feature Selection",
"value": "67.7"
},
{
"column": 8,
"dataset": "Coil-20",
"metric": "Accuracy",
"model": "CAE",
"row": 3,
"task": "Feature Selection",
"value": "58.6"
},
{
"column": 8,
"dataset": "Mice Protein",
"metric": "Accuracy",
"model": "CAE",
"row": 4,
"task": "Feature Selection",
"value": "13.4"
},
{
"column": 8,
"dataset": "ISOLET",
"metric": "Accuracy",
"model": "CAE",
"row": 5,
"task": "Feature Selection",
"value": "68.5"
},
{
"column": 8,
"dataset": "Activity",
"metric": "Accuracy",
"model": "CAE",
"row": 6,
"task": "Feature Selection",
"value": "42"
}
]
}
] |
1901.09891v2 | [
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "FGVC Aircraft",
"metric": "Accuracy",
"model": "WS-DAN",
"row": 12,
"task": "Fine-Grained Image Classification",
"value": "93.0"
}
]
},
{
"index": 5,
"records": [
{
"column": 1,
"dataset": "Stanford Cars",
"metric": "Accuracy",
"model": "WS-DAN",
"row": 12,
"task": "Fine-Grained Image Classification",
"value": "94.5"
}
]
}
] |
1901.10125v4 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "MSRA",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 7,
"task": "Chinese Named Entity Recognition",
"value": "81.87"
},
{
"column": 2,
"dataset": "MSRA",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 7,
"task": "Chinese Named Entity Recognition",
"value": "81.4"
},
{
"column": 3,
"dataset": "MSRA",
"metric": "F1",
"model": "Glyce + BERT",
"row": 7,
"task": "Chinese Named Entity Recognition",
"value": "80.62"
},
{
"column": 1,
"dataset": "MSRA",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 16,
"task": "Chinese Named Entity Recognition",
"value": "95.57"
},
{
"column": 2,
"dataset": "MSRA",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 16,
"task": "Chinese Named Entity Recognition",
"value": "95.51"
},
{
"column": 3,
"dataset": "MSRA",
"metric": "F1",
"model": "Glyce + BERT",
"row": 16,
"task": "Chinese Named Entity Recognition",
"value": "95.54"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "Weibo NER",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 7,
"task": "Chinese Named Entity Recognition",
"value": "67.68"
},
{
"column": 2,
"dataset": "Weibo NER",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 7,
"task": "Chinese Named Entity Recognition",
"value": "67.71"
},
{
"column": 3,
"dataset": "Weibo NER",
"metric": "F1",
"model": "Glyce + BERT",
"row": 7,
"task": "Chinese Named Entity Recognition",
"value": "67.6"
},
{
"column": 1,
"dataset": "Resume NER",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 16,
"task": "Chinese Named Entity Recognition",
"value": "96.62"
},
{
"column": 2,
"dataset": "Resume NER",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 16,
"task": "Chinese Named Entity Recognition",
"value": "96.48"
},
{
"column": 3,
"dataset": "Resume NER",
"metric": "F1",
"model": "Glyce + BERT",
"row": 16,
"task": "Chinese Named Entity Recognition",
"value": "96.54"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "PKU",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Word Segmentation",
"value": "97.1"
},
{
"column": 2,
"dataset": "PKU",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Word Segmentation",
"value": "96.4"
},
{
"column": 3,
"dataset": "PKU",
"metric": "F1",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Word Segmentation",
"value": "96.7"
},
{
"column": 1,
"dataset": "MSR",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 14,
"task": "Chinese Word Segmentation",
"value": "98.2"
},
{
"column": 2,
"dataset": "MSR",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 14,
"task": "Chinese Word Segmentation",
"value": "98.3"
},
{
"column": 3,
"dataset": "MSR",
"metric": "F1",
"model": "Glyce + BERT",
"row": 14,
"task": "Chinese Word Segmentation",
"value": "98.3"
}
]
},
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "CITYU",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Word Segmentation",
"value": "97.9"
},
{
"column": 2,
"dataset": "CITYU",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Word Segmentation",
"value": "98"
},
{
"column": 3,
"dataset": "CITYU",
"metric": "F1",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Word Segmentation",
"value": "97.9"
},
{
"column": 1,
"dataset": "AS",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 14,
"task": "Chinese Word Segmentation",
"value": "96.6"
},
{
"column": 2,
"dataset": "AS",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 14,
"task": "Chinese Word Segmentation",
"value": "96.8"
},
{
"column": 3,
"dataset": "AS",
"metric": "F1",
"model": "Glyce + BERT",
"row": 14,
"task": "Chinese Word Segmentation",
"value": "96.7"
}
]
},
{
"index": 5,
"records": [
{
"column": 1,
"dataset": "CTB5",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 8,
"task": "Chinese Part-of-Speech Tagging",
"value": "96.5"
},
{
"column": 2,
"dataset": "CTB5",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 8,
"task": "Chinese Part-of-Speech Tagging",
"value": "96.74"
},
{
"column": 3,
"dataset": "CTB5",
"metric": "F1",
"model": "Glyce + BERT",
"row": 8,
"task": "Chinese Part-of-Speech Tagging",
"value": "96.61"
},
{
"column": 1,
"dataset": "CTB6",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 17,
"task": "Chinese Part-of-Speech Tagging",
"value": "95.56"
},
{
"column": 2,
"dataset": "CTB6",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 17,
"task": "Chinese Part-of-Speech Tagging",
"value": "95.26"
},
{
"column": 3,
"dataset": "CTB6",
"metric": "F1",
"model": "Glyce + BERT",
"row": 17,
"task": "Chinese Part-of-Speech Tagging",
"value": "95.41"
}
]
},
{
"index": 6,
"records": [
{
"column": 1,
"dataset": "CTB9",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 8,
"task": "Chinese Part-of-Speech Tagging",
"value": "93.49"
},
{
"column": 2,
"dataset": "CTB9",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 8,
"task": "Chinese Part-of-Speech Tagging",
"value": "92.84"
},
{
"column": 3,
"dataset": "CTB9",
"metric": "F1",
"model": "Glyce + BERT",
"row": 8,
"task": "Chinese Part-of-Speech Tagging",
"value": "93.15"
},
{
"column": 1,
"dataset": "UD1",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 18,
"task": "Chinese Part-of-Speech Tagging",
"value": "96.19"
},
{
"column": 2,
"dataset": "UD1",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 18,
"task": "Chinese Part-of-Speech Tagging",
"value": "96.1"
},
{
"column": 3,
"dataset": "UD1",
"metric": "F1",
"model": "Glyce + BERT",
"row": 18,
"task": "Chinese Part-of-Speech Tagging",
"value": "96.14"
}
]
},
{
"index": 7,
"records": [
{
"column": 1,
"dataset": "BQ",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Sentence Pair Classification",
"value": "84.2"
},
{
"column": 2,
"dataset": "BQ",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Sentence Pair Classification",
"value": "86.9"
},
{
"column": 3,
"dataset": "BQ",
"metric": "F1",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Sentence Pair Classification",
"value": "85.5"
},
{
"column": 4,
"dataset": "BQ",
"metric": "Accuracy",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Sentence Pair Classification",
"value": "85.8"
},
{
"column": 4,
"dataset": "XNLI",
"metric": "Accuracy",
"model": "Glyce + BERT",
"row": 14,
"task": "Chinese Sentence Pair Classification",
"value": "79.2"
}
]
},
{
"index": 8,
"records": [
{
"column": 1,
"dataset": "LCQMC",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Sentence Pair Classification",
"value": "86.8"
},
{
"column": 2,
"dataset": "LCQMC",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Sentence Pair Classification",
"value": "91.2"
},
{
"column": 3,
"dataset": "LCQMC",
"metric": "F1",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Sentence Pair Classification",
"value": "88.8"
},
{
"column": 4,
"dataset": "LCQMC",
"metric": "Accuracy",
"model": "Glyce + BERT",
"row": 6,
"task": "Chinese Sentence Pair Classification",
"value": "0.887"
},
{
"column": 1,
"dataset": "NLPCC-DBQA",
"metric": "Precision",
"model": "Glyce + BERT",
"row": 14,
"task": "Chinese Sentence Pair Classification",
"value": "81.1"
},
{
"column": 2,
"dataset": "NLPCC-DBQA",
"metric": "Recall",
"model": "Glyce + BERT",
"row": 14,
"task": "Chinese Sentence Pair Classification",
"value": "85.8"
},
{
"column": 3,
"dataset": "NLPCC-DBQA",
"metric": "F1",
"model": "Glyce + BERT",
"row": 14,
"task": "Chinese Sentence Pair Classification",
"value": "83.4"
}
]
},
{
"index": 9,
"records": [
{
"column": 1,
"dataset": "ChnSentiCorp",
"metric": "Accuracy",
"model": "Glyce + BERT",
"row": 5,
"task": "Chinese Sentence Pair Classification",
"value": "95.9"
},
{
"column": 2,
"dataset": "Fudan corpus",
"metric": "Accuracy",
"model": "Glyce + BERT",
"row": 5,
"task": "Chinese Sentence Pair Classification",
"value": "99.8"
},
{
"column": 3,
"dataset": "iFeng",
"metric": "Accuracy",
"model": "Glyce + BERT",
"row": 5,
"task": "Chinese Sentence Pair Classification",
"value": "87.5"
}
]
},
{
"index": 10,
"records": [
{
"column": 1,
"dataset": "Chinese Pennbank",
"metric": "UAS",
"model": "Biaffine + Glyce",
"row": 6,
"task": "Chinese Dependency Parsing",
"value": "90.2"
},
{
"column": 2,
"dataset": "Chinese Pennbank",
"metric": "LAS",
"model": "Biaffine + Glyce",
"row": 6,
"task": "Chinese Dependency Parsing",
"value": "89"
}
]
},
{
"index": 11,
"records": [
{
"column": 1,
"dataset": "CoNLL-2009",
"metric": "Precision",
"model": "k-order pruning + Glyce",
"row": 5,
"task": "Chinese Semantic Role Labeling",
"value": "85.4"
},
{
"column": 2,
"dataset": "CoNLL-2009",
"metric": "Recall",
"model": "k-order pruning + Glyce",
"row": 5,
"task": "Chinese Semantic Role Labeling",
"value": "82.1"
},
{
"column": 3,
"dataset": "CoNLL-2009",
"metric": "F1",
"model": "k-order pruning + Glyce",
"row": 5,
"task": "Chinese Semantic Role Labeling",
"value": "83.7"
}
]
}
] |
1901.10234v2 | [
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "DBLP",
"metric": "AUC",
"model": "Event2vec",
"row": 1,
"task": "Link Prediction",
"value": "90.1"
},
{
"column": 2,
"dataset": "Douban",
"metric": "AUC",
"model": "Event2vec",
"row": 1,
"task": "Link Prediction",
"value": "82.3"
},
{
"column": 3,
"dataset": "IMDb",
"metric": "AUC",
"model": "Event2vec",
"row": 1,
"task": "Link Prediction",
"value": "89.4"
},
{
"column": 4,
"dataset": "Yelp",
"metric": "AUC",
"model": "Event2vec",
"row": 1,
"task": "Link Prediction",
"value": "86.2"
}
]
}
] |
1901.10323v3 | [
{
"index": 2,
"records": [
{
"column": 3,
"dataset": "EgoGesture",
"metric": "Accuracy",
"model": "ResNeXt-101",
"row": 7,
"task": "Hand Gesture Recognition",
"value": "94.03"
}
]
},
{
"index": 5,
"records": [
{
"column": 2,
"dataset": "NVGesture",
"metric": "Accuracy",
"model": "ResNeXt-101",
"row": 4,
"task": "Hand Gesture Recognition",
"value": "83.82"
}
]
}
] |
1901.10430v2 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "WMT2014 English-French",
"metric": "BLEU score",
"model": "LightConv",
"row": 7,
"task": "Machine Translation",
"value": "28.9"
},
{
"column": 3,
"dataset": "WMT2014 English-French",
"metric": "BLEU score",
"model": "LightConv",
"row": 7,
"task": "Machine Translation",
"value": "43.1"
},
{
"column": 2,
"dataset": "WMT2014 English-German",
"metric": "BLEU score",
"model": "DynamicConv",
"row": 8,
"task": "Machine Translation",
"value": "29.7"
},
{
"column": 3,
"dataset": "WMT2014 English-German",
"metric": "BLEU score",
"model": "DynamicConv",
"row": 8,
"task": "Machine Translation",
"value": "43.2"
}
]
},
{
"index": 1,
"records": [
{
"column": 2,
"dataset": "IWSLT2014 German-English",
"metric": "BLEU score",
"model": "LightConv",
"row": 4,
"task": "Machine Translation",
"value": "34.8"
},
{
"column": 3,
"dataset": "WMT 2017 English-Chinese",
"metric": "BLEU score",
"model": "LightConv",
"row": 4,
"task": "Machine Translation",
"value": "24.3"
},
{
"column": 2,
"dataset": "IWSLT2014 German-English",
"metric": "BLEU score",
"model": "DynamicConv",
"row": 5,
"task": "Machine Translation",
"value": "35.2"
},
{
"column": 3,
"dataset": "WMT 2017 English-Chinese",
"metric": "BLEU score",
"model": "DynamicConv",
"row": 5,
"task": "Machine Translation",
"value": "24.4"
}
]
},
{
"index": 3,
"records": [
{
"column": 3,
"dataset": "One Billion Word",
"metric": "PPL",
"model": "DynamicConv",
"row": 5,
"task": "Language Modelling",
"value": "26.67"
}
]
},
{
"index": 4,
"records": [
{
"column": 2,
"dataset": "CNN / Daily Mail",
"metric": "ROUGE-1",
"model": "LightConv",
"row": 4,
"task": "Document Summarization",
"value": "39.52"
},
{
"column": 3,
"dataset": "CNN / Daily Mail",
"metric": "ROUGE-2",
"model": "LightConv",
"row": 4,
"task": "Document Summarization",
"value": "15.97"
},
{
"column": 4,
"dataset": "CNN / Daily Mail",
"metric": "ROUGE-L",
"model": "LightConv",
"row": 4,
"task": "Document Summarization",
"value": "36.51"
},
{
"column": 2,
"dataset": "CNN / Daily Mail",
"metric": "ROUGE-1",
"model": "DynamicConv",
"row": 5,
"task": "Document Summarization",
"value": "39.84"
},
{
"column": 3,
"dataset": "CNN / Daily Mail",
"metric": "ROUGE-2",
"model": "DynamicConv",
"row": 5,
"task": "Document Summarization",
"value": "16.25"
},
{
"column": 4,
"dataset": "CNN / Daily Mail",
"metric": "ROUGE-L",
"model": "DynamicConv",
"row": 5,
"task": "Document Summarization",
"value": "36.73"
}
]
}
] |
1901.10995v2 | [
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "Atari 2600 Montezuma's Revenge",
"metric": "Score",
"model": "Go-Explore",
"row": 26,
"task": "Atari Games",
"value": "43763"
},
{
"column": 2,
"dataset": "Atari 2600 Pitfall!",
"metric": "Score",
"model": "Go-Explore",
"row": 28,
"task": "Atari Games",
"value": "107363"
}
]
}
] |
1901.11117v4 | [
{
"index": 1,
"records": [
{
"column": 7,
"dataset": "WMT2014 English-German",
"metric": "BLEU score",
"model": "Evolved Transformer Base",
"row": 1,
"task": "Machine Translation",
"value": "28.4"
},
{
"column": 7,
"dataset": "WMT2014 English-German",
"metric": "BLEU score",
"model": "Evolved Transformer Big",
"row": 2,
"task": "Machine Translation",
"value": "29.3"
},
{
"column": 7,
"dataset": "WMT2014 English-French",
"metric": "BLEU score",
"model": "Evolved Transformer Base",
"row": 4,
"task": "Machine Translation",
"value": "40.6"
},
{
"column": 7,
"dataset": "WMT2014 English-French",
"metric": "BLEU score",
"model": "Evolved Transformer Big",
"row": 5,
"task": "Machine Translation",
"value": "41.3"
},
{
"column": 7,
"dataset": "WMT2014 English-Czech",
"metric": "BLEU score",
"model": "Evolved Transformer Base",
"row": 6,
"task": "Machine Translation",
"value": "27.6"
},
{
"column": 7,
"dataset": "WMT2014 English-Czech",
"metric": "BLEU score",
"model": "Evolved Transformer Big",
"row": 7,
"task": "Machine Translation",
"value": "28.2"
},
{
"column": 5,
"dataset": "One Billion Word",
"metric": "PPL",
"model": "Evolved Transformer Big",
"row": 8,
"task": "Language Modelling",
"value": "28.6"
}
]
},
{
"index": 3,
"records": [
{
"column": 2,
"dataset": "WMT2014 English-German",
"metric": "BLEU score",
"model": "Evolved Transformer",
"row": 8,
"task": "Machine Translation",
"value": "29.8"
},
{
"column": 3,
"dataset": "WMT2014 English-German",
"metric": "SacreBLEU",
"model": "Evolved Transformer",
"row": 8,
"task": "Machine Translation",
"value": "29.2"
}
]
}
] |
1901.11195v2 | [
{
"index": 0,
"records": [
{
"column": 4,
"dataset": "CASIA",
"metric": "F1",
"model": "IrisParseNet (ASPP) CASIA",
"row": 11,
"task": "Iris Segmentation",
"value": "94.30"
},
{
"column": 6,
"dataset": "CASIA",
"metric": "mIoU",
"model": "IrisParseNet (ASPP) CASIA",
"row": 11,
"task": "Iris Segmentation",
"value": "89.4"
},
{
"column": 4,
"dataset": "UBIRIS",
"metric": "F1",
"model": "IrisParseNet (ASPP)",
"row": 12,
"task": "Iris Segmentation",
"value": "91.82"
},
{
"column": 6,
"dataset": "UBIRIS",
"metric": "mIoU",
"model": "IrisParseNet (ASPP)",
"row": 12,
"task": "Iris Segmentation",
"value": "85.39"
},
{
"column": 4,
"dataset": "MICHE",
"metric": "F1",
"model": "IrisParseNet (PSP)",
"row": 16,
"task": "Iris Segmentation",
"value": "91.5"
},
{
"column": 6,
"dataset": "MICHE",
"metric": "mIoU",
"model": "IrisParseNet (PSP)",
"row": 16,
"task": "Iris Segmentation",
"value": "85.07"
}
]
}
] |
1901.11365v2 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "Hanzi",
"metric": "PSNR",
"model": "DnCNN (n2t)",
"row": 9,
"task": "Color Image Denoising",
"value": "13.9"
},
{
"column": 2,
"dataset": "ImageNet",
"metric": "PSNR",
"model": "DnCNN (n2t)",
"row": 9,
"task": "Color Image Denoising",
"value": "22"
},
{
"column": 3,
"dataset": "CellNet",
"metric": "PSNR",
"model": "DnCNN (n2t)",
"row": 9,
"task": "Color Image Denoising",
"value": "34.4"
}
]
}
] |
1901.11504v2 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "SST-2 Binary classification",
"metric": "Accuracy",
"model": "MT-DNN",
"row": 6,
"task": "Sentiment Analysis",
"value": "95.6"
}
]
}
] |
1902.00038v2 | [
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "VQA v2 test-dev",
"metric": "Accuracy",
"model": "BLOCK",
"row": 10,
"task": "Visual Question Answering",
"value": "67.58"
},
{
"column": 5,
"dataset": "VQA v2 test-std",
"metric": "Accuracy",
"model": "BLOCK",
"row": 10,
"task": "Visual Question Answering",
"value": "67.92"
}
]
},
{
"index": 4,
"records": [
{
"column": 2,
"dataset": "VRD Predicate Detection",
"metric": "R@50",
"model": "BLOCK",
"row": 10,
"task": "Visual Relationship Detection",
"value": "86.58"
},
{
"column": 3,
"dataset": "VRD Predicate Detection",
"metric": "R@100",
"model": "BLOCK",
"row": 10,
"task": "Visual Relationship Detection",
"value": "92.58"
},
{
"column": 4,
"dataset": "VRD Phrase Detection",
"metric": "R@50",
"model": "BLOCK",
"row": 10,
"task": "Visual Relationship Detection",
"value": "26.32"
},
{
"column": 5,
"dataset": "VRD Phrase Detection",
"metric": "R@100",
"model": "BLOCK",
"row": 10,
"task": "Visual Relationship Detection",
"value": "28.96"
},
{
"column": 6,
"dataset": "VRD Relationship Detection",
"metric": "R@50",
"model": "BLOCK",
"row": 10,
"task": "Visual Relationship Detection",
"value": "19.06"
},
{
"column": 7,
"dataset": "VRD Relationship Detection",
"metric": "R@100",
"model": "BLOCK",
"row": 10,
"task": "Visual Relationship Detection",
"value": "20.96"
}
]
}
] |
1902.00301v2 | [
{
"index": 0,
"records": [
{
"column": 6,
"dataset": "HYDICE DC Mall",
"metric": "MPSNR",
"model": "Deep HS (prior 3D)",
"row": 3,
"task": "Hyperspectral Image Denoising",
"value": "23.24"
},
{
"column": 6,
"dataset": "HYDICE DC Mall",
"metric": "MSSIM",
"model": "Deep HS (prior 3D)",
"row": 4,
"task": "Hyperspectral Image Denoising",
"value": "0.852"
},
{
"column": 6,
"dataset": "HYDICE DC Mall",
"metric": "SAM",
"model": "Deep HS (prior 3D)",
"row": 5,
"task": "Hyperspectral Image Denoising",
"value": "9.91"
},
{
"column": 6,
"dataset": "Indian Pines",
"metric": "MPSNR",
"model": "Deep HS (prior 3D)",
"row": 9,
"task": "Hyperspectral Image Inpainting",
"value": "35.34"
},
{
"column": 6,
"dataset": "Indian Pines",
"metric": "MSSIM",
"model": "Deep HS (prior 3D)",
"row": 10,
"task": "Hyperspectral Image Inpainting",
"value": "0.966"
},
{
"column": 6,
"dataset": "Indian Pines",
"metric": "SAM",
"model": "Deep HS (prior 3D)",
"row": 11,
"task": "Hyperspectral Image Inpainting",
"value": "1.133"
},
{
"column": 6,
"dataset": "ROSIS-03",
"metric": "MPSNR",
"model": "Deep HS (prior 3D)",
"row": 15,
"task": "Hyperspectral Image Super-Resolution",
"value": "32.31"
},
{
"column": 6,
"dataset": "ROSIS-03",
"metric": "MSSIM",
"model": "Deep HS (prior 3D)",
"row": 16,
"task": "Hyperspectral Image Super-Resolution",
"value": "0.945"
},
{
"column": 6,
"dataset": "ROSIS-03",
"metric": "SAM",
"model": "Deep HS (prior 3D)",
"row": 17,
"task": "Hyperspectral Image Super-Resolution",
"value": "4.692"
}
]
}
] |
1902.01019v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "FER2013",
"metric": "Accuracy",
"model": "DeepEmotion",
"row": 5,
"task": "Facial Expression Recognition",
"value": "70.02"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "FERG",
"metric": "Accuracy",
"model": "DeepEmotion",
"row": 4,
"task": "Facial Expression Recognition",
"value": "99.3"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "JAFFE",
"metric": "Accuracy",
"model": "DeepEmotion",
"row": 4,
"task": "Facial Expression Recognition",
"value": "92.8"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "CK+",
"metric": "Accuracy (10-fold)",
"model": "DeepEmotion",
"row": 9,
"task": "Facial Expression Recognition",
"value": "98"
}
]
}
] |
1902.01275v2 | [
{
"index": 3,
"records": [
{
"column": 7,
"dataset": "T-LESS",
"metric": "Mean Recall",
"model": "Augmented Autoencoder",
"row": 33,
"task": "6D Pose Estimation using RGB",
"value": "36.79"
},
{
"column": 8,
"dataset": "T-LESS",
"metric": "Mean Recall",
"model": "Augmented Autoencoder",
"row": 33,
"task": "6D Pose Estimation using RGBD",
"value": "72.76"
}
]
},
{
"index": 4,
"records": [
{
"column": 2,
"dataset": "LineMOD",
"metric": "Mean ADD",
"model": "Augmented Autoencoder",
"row": 16,
"task": "6D Pose Estimation using RGB",
"value": "28.65"
},
{
"column": 6,
"dataset": "LineMOD",
"metric": "Mean ADD",
"model": "Augmented Autoencoder",
"row": 16,
"task": "6D Pose Estimation using RGBD",
"value": "64.67"
}
]
}
] |
1902.01378v2 | [
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "Obstacle Tower (No Gen) fixed",
"metric": "Score",
"model": "PPO",
"row": 1,
"task": "General Reinforcement Learning",
"value": "5"
},
{
"column": 2,
"dataset": "Obstacle Tower (No Gen) varied",
"metric": "Score",
"model": "PPO",
"row": 1,
"task": "General Reinforcement Learning",
"value": "1"
},
{
"column": 3,
"dataset": "Obstacle Tower (No Gen) fixed",
"metric": "Score",
"model": "RNB",
"row": 1,
"task": "General Reinforcement Learning",
"value": "7"
},
{
"column": 4,
"dataset": "Obstacle Tower (No Gen) varied",
"metric": "Score",
"model": "RNB",
"row": 1,
"task": "General Reinforcement Learning",
"value": "4.8"
},
{
"column": 1,
"dataset": "Obstacle Tower (Weak Gen) fixed",
"metric": "Score",
"model": "PPO",
"row": 2,
"task": "General Reinforcement Learning",
"value": "1.2"
},
{
"column": 2,
"dataset": "Obstacle Tower (Weak Gen) varied",
"metric": "Score",
"model": "PPO",
"row": 2,
"task": "General Reinforcement Learning",
"value": "0.8"
},
{
"column": 3,
"dataset": "Obstacle Tower (Weak Gen) fixed",
"metric": "Score",
"model": "RNB",
"row": 2,
"task": "General Reinforcement Learning",
"value": "1"
},
{
"column": 4,
"dataset": "Obstacle Tower (Weak Gen) varied",
"metric": "Score",
"model": "RNB",
"row": 2,
"task": "General Reinforcement Learning",
"value": "3.4"
},
{
"column": 1,
"dataset": "Obstacle Tower (Strong Gen) fixed",
"metric": "Score",
"model": "PPO",
"row": 3,
"task": "General Reinforcement Learning",
"value": "0.6"
},
{
"column": 2,
"dataset": "Obstacle Tower (Strong Gen) varied",
"metric": "Score",
"model": "PPO",
"row": 3,
"task": "General Reinforcement Learning",
"value": "0.6"
},
{
"column": 3,
"dataset": "Obstacle Tower (Strong Gen) fixed",
"metric": "Score",
"model": "RNB",
"row": 3,
"task": "General Reinforcement Learning",
"value": "0.6"
},
{
"column": 4,
"dataset": "Obstacle Tower (Strong Gen) varied",
"metric": "Score",
"model": "RNB",
"row": 3,
"task": "General Reinforcement Learning",
"value": "0.8"
}
]
}
] |
1902.01831v2 | [
{
"index": 0,
"records": [
{
"column": 5,
"dataset": "300W",
"metric": "Fullset (public)",
"model": "3DDE (Inter-pupil Norm)",
"row": 22,
"task": "Face Alignment",
"value": "4.39"
},
{
"column": 6,
"dataset": "300W",
"metric": "Fullset (public)",
"model": "3DDE (Inter-ocular Norm)",
"row": 22,
"task": "Face Alignment",
"value": "3.13"
},
{
"column": 6,
"dataset": "300W",
"metric": "NME",
"model": "3DDE (Inter-ocular Norm)",
"row": 22,
"task": "Facial Landmark Detection",
"value": "3.13"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "COFW",
"metric": "Mean Error Rate",
"model": "3DDE (Inter-pupil Norm)",
"row": 10,
"task": "Face Alignment",
"value": "5.11"
}
]
},
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "WFLW",
"metric": "ME (%, all) ",
"model": "3DDE (Inter-ocular Norm)",
"row": 7,
"task": "Face Alignment",
"value": "4.68"
},
{
"column": 2,
"dataset": "WFLW",
"metric": "[email protected] (all)",
"model": "3DDE (Inter-ocular Norm)",
"row": 7,
"task": "Face Alignment",
"value": "0.5544"
},
{
"column": 3,
"dataset": "WFLW",
"metric": "[email protected](%, all)",
"model": "3DDE (Inter-ocular Norm)",
"row": 7,
"task": "Face Alignment",
"value": "5.04"
}
]
}
] |
1902.02527v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "OMNIGLOT - 1-Shot, 5-way",
"metric": "Accuracy",
"model": "APL",
"row": 7,
"task": "Few-Shot Image Classification",
"value": "97.9"
},
{
"column": 2,
"dataset": "OMNIGLOT - 5-Shot, 5-way",
"metric": "Accuracy",
"model": "APL",
"row": 7,
"task": "Few-Shot Image Classification",
"value": "99.9"
},
{
"column": 3,
"dataset": "OMNIGLOT - 1-Shot, 20-way",
"metric": "Accuracy",
"model": "APL",
"row": 7,
"task": "Few-Shot Image Classification",
"value": "97.2"
},
{
"column": 4,
"dataset": "OMNIGLOT - 5-Shot, 20-way",
"metric": "Accuracy",
"model": "APL",
"row": 7,
"task": "Few-Shot Image Classification",
"value": "97.6"
},
{
"column": 5,
"dataset": "OMNIGLOT - 1-Shot, 423 way",
"metric": "Accuracy",
"model": "APL",
"row": 7,
"task": "Few-Shot Image Classification",
"value": "73.5"
},
{
"column": 6,
"dataset": "OMNIGLOT - 5-Shot, 423 way",
"metric": "Accuracy",
"model": "APL",
"row": 7,
"task": "Few-Shot Image Classification",
"value": "88"
},
{
"column": 7,
"dataset": "OMNIGLOT - 1-Shot, 1000 way",
"metric": "Accuracy",
"model": "APL",
"row": 7,
"task": "Few-Shot Image Classification",
"value": "68.9"
},
{
"column": 8,
"dataset": "OMNIGLOT - 5-Shot, 1000 way",
"metric": "Accuracy",
"model": "APL",
"row": 7,
"task": "Few-Shot Image Classification",
"value": "78.9"
}
]
}
] |
1902.02721v4 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "MUTAG",
"metric": "Accuracy",
"model": "VRGC",
"row": 9,
"task": "Graph Classification",
"value": "86.3"
},
{
"column": 2,
"dataset": "ENZYMES",
"metric": "Accuracy",
"model": "VRGC",
"row": 9,
"task": "Graph Classification",
"value": "48.4"
},
{
"column": 3,
"dataset": "PROTEINS",
"metric": "Accuracy",
"model": "VRGC",
"row": 9,
"task": "Graph Classification",
"value": "74.8"
},
{
"column": 4,
"dataset": "NCI1",
"metric": "Accuracy",
"model": "VRGC",
"row": 9,
"task": "Graph Classification",
"value": "80.7"
}
]
}
] |
1902.02804v2 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "OTB-2013",
"metric": "AUC",
"model": "SiamVGG",
"row": 7,
"task": "Visual Object Tracking",
"value": "0.665"
},
{
"column": 2,
"dataset": "OTB-50",
"metric": "AUC",
"model": "SiamVGG",
"row": 7,
"task": "Visual Object Tracking",
"value": "0.61"
},
{
"column": 3,
"dataset": "OTB-100",
"metric": "AUC",
"model": "SiamVGG",
"row": 7,
"task": "Visual Object Tracking",
"value": "0.654"
}
]
}
] |
1902.02860v3 | [
{
"index": 0,
"records": [
{
"column": 4,
"dataset": "2018 Syngenta (2016 val)",
"metric": "RMSE",
"model": "DNN",
"row": 1,
"task": "Crop Yield Prediction",
"value": "12.79"
}
]
}
] |
1902.03356v3 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "OMNIGLOT - 1-Shot, 5-way",
"metric": "Accuracy",
"model": "MC2+",
"row": 8,
"task": "Few-Shot Image Classification",
"value": "99.97"
},
{
"column": 2,
"dataset": "OMNIGLOT - 5-Shot, 5-way",
"metric": "Accuracy",
"model": "MC2+",
"row": 8,
"task": "Few-Shot Image Classification",
"value": "99.89"
},
{
"column": 3,
"dataset": "OMNIGLOT - 1-Shot, 20-way",
"metric": "Accuracy",
"model": "MC2+",
"row": 8,
"task": "Few-Shot Image Classification",
"value": "88"
},
{
"column": 4,
"dataset": "OMNIGLOT - 5-Shot, 20-way",
"metric": "Accuracy",
"model": "MC2+",
"row": 8,
"task": "Few-Shot Image Classification",
"value": "99.65"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "Mini-Imagenet 5-way (1-shot)",
"metric": "Accuracy",
"model": "MC2+",
"row": 10,
"task": "Few-Shot Image Classification",
"value": "54.9"
},
{
"column": 2,
"dataset": "Mini-Imagenet 5-way (1-shot)",
"metric": "Accuracy",
"model": "MC2+",
"row": 10,
"task": "Few-Shot Image Classification",
"value": "55.73"
},
{
"column": 3,
"dataset": "Mini-Imagenet 5-way (5-shot)",
"metric": "Accuracy",
"model": "MC2+",
"row": 10,
"task": "Few-Shot Image Classification",
"value": "69.46"
},
{
"column": 4,
"dataset": "Mini-Imagenet 5-way (5-shot)",
"metric": "Accuracy",
"model": "MC2+",
"row": 10,
"task": "Few-Shot Image Classification",
"value": "70.33"
}
]
}
] |
1902.03748v3 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "ActEV",
"metric": "ADE-8/12",
"model": "Next",
"row": 6,
"task": "Trajectory Prediction",
"value": "17.99"
},
{
"column": 3,
"dataset": "ActEV",
"metric": "FDE-8/12",
"model": "Next",
"row": 6,
"task": "Trajectory Prediction",
"value": "37.24"
}
]
},
{
"index": 1,
"records": [
{
"column": 3,
"dataset": "ActEV",
"metric": "mAP",
"model": "Next",
"row": 1,
"task": "Activity Prediction",
"value": "0.192"
}
]
},
{
"index": 2,
"records": [
{
"column": 7,
"dataset": "ETH/UCY",
"metric": "ADE-8/12",
"model": "Next",
"row": 8,
"task": "Trajectory Prediction",
"value": "0.46"
}
]
}
] |
1902.04103v3 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "PASCAL VOC 2007",
"metric": "MAP",
"model": "YOLOv3 (sync. BN + rand. shapes + cos. lr + lbl. smoothing + mixup)",
"row": 7,
"task": "Object Detection",
"value": "83.68"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "PASCAL VOC 2007",
"metric": "MAP",
"model": "Faster-RCNN (cos. lr, label smoothing, mixup)",
"row": 5,
"task": "Object Detection",
"value": "81.32"
}
]
}
] |
1902.04478v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "ScanNet",
"metric": "mAP",
"model": "MASC",
"row": 4,
"task": "3D Instance Segmentation",
"value": "0.447"
}
]
}
] |
Subsets and Splits