arxiv_id
stringlengths
11
12
tables
listlengths
1
11
1909.03625v1
[ { "index": 2, "records": [ { "column": 3, "dataset": "COCO test-dev", "metric": "AP50", "model": "Cascade Mask R-CNN (Triple-ResNeXt152, multi-scale)", "row": 22, "task": "Object Detection", "value": "71.9" }, { "column": 5, "dataset": "COCO test-dev", "metric": "APS", "model": "Cascade Mask R-CNN (Triple-ResNeXt152, multi-scale)", "row": 22, "task": "Object Detection", "value": "35.5" } ] } ]
1909.03683v1
[ { "index": 2, "records": [ { "column": 1, "dataset": "VQA-CP", "metric": "Score", "model": "Learned-Mixin +H", "row": 5, "task": "Visual Question Answering", "value": "52.05" } ] } ]
1909.03850v1
[ { "index": 3, "records": [ { "column": 1, "dataset": "KITTI Tracking test", "metric": "MOTA", "model": "mmMOT-normal", "row": 7, "task": "Multiple Object Tracking", "value": "84.77" } ] } ]
1909.04630v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "OMNIGLOT - 1-Shot, 5-way", "metric": "Accuracy", "model": "iMAML, Hessian-Free", "row": 5, "task": "Few-Shot Image Classification", "value": "99.50" }, { "column": 2, "dataset": "OMNIGLOT - 5-Shot, 5-way", "metric": "Accuracy", "model": "iMAML, Hessian-Free", "row": 5, "task": "Few-Shot Image Classification", "value": "99.74" }, { "column": 3, "dataset": "OMNIGLOT - 1-Shot, 20-way", "metric": "Accuracy", "model": "iMAML, Hessian-Free", "row": 5, "task": "Few-Shot Image Classification", "value": "96.18" }, { "column": 4, "dataset": "OMNIGLOT - 5-Shot, 20-way", "metric": "Accuracy", "model": "iMAML, Hessian-Free", "row": 5, "task": "Few-Shot Image Classification", "value": "99.14" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "iMAML HF", "row": 5, "task": "Few-Shot Image Classification", "value": "49.30" } ] } ]
1909.04761v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "MLDoc Zero-Shot English-to-German", "metric": "Accuracy", "model": "MultiFiT, pseudo", "row": 6, "task": "Cross-Lingual Document Classification", "value": "91.62" }, { "column": 2, "dataset": "MLDoc Zero-Shot English-to-Spanish", "metric": "Accuracy", "model": "MultiFiT, pseudo", "row": 6, "task": "Cross-Lingual Document Classification", "value": "79.1" }, { "column": 3, "dataset": "MLDoc Zero-Shot English-to-French", "metric": "Accuracy", "model": "MultiFiT, pseudo", "row": 6, "task": "Cross-Lingual Document Classification", "value": "89.42" }, { "column": 4, "dataset": "MLDoc Zero-Shot English-to-Italian", "metric": "Accuracy", "model": "MultiFiT, pseudo", "row": 6, "task": "Cross-Lingual Document Classification", "value": "76.02" }, { "column": 5, "dataset": "MLDoc Zero-Shot English-to-Japanese", "metric": "Accuracy", "model": "MultiFiT, pseudo", "row": 6, "task": "Cross-Lingual Document Classification", "value": "69.57" }, { "column": 6, "dataset": "MLDoc Zero-Shot English-to-Russian", "metric": "Accuracy", "model": "MultiFiT, pseudo", "row": 6, "task": "Cross-Lingual Document Classification", "value": "67.83" }, { "column": 7, "dataset": "MLDoc Zero-Shot English-to-Chinese", "metric": "Accuracy", "model": "MultiFiT, pseudo", "row": 6, "task": "Cross-Lingual Document Classification", "value": "82.48" } ] } ]
1909.04868v5
[ { "index": 6, "records": [ { "column": 4, "dataset": "COCO minival", "metric": "APS", "model": "FCOS (ResNet-50-FPN + improvements)", "row": 6, "task": "Object Detection", "value": "22.3" } ] } ]
1909.05305v1
[ { "index": 0, "records": [ { "column": 7, "dataset": "Set5 - 4x upscaling", "metric": "PSNR", "model": "Edge-informed SR", "row": 5, "task": "Image Super-Resolution", "value": "28.59" }, { "column": 7, "dataset": "Set14 - 4x upscaling", "metric": "PSNR", "model": "Edge-informed SR", "row": 6, "task": "Image Super-Resolution", "value": "25.19" }, { "column": 7, "dataset": "BSD100 - 4x upscaling", "metric": "PSNR", "model": "Edge-informed SR", "row": 7, "task": "Image Super-Resolution", "value": "24.25" }, { "column": 7, "dataset": "Celeb-HQ 4x upscaling", "metric": "PSNR", "model": "Edge-informed SR", "row": 8, "task": "Image Super-Resolution", "value": "28.23" }, { "column": 7, "dataset": "Set5 - 4x upscaling", "metric": "SSIM", "model": "Edge-informed SR", "row": 17, "task": "Image Super-Resolution", "value": "0.965" }, { "column": 7, "dataset": "Set14 - 4x upscaling", "metric": "SSIM", "model": "Edge-informed SR", "row": 18, "task": "Image Super-Resolution", "value": "0.894" }, { "column": 7, "dataset": "BSD100 - 4x upscaling", "metric": "SSIM", "model": "Edge-informed SR", "row": 19, "task": "Image Super-Resolution", "value": "0.851" }, { "column": 7, "dataset": "Celeb-HQ 4x upscaling", "metric": "SSIM", "model": "Edge-informed SR", "row": 20, "task": "Image Super-Resolution", "value": "0.912" } ] } ]
1909.05506v1
[ { "index": 1, "records": [ { "column": 4, "dataset": "Flickr30K 1K test", "metric": "R@1", "model": "CAMP", "row": 10, "task": "Image Retrieval", "value": "51.5" }, { "column": 5, "dataset": "Flickr30K 1K test", "metric": "R@5", "model": "CAMP", "row": 10, "task": "Image Retrieval", "value": "77.1" }, { "column": 6, "dataset": "Flickr30K 1K test", "metric": "R@10", "model": "CAMP", "row": 10, "task": "Image Retrieval", "value": "85.3" } ] } ]
1909.05742v1
[ { "index": 3, "records": [ { "column": 4, "dataset": "BSD68 sigma15", "metric": "PSNR", "model": "CSCNet", "row": 1, "task": "Color Image Denoising", "value": "33.83" }, { "column": 4, "dataset": "BSD68 sigma25", "metric": "PSNR", "model": "CSCNet", "row": 2, "task": "Color Image Denoising", "value": "31.18" }, { "column": 4, "dataset": "BSD68 sigma50", "metric": "PSNR", "model": "CSCNet", "row": 3, "task": "Color Image Denoising", "value": "28" }, { "column": 4, "dataset": "BSD68 sigma75", "metric": "PSNR", "model": "CSCNet", "row": 4, "task": "Color Image Denoising", "value": "26.32" } ] } ]
1909.06121v1
[ { "index": 4, "records": [ { "column": 2, "dataset": "Cityscapes test", "metric": "Mean IoU (class)", "model": "DGCNet (ResNet-101)", "row": 16, "task": "Semantic Segmentation", "value": "82" } ] }, { "index": 5, "records": [ { "column": 2, "dataset": "PASCAL Context", "metric": "mIoU", "model": "DGCNet (MS, ResNet-101)", "row": 16, "task": "Semantic Segmentation", "value": "53.7" } ] } ]
1909.06317v2
[ { "index": 2, "records": [ { "column": 4, "dataset": "LibriSpeech test-other", "metric": "Word Error Rate (WER)", "model": "Transformer", "row": 2, "task": "Speech Recognition", "value": "5.7" }, { "column": 3, "dataset": "LibriSpeech test-clean", "metric": "Word Error Rate (WER)", "model": "Transformer", "row": 4, "task": "Speech Recognition", "value": "2.6" } ] } ]
1909.06800v1
[ { "index": 1, "records": [ { "column": 3, "dataset": "VOT2017", "metric": "Expected Average Overlap (EAO)", "model": "GradNet", "row": 1, "task": "Visual Object Tracking", "value": "0.247" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "OTB-2015", "metric": "Precision", "model": "GradNet", "row": 1, "task": "Visual Object Tracking", "value": "0.861" } ] } ]
1909.07009v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "MLDoc Zero-Shot English-to-French", "metric": "Error rate", "model": "XLMft UDA", "row": 10, "task": "Cross-Lingual Sentiment Classification", "value": "5.95" }, { "column": 3, "dataset": "MLDoc Zero-Shot English-to-German", "metric": "Error rate", "model": "XLMft UDA", "row": 10, "task": "Cross-Lingual Sentiment Classification", "value": "6.12" }, { "column": 4, "dataset": "MLDoc Zero-Shot English-to-Chinese", "metric": "Error rate", "model": "XLMft UDA", "row": 10, "task": "Cross-Lingual Sentiment Classification", "value": "7.74" }, { "column": 5, "dataset": "Dianping (Yelp train)", "metric": "Error rate", "model": "XLMft UDA", "row": 10, "task": "Cross-Lingual Sentiment Classification", "value": "4.64" } ] }, { "index": 1, "records": [ { "column": 2, "dataset": "MLDoc Zero-Shot English-to-French", "metric": "Error rate", "model": "XLMft UDA", "row": 11, "task": "Cross-Lingual Document Classification", "value": "3.95" }, { "column": 3, "dataset": "MLDoc Zero-Shot English-to-German", "metric": "Error rate", "model": "XLMft UDA", "row": 11, "task": "Cross-Lingual Document Classification", "value": "3.05" }, { "column": 4, "dataset": "MLDoc Zero-Shot English-to-Spanish", "metric": "Error rate", "model": "XLMft UDA", "row": 11, "task": "Cross-Lingual Document Classification", "value": "3.2" }, { "column": 5, "dataset": "MLDoc Zero-Shot English-to-Chinese", "metric": "Error rate", "model": "XLMft UDA", "row": 11, "task": "Cross-Lingual Document Classification", "value": "6.68" }, { "column": 6, "dataset": "MLDoc Zero-Shot English-to-Russian", "metric": "Error rate", "model": "XLMft UDA", "row": 11, "task": "Cross-Lingual Document Classification", "value": "10.3" } ] }, { "index": 7, "records": [ { "column": 2, "dataset": "Yelp (Amazon en train)", "metric": "Error rate", "model": "XLMft UDA", "row": 10, "task": "Cross-Domain Document Classification", "value": "3.34" }, { "column": 3, "dataset": "Amazon en (Yelp train)", "metric": "Error rate", "model": "XLMft UDA", "row": 10, "task": "Cross-Domain Document Classification", "value": "7.57" }, { "column": 4, "dataset": "Dianping (Amazon cn train)", "metric": "Error rate", "model": "XLMft UDA", "row": 10, "task": "Cross-Domain Document Classification", "value": "4.64" }, { "column": 5, "dataset": "Amazon cn (Dianping train)", "metric": "Error rate", "model": "XLMft UDA", "row": 10, "task": "Cross-Domain Document Classification", "value": "7.74" } ] } ]
1909.07083v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "CUB", "metric": "Inception score", "model": "Attention-driven Generator (perceptual loss)", "row": 4, "task": "Text-to-Image Generation", "value": "4.58" }, { "column": 4, "dataset": "COCO", "metric": "Inception score", "model": "Attention-driven Generator (perceptual loss)", "row": 4, "task": "Text-to-Image Generation", "value": "24.06" } ] } ]
1909.07229v1
[ { "index": 6, "records": [ { "column": 2, "dataset": "Cityscapes test", "metric": "Mean IoU (class)", "model": "GALDNet(+Mapillary)++", "row": 6, "task": "Semantic Segmentation", "value": "83.3" } ] }, { "index": 11, "records": [ { "column": 21, "dataset": "PASCAL VOC 2007", "metric": "Mean IoU", "model": "GALDNet", "row": 5, "task": "Semantic Segmentation", "value": "83" } ] } ]
1909.07618v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "MNIST-to-USPS", "metric": "Accuracy", "model": "3CATN", "row": 9, "task": "Domain Adaptation", "value": "96.1" }, { "column": 2, "dataset": "USPS-to-MNIST", "metric": "Accuracy", "model": "3CATN", "row": 9, "task": "Domain Adaptation", "value": "98.3" }, { "column": 3, "dataset": "SVNH-to-MNIST", "metric": "Accuracy", "model": "3CATN", "row": 9, "task": "Domain Adaptation", "value": "92.5" } ] } ]
1909.08723v3
[ { "index": 2, "records": [ { "column": 2, "dataset": "WSJ eval92", "metric": "Word Error Rate (WER)", "model": "Espresso", "row": 9, "task": "Speech Recognition", "value": "3.4" } ] }, { "index": 4, "records": [ { "column": 3, "dataset": "LibriSpeech test-clean", "metric": "Word Error Rate (WER)", "model": "Espresso", "row": 9, "task": "Speech Recognition", "value": "2.8" }, { "column": 4, "dataset": "LibriSpeech test-other", "metric": "Word Error Rate (WER)", "model": "Espresso", "row": 9, "task": "Speech Recognition", "value": "8.7" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "Hub5'00 SwitchBoard", "metric": "Word Error Rate (WER)", "model": "Espresso", "row": 5, "task": "Speech Recognition", "value": "9.2" }, { "column": 2, "dataset": "Hub5'00 CallHome", "metric": "Word Error Rate (WER)", "model": "Espresso", "row": 5, "task": "Speech Recognition", "value": "19.1" } ] } ]
1909.09314v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "Point Maze", "metric": "Average Return", "model": "PEMIRL", "row": 6, "task": "MuJoCo Games", "value": "-7.37" }, { "column": 2, "dataset": "Ant", "metric": "Average Return", "model": "PEMIRL", "row": 6, "task": "MuJoCo Games", "value": "846.18" }, { "column": 3, "dataset": "Sweeper", "metric": "Average Return", "model": "PEMIRL", "row": 6, "task": "MuJoCo Games", "value": "-74.17" }, { "column": 4, "dataset": "Sawyer Pusher", "metric": "Average Return", "model": "PEMIRL", "row": 6, "task": "MuJoCo Games", "value": "-27.16" } ] } ]
1909.09389v1
[ { "index": 8, "records": [ { "column": 1, "dataset": "AG News", "metric": "Accuracy", "model": "ULMFiT (Small data)", "row": 8, "task": "Text Classification", "value": "93.7" }, { "column": 2, "dataset": "DBpedia", "metric": "Accuracy", "model": "ULMFiT (Small data)", "row": 8, "task": "Text Classification", "value": "99.2" }, { "column": 3, "dataset": "Sogou News", "metric": "Accuracy", "model": "ULMFiT (Small data)", "row": 8, "task": "Text Classification", "value": "97" }, { "column": 4, "dataset": "Yelp-5", "metric": "Accuracy", "model": "ULMFiT (Small data)", "row": 8, "task": "Text Classification", "value": "67.6" }, { "column": 5, "dataset": "Yelp-2", "metric": "Accuracy", "model": "ULMFiT (Small data)", "row": 8, "task": "Text Classification", "value": "97.1" }, { "column": 6, "dataset": "Yahoo! Answers", "metric": "Accuracy", "model": "ULMFiT (Small data)", "row": 8, "task": "Text Classification", "value": "74.3" }, { "column": 7, "dataset": "Amazon-2", "metric": "Error", "model": "ULMFiT (Small data)", "row": 8, "task": "Text Classification", "value": "3.9" }, { "column": 8, "dataset": "Amazon-5", "metric": "Error", "model": "ULMFiT (Small data)", "row": 8, "task": "Text Classification", "value": "35.9" } ] } ]
1909.09437v3
[ { "index": 0, "records": [ { "column": 1, "dataset": "USR-248 - 4x upscaling", "metric": "PSNR", "model": "SRDRM-GAN", "row": 6, "task": "Image Super-Resolution", "value": "24.62" }, { "column": 2, "dataset": "USR-248 - 4x upscaling", "metric": "SSIM", "model": "SRDRM-GAN", "row": 6, "task": "Image Super-Resolution", "value": "0.69" }, { "column": 3, "dataset": "USR-248 - 4x upscaling", "metric": "UIQM", "model": "SRDRM-GAN", "row": 6, "task": "Image Super-Resolution", "value": "2.48" } ] } ]
1909.09716v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "HVSMR 2016", "metric": "Dice Score", "model": "StyleSegor (adjusted)", "row": 12, "task": "Cardiovascular MR Segmentaiton", "value": "0.825" }, { "column": 2, "dataset": "HVSMR 2016", "metric": "Dice Score", "model": "StyleSegor (adjusted)", "row": 12, "task": "Cardiovascular MR Segmentaiton", "value": "0.934" }, { "column": 3, "dataset": "HVSMR 2016", "metric": "Hausdorff Distance (mm)", "model": "StyleSegor (adjusted)", "row": 12, "task": "Cardiovascular MR Segmentaiton", "value": "4.633" }, { "column": 4, "dataset": "HVSMR 2016", "metric": "Dice Score", "model": "StyleSegor (adjusted)", "row": 12, "task": "Cardiovascular MR Segmentaiton", "value": "0.923" }, { "column": 5, "dataset": "HVSMR 2016", "metric": "Hausdorff Distance (mm)", "model": "StyleSegor (adjusted)", "row": 12, "task": "Cardiovascular MR Segmentaiton", "value": "1.073" }, { "column": 6, "dataset": "HVSMR 2016", "metric": "Hausdorff Distance (mm)", "model": "StyleSegor (adjusted)", "row": 12, "task": "Cardiovascular MR Segmentaiton", "value": "7.435" }, { "column": 7, "dataset": "HVSMR 2016", "metric": "Dice Score", "model": "StyleSegor (adjusted)", "row": 12, "task": "Cardiovascular MR Segmentaiton", "value": "-0.03" } ] } ]
1909.10351v4
[ { "index": 1, "records": [ { "column": 1, "dataset": "MultiNLI", "metric": "Matched", "model": "TinyBERT", "row": 7, "task": "Natural Language Inference", "value": "82.5" }, { "column": 2, "dataset": "MultiNLI", "metric": "Mismatched", "model": "TinyBERT", "row": 7, "task": "Natural Language Inference", "value": "81.8" }, { "column": 3, "dataset": "Quora Question Pairs", "metric": "Accuracy", "model": "TinyBERT", "row": 7, "task": "Paraphrase Identification", "value": "71.3" }, { "column": 4, "dataset": "SST-2 Binary classification", "metric": "Accuracy", "model": "TinyBERT", "row": 7, "task": "Sentiment Analysis", "value": "92.6" }, { "column": 5, "dataset": "QNLI", "metric": "Accuracy", "model": "TinyBERT", "row": 7, "task": "Natural Language Inference", "value": "87.7" }, { "column": 6, "dataset": "MRPC", "metric": "Accuracy", "model": "TinyBERT", "row": 7, "task": "Semantic Textual Similarity", "value": "86.4" }, { "column": 7, "dataset": "RTE", "metric": "Accuracy", "model": "TinyBERT", "row": 7, "task": "Natural Language Inference", "value": "62.9" }, { "column": 8, "dataset": "CoLA", "metric": "Accuracy", "model": "TinyBERT", "row": 7, "task": "Linguistic Acceptability", "value": "43.3" }, { "column": 9, "dataset": "STS Benchmark", "metric": "Pearson Correlation", "model": "TinyBERT", "row": 7, "task": "Semantic Textual Similarity", "value": "0.799" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "MultiNLI Dev", "metric": "Matched", "model": "TinyBERT (M=6;d'=768;d'i=3072)", "row": 7, "task": "Natural Language Inference", "value": "84.5" }, { "column": 2, "dataset": "MultiNLI Dev", "metric": "Mismatched", "model": "TinyBERT (M=6;d'=768;d'i=3072)", "row": 7, "task": "Natural Language Inference", "value": "84.5" }, { "column": 3, "dataset": "MRPC Dev", "metric": "Accuracy", "model": "TinyBERT (M=6;d'=768;d'i=3072)", "row": 7, "task": "Semantic Textual Similarity", "value": "86.3" }, { "column": 4, "dataset": "CoLA Dev", "metric": "Accuracy", "model": "TinyBERT (M=6;d' =768;d'i=3072)", "row": 7, "task": "Linguistic Acceptability", "value": "54" } ] }, { "index": 7, "records": [ { "column": 1, "dataset": "SQuAD1.1 dev", "metric": "EM", "model": "TinyBERT (M=6;d' =768;d'i=3072)", "row": 10, "task": "Question Answering", "value": "79.7" }, { "column": 2, "dataset": "SQuAD1.1 dev", "metric": "F1", "model": "TinyBERT (M=6;d' =768;d'i=3072)", "row": 10, "task": "Question Answering", "value": "87.5" }, { "column": 3, "dataset": "SQuAD2.0 dev", "metric": "EM", "model": "TinyBERT (M=6;d' =768;d'i=3072)", "row": 10, "task": "Question Answering", "value": "69.9" }, { "column": 4, "dataset": "SQuAD2.0 dev", "metric": "F1", "model": "TinyBERT (M=6;d' =768;d'i=3072)", "row": 10, "task": "Question Answering", "value": "73.4" } ] } ]
1909.11059v3
[ { "index": 1, "records": [ { "column": 1, "dataset": "COCO Captions test", "metric": "BLEU-4", "model": "Unified VLP", "row": 17, "task": "Image Captioning", "value": "36.5" }, { "column": 2, "dataset": "COCO Captions test", "metric": "METEOR", "model": "Unified VLP", "row": 17, "task": "Image Captioning", "value": "28.4" }, { "column": 3, "dataset": "COCO Captions test", "metric": "CIDEr", "model": "Unified VLP", "row": 17, "task": "Image Captioning", "value": "116.9" }, { "column": 4, "dataset": "COCO Captions test", "metric": "SPICE", "model": "Unified VLP", "row": 17, "task": "Image Captioning", "value": "21.2" }, { "column": 5, "dataset": "VQA v2 test-std", "metric": "Accuracy", "model": "Unified VLP", "row": 17, "task": "Visual Question Answering", "value": "70.7" }, { "column": 9, "dataset": "Flickr30k Captions test", "metric": "BLEU-4", "model": "Unified VLP", "row": 17, "task": "Image Captioning", "value": "30.1" }, { "column": 10, "dataset": "Flickr30k Captions test", "metric": "METEOR", "model": "Unified VLP", "row": 17, "task": "Image Captioning", "value": "23" }, { "column": 11, "dataset": "Flickr30k Captions test", "metric": "CIDEr", "model": "Unified VLP", "row": 17, "task": "Image Captioning", "value": "67.4" }, { "column": 12, "dataset": "Flickr30k Captions test", "metric": "SPICE", "model": "Unified VLP", "row": 17, "task": "Image Captioning", "value": "17" } ] } ]
1909.11740v1
[ { "index": 3, "records": [ { "column": 9, "dataset": "VQA v2 test-dev", "metric": "Accuracy", "model": "UNITER (Large)", "row": 4, "task": "Visual Question Answering", "value": "73.24" }, { "column": 9, "dataset": "VQA v2 test-std", "metric": "Accuracy", "model": "UNITER (Large)", "row": 5, "task": "Visual Question Answering", "value": "73.4" }, { "column": 9, "dataset": "VCR (Q-A) test", "metric": "Accuracy", "model": "UNITER (Large)", "row": 6, "task": "Visual Question Answering", "value": "77.3" }, { "column": 9, "dataset": "VCR (QA-R) test", "metric": "Accuracy", "model": "UNITER (Large)", "row": 7, "task": "Visual Question Answering", "value": "80.8" }, { "column": 9, "dataset": "VCR (Q-AR) test", "metric": "Accuracy", "model": "UNITER (Large)", "row": 8, "task": "Visual Question Answering", "value": "62.8" }, { "column": 9, "dataset": "NLVR2 Test", "metric": "Accuracy", "model": "UNITER (Large)", "row": 9, "task": "Visual Reasoning", "value": "78.4" }, { "column": 9, "dataset": "NLVR2 Test", "metric": "Accuracy", "model": "UNITER (Large)", "row": 10, "task": "Visual Reasoning", "value": "79.5" }, { "column": 9, "dataset": "SNLI-VE test", "metric": "Accuracy", "model": "UNITER (Large)", "row": 11, "task": "Visual Entailment", "value": "79.28" }, { "column": 9, "dataset": "SNLI-VE test", "metric": "Accuracy", "model": "UNITER (Large)", "row": 12, "task": "Visual Entailment", "value": "78.98" } ] } ]
1909.11825v2
[ { "index": 2, "records": [ { "column": 20, "dataset": "GTAV-to-Cityscapes Labels", "metric": "mIoU", "model": "UDA-SA + CyCADA", "row": 5, "task": "Synthetic-to-Real Translation", "value": "41.2" } ] } ]
1909.11855v3
[ { "index": 1, "records": [ { "column": 2, "dataset": "COLLAB", "metric": "Accuracy", "model": "U2GNN (Unsupervised)", "row": 5, "task": "Graph Classification", "value": "95.62" }, { "column": 3, "dataset": "IMDb-B", "metric": "Accuracy", "model": "U2GNN (Unsupervised)", "row": 5, "task": "Graph Classification", "value": "93.5" }, { "column": 4, "dataset": "IMDb-M", "metric": "Accuracy", "model": "U2GNN (Unsupervised)", "row": 5, "task": "Graph Classification", "value": "74.8" }, { "column": 5, "dataset": "REDDIT-B", "metric": "Accuracy", "model": "U2GNN (Unsupervised)", "row": 5, "task": "Graph Classification", "value": "84.8" }, { "column": 6, "dataset": "REDDIT-MULTI-5k", "metric": "Accuracy", "model": "U2GNN (Unsupervised)", "row": 5, "task": "Graph Classification", "value": "77.25" }, { "column": 2, "dataset": "COLLAB", "metric": "Accuracy", "model": "U2GNN", "row": 18, "task": "Graph Classification", "value": "77.84" }, { "column": 3, "dataset": "IMDb-B", "metric": "Accuracy", "model": "U2GNN", "row": 18, "task": "Graph Classification", "value": "79.4" }, { "column": 4, "dataset": "IMDb-M", "metric": "Accuracy", "model": "U2GNN", "row": 18, "task": "Graph Classification", "value": "56.2" }, { "column": 5, "dataset": "REDDIT-B", "metric": "Accuracy", "model": "U2GNN", "row": 18, "task": "Graph Classification", "value": "80.25" }, { "column": 6, "dataset": "REDDIT-MULTI-5k", "metric": "Accuracy", "model": "U2GNN", "row": 18, "task": "Graph Classification", "value": "50.9" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "D&D", "metric": "Accuracy", "model": "U2GNN (Unsupervised)", "row": 5, "task": "Graph Classification", "value": "95.67" }, { "column": 3, "dataset": "PROTEINS", "metric": "Accuracy", "model": "U2GNN (Unsupervised)", "row": 5, "task": "Graph Classification", "value": "78.07" }, { "column": 4, "dataset": "MUTAG", "metric": "Accuracy", "model": "U2GNN (Unsupervised)", "row": 5, "task": "Graph Classification", "value": "81.34" }, { "column": 5, "dataset": "PTC", "metric": "Accuracy", "model": "U2GNN (Unsupervised)", "row": 5, "task": "Graph Classification", "value": "84.59" }, { "column": 2, "dataset": "D&D", "metric": "Accuracy", "model": "U2GNN", "row": 18, "task": "Graph Classification", "value": "81.24" }, { "column": 3, "dataset": "PROTEINS", "metric": "Accuracy", "model": "U2GNN", "row": 18, "task": "Graph Classification", "value": "78.53" }, { "column": 4, "dataset": "MUTAG", "metric": "Accuracy", "model": "U2GNN", "row": 18, "task": "Graph Classification", "value": "89.97" }, { "column": 5, "dataset": "PTC", "metric": "Accuracy", "model": "U2GNN", "row": 18, "task": "Graph Classification", "value": "79.36" } ] } ]
1909.11856v1
[ { "index": 4, "records": [ { "column": 3, "dataset": "Set5 - 2x upscaling", "metric": "PSNR", "model": "IMDN", "row": 14, "task": "Image Super-Resolution", "value": "38.00" }, { "column": 4, "dataset": "Set14 - 2x upscaling", "metric": "PSNR", "model": "IMDN", "row": 14, "task": "Image Super-Resolution", "value": "33.63" }, { "column": 5, "dataset": "BSD100 - 2x upscaling", "metric": "PSNR", "model": "IMDN", "row": 14, "task": "Image Super-Resolution", "value": "32.19" }, { "column": 6, "dataset": "Urban100 - 2x upscaling", "metric": "PSNR", "model": "IMDN", "row": 14, "task": "Image Super-Resolution", "value": "32.17" }, { "column": 7, "dataset": "Manga109 - 2x upscaling", "metric": "PSNR", "model": "IMDN", "row": 14, "task": "Image Super-Resolution", "value": "38.88" }, { "column": 3, "dataset": "Set5 - 3x upscaling", "metric": "PSNR", "model": "IMDN", "row": 27, "task": "Image Super-Resolution", "value": "34.36" }, { "column": 4, "dataset": "Set14 - 3x upscaling", "metric": "PSNR", "model": "IMDN", "row": 27, "task": "Image Super-Resolution", "value": "30.32" }, { "column": 5, "dataset": "BSD100 - 3x upscaling", "metric": "PSNR", "model": "IMDN", "row": 27, "task": "Image Super-Resolution", "value": "29.09" }, { "column": 6, "dataset": "Urban100 - 3x upscaling", "metric": "PSNR", "model": "IMDN", "row": 27, "task": "Image Super-Resolution", "value": "28.17" }, { "column": 7, "dataset": "Manga109 - 3x upscaling", "metric": "PSNR", "model": "IMDN", "row": 27, "task": "Image Super-Resolution", "value": "33.61" }, { "column": 3, "dataset": "Set5 - 4x upscaling", "metric": "PSNR", "model": "IMDN", "row": 40, "task": "Image Super-Resolution", "value": "32.21" }, { "column": 4, "dataset": "Set14 - 4x upscaling", "metric": "PSNR", "model": "IMDN", "row": 40, "task": "Image Super-Resolution", "value": "28.58" }, { "column": 5, "dataset": "BSD100 - 4x upscaling", "metric": "PSNR", "model": "IMDN", "row": 40, "task": "Image Super-Resolution", "value": "27.56" }, { "column": 6, "dataset": "Urban100 - 4x upscaling", "metric": "PSNR", "model": "IMDN", "row": 40, "task": "Image Super-Resolution", "value": "26.04" }, { "column": 7, "dataset": "Manga109 - 4x upscaling", "metric": "PSNR", "model": "IMDN", "row": 40, "task": "Image Super-Resolution", "value": "30.45" } ] } ]
1909.11867v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "VQA-RAD", "metric": "Open-ended Accuracy", "model": "MEVF (finetuning)", "row": 8, "task": "Medical Visual Question Answering", "value": "40.7" }, { "column": 2, "dataset": "VQA-RAD", "metric": "Close-ended Accuracy", "model": "MEVF (finetuning)", "row": 8, "task": "Medical Visual Question Answering", "value": "74.1" } ] } ]
1909.11874v1
[ { "index": 0, "records": [ { "column": 2, "dataset": "TDIUC", "metric": "Accuracy", "model": "BAN2-CTI", "row": 2, "task": "Visual Question Answering", "value": "87" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "VQA v2 test-dev", "metric": "Accuracy", "model": "BAN2-CTI", "row": 5, "task": "Visual Question Answering", "value": "67.4" } ] }, { "index": 5, "records": [ { "column": 2, "dataset": "Visual7W", "metric": "Percentage correct", "model": "CTI (with Boxes)", "row": 8, "task": "Visual Question Answering", "value": "72.3" } ] } ]
1909.11942v6
[ { "index": 1, "records": [ { "column": 4, "dataset": "SQuAD2.0 dev", "metric": "F1", "model": "ALBERT xxlarge", "row": 6, "task": "Question Answering", "value": "88.1" } ] }, { "index": 2, "records": [ { "column": 4, "dataset": "SQuAD2.0 dev", "metric": "F1", "model": "ALBERT base", "row": 7, "task": "Question Answering", "value": "79.1" } ] }, { "index": 8, "records": [ { "column": 2, "dataset": "QNLI", "metric": "Accuracy", "model": "ALBERT", "row": 13, "task": "Natural Language Inference", "value": "99.2" }, { "column": 5, "dataset": "SST-2 Binary classification", "metric": "Accuracy", "model": "ALBERT", "row": 13, "task": "Sentiment Analysis", "value": "97.1" }, { "column": 6, "dataset": "MRPC", "metric": "Accuracy", "model": "ALBERT", "row": 13, "task": "Semantic Textual Similarity", "value": "93.4" }, { "column": 8, "dataset": "STS Benchmark", "metric": "Pearson Correlation", "model": "ALBERT", "row": 13, "task": "Semantic Textual Similarity", "value": "0.925" } ] }, { "index": 10, "records": [ { "column": 7, "dataset": "SQuAD2.0 dev", "metric": "F1", "model": "ALBERT large", "row": 5, "task": "Question Answering", "value": "82.1" } ] } ]
1909.12117v2
[ { "index": 3, "records": [ { "column": 3, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "BBG (ResNet-18)", "row": 9, "task": "Image Classification", "value": "59.4" }, { "column": 4, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "BBG (ResNet-18)", "row": 9, "task": "Image Classification", "value": "81.3" } ] }, { "index": 4, "records": [ { "column": 3, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "BBG (ResNet-34)", "row": 5, "task": "Image Classification", "value": "62.6" }, { "column": 4, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "BBG (ResNet-34)", "row": 5, "task": "Image Classification", "value": "84.1" } ] } ]
1909.12605v1
[ { "index": 2, "records": [ { "column": 5, "dataset": "MOT16", "metric": "MOTA", "model": "JDE", "row": 7, "task": "Multi-Object Tracking", "value": "64.4" } ] } ]
1909.13476v1
[ { "index": 0, "records": [ { "column": 14, "dataset": "LineMOD", "metric": "Accuracy", "model": "CullNet", "row": 3, "task": "6D Pose Estimation using RGB", "value": "97.7%" }, { "column": 14, "dataset": "LineMOD", "metric": "Mean ADD", "model": "CullNet", "row": 12, "task": "6D Pose Estimation using RGB", "value": "78.3" } ] }, { "index": 2, "records": [ { "column": 8, "dataset": "Occlusion LineMOD", "metric": "Mean ADD", "model": "CullNet", "row": 12, "task": "6D Pose Estimation using RGB", "value": "24.48" } ] } ]
1909.13776v1
[ { "index": 0, "records": [ { "column": 21, "dataset": "GTAV-to-Cityscapes Labels", "metric": "mIoU", "model": "MLSL (SISC-PWL)", "row": 11, "task": "Synthetic-to-Real Translation", "value": "49" } ] } ]
1910.00177v3
[ { "index": 0, "records": [ { "column": 7, "dataset": "Ant-v2", "metric": "Average Return", "model": "AWR", "row": 1, "task": "OpenAI Gym", "value": "5067" }, { "column": 7, "dataset": "HalfCheetah-v2", "metric": "Average Return", "model": "AWR", "row": 2, "task": "OpenAI Gym", "value": "9136" }, { "column": 7, "dataset": "Hopper-v2", "metric": "Average Return", "model": "AWR", "row": 3, "task": "OpenAI Gym", "value": "3405" }, { "column": 7, "dataset": "Humanoid-v2", "metric": "Average Return", "model": "AWR", "row": 4, "task": "OpenAI Gym", "value": "4996" }, { "column": 7, "dataset": "LunarLander-v2", "metric": "Average Return", "model": "AWR", "row": 5, "task": "OpenAI Gym", "value": "229" }, { "column": 7, "dataset": "Walker2d-v2", "metric": "Average Return", "model": "AWR", "row": 6, "task": "OpenAI Gym", "value": "5813" } ] } ]
1910.01108v3
[ { "index": 0, "records": [ { "column": 8, "dataset": "STS Benchmark", "metric": "Pearson Correlation", "model": "DistilBERT", "row": 3, "task": "Semantic Textual Similarity", "value": "0.907" } ] } ]
1910.02548v1
[ { "index": 4, "records": [ { "column": 1, "dataset": "Cora", "metric": "AUC", "model": "Node Feature Agg + Similarity Metric", "row": 4, "task": "Link Prediction", "value": "93.1" }, { "column": 2, "dataset": "Cora", "metric": "AP", "model": "Node Feature Agg + Similarity Metric", "row": 4, "task": "Link Prediction", "value": "93.2" }, { "column": 3, "dataset": "Citeseer", "metric": "AUC", "model": "Node Feature Agg + Similarity Metric", "row": 4, "task": "Link Prediction", "value": "90.9" }, { "column": 4, "dataset": "Citeseer", "metric": "AP", "model": "Node Feature Agg + Similarity Metric", "row": 4, "task": "Link Prediction", "value": "91.8" }, { "column": 5, "dataset": "Pubmed", "metric": "AUC", "model": "Node Feature Agg + Similarity Metric", "row": 4, "task": "Link Prediction", "value": "94.5" }, { "column": 6, "dataset": "Pubmed", "metric": "AP", "model": "Node Feature Agg + Similarity Metric", "row": 4, "task": "Link Prediction", "value": "94.2" } ] } ]
1910.04093v1
[ { "index": 0, "records": [ { "column": 2, "dataset": "KITTI Cars Easy", "metric": "AP", "model": "Patches", "row": 10, "task": "Object Detection", "value": "87.87" }, { "column": 3, "dataset": "KITTI Cars Moderate", "metric": "AP", "model": "Patches", "row": 10, "task": "Object Detection", "value": "77.16" }, { "column": 4, "dataset": "KITTI Cars Hard", "metric": "AP", "model": "Patches", "row": 10, "task": "Object Detection", "value": "68.91" }, { "column": 5, "dataset": "KITTI Cars Easy", "metric": "AP", "model": "Patches", "row": 10, "task": "Birds Eye View Object Detection", "value": "89.78" }, { "column": 6, "dataset": "KITTI Cars Moderate", "metric": "AP", "model": "Patches", "row": 10, "task": "Birds Eye View Object Detection", "value": "86.55" }, { "column": 7, "dataset": "KITTI Cars Hard", "metric": "AP", "model": "Patches", "row": 10, "task": "Birds Eye View Object Detection", "value": "79.22" } ] } ]
1910.04302v1
[ { "index": 3, "records": [ { "column": 2, "dataset": "MNIST", "metric": "FID", "model": "PresGAN", "row": 4, "task": "Image Generation", "value": "42.019" }, { "column": 2, "dataset": "Stacked MNIST", "metric": "FID", "model": "PresGAN", "row": 8, "task": "Image Generation", "value": "23.965" }, { "column": 2, "dataset": "CIFAR-10", "metric": "FID", "model": "PresGAN", "row": 12, "task": "Image Generation", "value": "52.202" }, { "column": 2, "dataset": "CelebA 128 x 128", "metric": "FID", "model": "PresGAN", "row": 16, "task": "Image Generation", "value": "29.115" } ] } ]
1910.04476v1
[ { "index": 2, "records": [ { "column": 2, "dataset": "Set5 - 4x upscaling", "metric": "PSNR", "model": "ABPN", "row": 10, "task": "Image Super-Resolution", "value": "32.69" }, { "column": 3, "dataset": "Set5 - 4x upscaling", "metric": "SSIM", "model": "ABPN", "row": 10, "task": "Image Super-Resolution", "value": "0.9" }, { "column": 4, "dataset": "Set14 - 4x upscaling", "metric": "PSNR", "model": "ABPN", "row": 10, "task": "Image Super-Resolution", "value": "28.94" }, { "column": 5, "dataset": "Set14 - 4x upscaling", "metric": "SSIM", "model": "ABPN", "row": 10, "task": "Image Super-Resolution", "value": "0.789" }, { "column": 6, "dataset": "BSD100 - 4x upscaling", "metric": "PSNR", "model": "ABPN", "row": 10, "task": "Image Super-Resolution", "value": "27.82" }, { "column": 7, "dataset": "BSD100 - 4x upscaling", "metric": "SSIM", "model": "ABPN", "row": 10, "task": "Image Super-Resolution", "value": "0.743" }, { "column": 8, "dataset": "Urban100 - 4x upscaling", "metric": "PSNR", "model": "ABPN", "row": 10, "task": "Image Super-Resolution", "value": "27.06" }, { "column": 9, "dataset": "Urban100 - 4x upscaling", "metric": "SSIM", "model": "ABPN", "row": 10, "task": "Image Super-Resolution", "value": "0.8109999999999999" }, { "column": 10, "dataset": "Manga109 - 4x upscaling", "metric": "PSNR", "model": "ABPN", "row": 10, "task": "Image Super-Resolution", "value": "31.79" }, { "column": 11, "dataset": "Manga109 - 4x upscaling", "metric": "SSIM", "model": "ABPN", "row": 10, "task": "Image Super-Resolution", "value": "0.9209999999999999" }, { "column": 2, "dataset": "Set5 - 8x upscaling", "metric": "PSNR", "model": "ABPN", "row": 19, "task": "Image Super-Resolution", "value": "27.25" }, { "column": 3, "dataset": "Set5 - 8x upscaling", "metric": "SSIM", "model": "ABPN", "row": 19, "task": "Image Super-Resolution", "value": "0.7859999999999999" }, { "column": 4, "dataset": "Set14 - 8x upscaling", "metric": "PSNR", "model": "ABPN", "row": 19, "task": "Image Super-Resolution", "value": "25.08" }, { "column": 5, "dataset": "Set14 - 8x upscaling", "metric": "SSIM", "model": "ABPN", "row": 19, "task": "Image Super-Resolution", "value": "0.638" }, { "column": 6, "dataset": "BSD100 - 8x upscaling", "metric": "PSNR", "model": "ABPN", "row": 19, "task": "Image Super-Resolution", "value": "24.99" }, { "column": 7, "dataset": "BSD100 - 8x upscaling", "metric": "SSIM", "model": "ABPN", "row": 19, "task": "Image Super-Resolution", "value": "0.604" }, { "column": 8, "dataset": "Urban100 - 8x upscaling", "metric": "PSNR", "model": "ABPN", "row": 19, "task": "Image Super-Resolution", "value": "23.04" }, { "column": 9, "dataset": "Urban100 - 8x upscaling", "metric": "SSIM", "model": "ABPN", "row": 19, "task": "Image Super-Resolution", "value": "0.6409999999999999" }, { "column": 10, "dataset": "Manga109 - 8x upscaling", "metric": "PSNR", "model": "ABPN", "row": 19, "task": "Image Super-Resolution", "value": "25.29" }, { "column": 11, "dataset": "Manga109 - 8x upscaling", "metric": "SSIM", "model": "ABPN", "row": 19, "task": "Image Super-Resolution", "value": "0.802" }, { "column": 2, "dataset": "DIV8K val - 16x upscaling", "metric": "PSNR", "model": "ABPN", "row": 25, "task": "Image Super-Resolution", "value": "26.71" }, { "column": 3, "dataset": "DIV8K val - 16x upscaling", "metric": "SSIM", "model": "ABPN", "row": 25, "task": "Image Super-Resolution", "value": "0.65" }, { "column": 4, "dataset": "DIV2K val - 16x upscaling", "metric": "PSNR", "model": "ABPN", "row": 25, "task": "Image Super-Resolution", "value": "24.38" }, { "column": 5, "dataset": "DIV2K val - 16x upscaling", "metric": "SSIM", "model": "ABPN", "row": 25, "task": "Image Super-Resolution", "value": "0.6409999999999999" }, { "column": 6, "dataset": "BSD100 - 16x upscaling", "metric": "PSNR", "model": "ABPN", "row": 25, "task": "Image Super-Resolution", "value": "22.72" }, { "column": 7, "dataset": "BSD100 - 16x upscaling", "metric": "SSIM", "model": "ABPN", "row": 25, "task": "Image Super-Resolution", "value": "0.512" }, { "column": 8, "dataset": "Urban100 - 16x upscaling", "metric": "PSNR", "model": "ABPN", "row": 25, "task": "Image Super-Resolution", "value": "20.39" }, { "column": 9, "dataset": "Urban100 - 16x upscaling", "metric": "SSIM", "model": "ABPN", "row": 25, "task": "Image Super-Resolution", "value": "0.515" }, { "column": 10, "dataset": "Manga109 - 16x upscaling", "metric": "PSNR", "model": "ABPN", "row": 25, "task": "Image Super-Resolution", "value": "21.25" }, { "column": 11, "dataset": "Manga109 - 16x upscaling", "metric": "SSIM", "model": "ABPN", "row": 25, "task": "Image Super-Resolution", "value": "0.6729999999999999" } ] } ]
1910.04985v4
[ { "index": 3, "records": [ { "column": 1, "dataset": "Labeled Faces in the Wild", "metric": "Accuracy", "model": "VarGFaceNet", "row": 3, "task": "Face Verification", "value": "99.85" }, { "column": 2, "dataset": "CFP-FP", "metric": "Accuracy", "model": "VarGFaceNet", "row": 3, "task": "Face Verification", "value": "0.985" }, { "column": 3, "dataset": "AgeDB-30", "metric": "Accuracy", "model": "VarGFaceNet", "row": 3, "task": "Face Verification", "value": "0.9815" } ] } ]
1910.04987v1
[ { "index": 3, "records": [ { "column": 1, "dataset": "English Glyph", "metric": "Inception score", "model": "AGIS-Net", "row": 3, "task": "Glyph Image Generation", "value": "3.8151" }, { "column": 2, "dataset": "English Glyph", "metric": "FID", "model": "AGIS-Net", "row": 3, "task": "Glyph Image Generation", "value": "73.893" }, { "column": 3, "dataset": "English Glyph", "metric": "SSIM", "model": "AGIS-Net", "row": 3, "task": "Glyph Image Generation", "value": "0.7217" }, { "column": 4, "dataset": "English Glyph", "metric": "Pixel Accuracy", "model": "AGIS-Net", "row": 3, "task": "Glyph Image Generation", "value": "0.6249" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "Chinese Glyph", "metric": "Inception score", "model": "AGIS-Net", "row": 2, "task": "Glyph Image Generation", "value": "2.1122" }, { "column": 2, "dataset": "Chinese Glyph", "metric": "FID", "model": "AGIS-Net", "row": 2, "task": "Glyph Image Generation", "value": "70.875" }, { "column": 3, "dataset": "Chinese Glyph", "metric": "SSIM", "model": "AGIS-Net", "row": 2, "task": "Glyph Image Generation", "value": "0.6116" }, { "column": 4, "dataset": "Chinese Glyph", "metric": "Pixel Accuracy", "model": "AGIS-Net", "row": 2, "task": "Glyph Image Generation", "value": "0.7035" } ] } ]
1910.05552v1
[ { "index": 1, "records": [ { "column": 2, "dataset": "Criteo", "metric": "AUC", "model": "Fi-GNN", "row": 9, "task": "Click-Through Rate Prediction", "value": "0.8082" }, { "column": 4, "dataset": "Criteo", "metric": "Log Loss", "model": "Fi-GNN", "row": 9, "task": "Click-Through Rate Prediction", "value": "0.4411" }, { "column": 6, "dataset": "Avazu", "metric": "AUC", "model": "Fi-GNN", "row": 9, "task": "Click-Through Rate Prediction", "value": "0.812" }, { "column": 8, "dataset": "Avazu", "metric": "Log Loss", "model": "Fi-GNN", "row": 9, "task": "Click-Through Rate Prediction", "value": "0.3817" } ] } ]
1910.06278v1
[ { "index": 5, "records": [ { "column": 5, "dataset": "COCO test-dev", "metric": "AP", "model": "DARK (extra data)", "row": 14, "task": "Pose Estimation", "value": "77.4" }, { "column": 6, "dataset": "COCO test-dev", "metric": "AP50", "model": "DARK (extra data)", "row": 14, "task": "Pose Estimation", "value": "92.6" }, { "column": 7, "dataset": "COCO test-dev", "metric": "AP75", "model": "DARK (extra data)", "row": 14, "task": "Pose Estimation", "value": "84.6" }, { "column": 8, "dataset": "COCO test-dev", "metric": "APM", "model": "DARK (extra data)", "row": 14, "task": "Pose Estimation", "value": "73.6" }, { "column": 9, "dataset": "COCO test-dev", "metric": "APL", "model": "DARK (extra data)", "row": 14, "task": "Pose Estimation", "value": "83.7" }, { "column": 10, "dataset": "COCO test-dev", "metric": "AR", "model": "DARK (extra data)", "row": 14, "task": "Pose Estimation", "value": "82.3" } ] } ]
1910.06809v3
[ { "index": 0, "records": [ { "column": 1, "dataset": "COCO-Stuff Labels-to-Photos", "metric": "mIoU", "model": "CC-FPSE", "row": 6, "task": "Image-to-Image Translation", "value": "41.6" }, { "column": 3, "dataset": "COCO-Stuff Labels-to-Photos", "metric": "FID", "model": "CC-FPSE", "row": 6, "task": "Image-to-Image Translation", "value": "19.2" } ] } ]
1910.06827v2
[ { "index": 8, "records": [ { "column": 8, "dataset": "DukeMTMC-reID->Market-1501", "metric": "Rank-1", "model": "OSNet-AIN", "row": 9, "task": "Unsupervised Person Re-Identification", "value": "61" }, { "column": 9, "dataset": "DukeMTMC-reID->Market-1501", "metric": "Rank-5", "model": "OSNet-AIN", "row": 9, "task": "Unsupervised Person Re-Identification", "value": "77" }, { "column": 10, "dataset": "DukeMTMC-reID->Market-1501", "metric": "Rank-10", "model": "OSNet-AIN", "row": 9, "task": "Unsupervised Person Re-Identification", "value": "82.5" }, { "column": 11, "dataset": "DukeMTMC-reID->Market-1501", "metric": "MAP", "model": "OSNet-AIN", "row": 9, "task": "Unsupervised Person Re-Identification", "value": "30.6" }, { "column": 3, "dataset": "MSMT17->DukeMTMC-reID", "metric": "Rank-1", "model": "OSNet-AIN", "row": 12, "task": "Unsupervised Person Re-Identification", "value": "70.1" }, { "column": 4, "dataset": "MSMT17->DukeMTMC-reID", "metric": "Rank-5", "model": "OSNet-AIN", "row": 12, "task": "Unsupervised Person Re-Identification", "value": "84.1" }, { "column": 5, "dataset": "MSMT17->DukeMTMC-reID", "metric": "Rank-10", "model": "OSNet-AIN", "row": 12, "task": "Unsupervised Person Re-Identification", "value": "88.6" }, { "column": 6, "dataset": "MSMT17->DukeMTMC-reID", "metric": "mAP", "model": "OSNet-AIN", "row": 12, "task": "Unsupervised Person Re-Identification", "value": "43.3" }, { "column": 8, "dataset": "MSMT17->Market-1501", "metric": "Rank-1", "model": "OSNet-AIN", "row": 12, "task": "Unsupervised Person Re-Identification", "value": "71.1" }, { "column": 9, "dataset": "MSMT17->Market-1501", "metric": "Rank-5", "model": "OSNet-AIN", "row": 12, "task": "Unsupervised Person Re-Identification", "value": "83.3" }, { "column": 10, "dataset": "MSMT17->Market-1501", "metric": "Rank-10", "model": "OSNet-AIN", "row": 12, "task": "Unsupervised Person Re-Identification", "value": "86.4" }, { "column": 11, "dataset": "MSMT17->Market-1501", "metric": "mAP", "model": "OSNet-AIN", "row": 12, "task": "Unsupervised Person Re-Identification", "value": "52.7" } ] } ]
1910.06849v1
[ { "index": 1, "records": [ { "column": 2, "dataset": "S3DIS", "metric": "Mean IoU", "model": "ResGCN-28", "row": 7, "task": "Semantic Segmentation", "value": "60" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "PPI", "metric": "F1", "model": "ResMRGCN-28", "row": 7, "task": "Node Classification", "value": "99.41" }, { "column": 1, "dataset": "PPI", "metric": "F1", "model": "DenseMRGCN-14", "row": 8, "task": "Node Classification", "value": "99.43" } ] } ]
1910.07207v2
[ { "index": 0, "records": [ { "column": 3, "dataset": "Atari 2600 Freeway", "metric": "Score", "model": "SAC", "row": 1, "task": "Atari Games", "value": "4.4" }, { "column": 3, "dataset": "Atari 2600 Ms. Pacman", "metric": "Score", "model": "SAC", "row": 2, "task": "Atari Games", "value": "690.9" }, { "column": 3, "dataset": "Atari 2600 Enduro", "metric": "Score", "model": "SAC", "row": 3, "task": "Atari Games", "value": "0.8" }, { "column": 3, "dataset": "Atari 2600 Battle Zone", "metric": "Score", "model": "SAC", "row": 4, "task": "Atari Games", "value": "4386.7" }, { "column": 3, "dataset": "Atari 2600 Q*Bert", "metric": "Score", "model": "SAC", "row": 5, "task": "Atari Games", "value": "280.5" }, { "column": 3, "dataset": "Atari 2600 Space Invaders", "metric": "Score", "model": "SAC", "row": 6, "task": "Atari Games", "value": "160.8" }, { "column": 3, "dataset": "Atari 2600 Beam Rider", "metric": "Score", "model": "SAC", "row": 7, "task": "Atari Games", "value": "432.1" }, { "column": 3, "dataset": "Atari 2600 Assault", "metric": "Score", "model": "SAC", "row": 8, "task": "Atari Games", "value": "350.0" }, { "column": 3, "dataset": "Atari 2600 Assault", "metric": "Score", "model": "SAC", "row": 8, "task": "Atari Games", "value": "350" }, { "column": 3, "dataset": "Atari 2600 James Bond", "metric": "Score", "model": "SAC", "row": 9, "task": "Atari Games", "value": "68.3" }, { "column": 3, "dataset": "Atari 2600 Seaquest", "metric": "Score", "model": "SAC", "row": 10, "task": "Atari Games", "value": "211.6" }, { "column": 3, "dataset": "Atari 2600 Asterix", "metric": "Score", "model": "SAC", "row": 11, "task": "Atari Games", "value": "272" }, { "column": 3, "dataset": "Atari 2600 Kangaroo", "metric": "Score", "model": "SAC", "row": 12, "task": "Atari Games", "value": "29.3" }, { "column": 3, "dataset": "Atari 2600 Alien", "metric": "Score", "model": "SAC", "row": 13, "task": "Atari Games", "value": "216.9" }, { "column": 3, "dataset": "Atari 2600 Road Runner", "metric": "Score", "model": "SAC", "row": 14, "task": "Atari Games", "value": "305.3" }, { "column": 3, "dataset": "Atari 2600 Frostbite", "metric": "Score", "model": "SAC", "row": 15, "task": "Atari Games", "value": "59.4" }, { "column": 3, "dataset": "Atari 2600 Amidar", "metric": "Score", "model": "SAC", "row": 16, "task": "Atari Games", "value": "7.9" }, { "column": 3, "dataset": "Atari 2600 Crazy Climber", "metric": "Score", "model": "SAC", "row": 17, "task": "Atari Games", "value": "3668.7" }, { "column": 3, "dataset": "Atari 2600 Breakout", "metric": "Score", "model": "SAC", "row": 18, "task": "Atari Games", "value": "0.7" }, { "column": 3, "dataset": "Atari 2600 Up and Down", "metric": "Score", "model": "SAC", "row": 19, "task": "Atari Games", "value": "250.7" }, { "column": 3, "dataset": "Atari 2600 Pong", "metric": "Score", "model": "SAC", "row": 20, "task": "Atari Games", "value": "-20.98" } ] } ]
1910.07954v1
[ { "index": 0, "records": [ { "column": 2, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "CharNet H-50 (single-scale)", "row": 2, "task": "Scene Text Detection", "value": "89.7" }, { "column": 2, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "CharNet H-57 (single-scale)", "row": 4, "task": "Scene Text Detection", "value": "89.66" }, { "column": 2, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "CharNet H-88 (single-scale)", "row": 6, "task": "Scene Text Detection", "value": "90.97" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "ICDAR 2015", "metric": "Recall", "model": "CharNet H-50 (single-scale)", "row": 6, "task": "Scene Text Detection", "value": "88.3" }, { "column": 3, "dataset": "ICDAR 2015", "metric": "Precision", "model": "CharNet H-50 (single-scale)", "row": 6, "task": "Scene Text Detection", "value": "91.15" }, { "column": 4, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "CharNet H-50 (single-scale)", "row": 6, "task": "Scene Text Detection", "value": "89.7" } ] }, { "index": 3, "records": [ { "column": 2, "dataset": "ICDAR 2015", "metric": "Precision", "model": "CharNet H-57 (single-scale)", "row": 9, "task": "Scene Text Detection", "value": "88.88" }, { "column": 3, "dataset": "ICDAR 2015", "metric": "Recall", "model": "CharNet H-57 (single-scale)", "row": 9, "task": "Scene Text Detection", "value": "90.45" }, { "column": 4, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "CharNet H-57", "row": 9, "task": "Scene Text Detection", "value": "89.66" }, { "column": 2, "dataset": "ICDAR 2015", "metric": "Precision", "model": "CharNet H-88 (single-scale)", "row": 10, "task": "Scene Text Detection", "value": "89.99" }, { "column": 3, "dataset": "ICDAR 2015", "metric": "Recall", "model": "CharNet H-88 (single-scale)", "row": 10, "task": "Scene Text Detection", "value": "91.98" }, { "column": 4, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "CharNet H-88", "row": 10, "task": "Scene Text Detection", "value": "90.97" }, { "column": 2, "dataset": "ICDAR 2015", "metric": "Precision", "model": "CharNet H-50 (multi-scale)", "row": 14, "task": "Scene Text Detection", "value": "90.9" }, { "column": 3, "dataset": "ICDAR 2015", "metric": "Recall", "model": "CharNet H-50 (multi-scale)", "row": 14, "task": "Scene Text Detection", "value": "89.44" }, { "column": 4, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "CharNet H-50 (multi-scale)", "row": 14, "task": "Scene Text Detection", "value": "90.16" }, { "column": 2, "dataset": "ICDAR 2015", "metric": "Precision", "model": "CharNet H-57 (multi-scale)", "row": 15, "task": "Scene Text Detection", "value": "91.43" }, { "column": 3, "dataset": "ICDAR 2015", "metric": "Recall", "model": "CharNet H-57 (multi-scale)", "row": 15, "task": "Scene Text Detection", "value": "88.74" }, { "column": 4, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "CharNet H-57 (multi-scale)", "row": 15, "task": "Scene Text Detection", "value": "90.06" }, { "column": 2, "dataset": "ICDAR 2015", "metric": "Recall", "model": "CharNet H-88 (multi-scale)", "row": 16, "task": "Scene Text Detection", "value": "90.47" }, { "column": 3, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "CharNet H-88 MS", "row": 16, "task": "Scene Text Detection", "value": "92.65" }, { "column": 3, "dataset": "ICDAR 2015", "metric": "Precision", "model": "CharNet H-88 (multi-scale)", "row": 16, "task": "Scene Text Detection", "value": "92.65" }, { "column": 4, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "CharNet H-88 (multi-scale)", "row": 16, "task": "Scene Text Detection", "value": "91.55" }, { "column": 4, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "Charnet H-88", "row": 16, "task": "Scene Text Detection", "value": "91.55" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "Total-Text", "metric": "Recall", "model": "CharNet H-88", "row": 7, "task": "Scene Text Detection", "value": "81.7" }, { "column": 2, "dataset": "Total-Text", "metric": "Precision", "model": "CharNet H-88", "row": 7, "task": "Scene Text Detection", "value": "89.9" }, { "column": 3, "dataset": "Total-Text", "metric": "F-Measure", "model": "CharNet H-88", "row": 7, "task": "Scene Text Detection", "value": "85.6" }, { "column": 1, "dataset": "Total-Text", "metric": "Recall", "model": "CharNet H-88 (multi-scale)", "row": 9, "task": "Scene Text Detection", "value": "85" }, { "column": 2, "dataset": "Total-Text", "metric": "Precision", "model": "CharNet H-88 (multi-scale)", "row": 9, "task": "Scene Text Detection", "value": "88" }, { "column": 3, "dataset": "Total-Text", "metric": "F-Measure", "model": "CharNet H-88 (multi-scale)", "row": 9, "task": "Scene Text Detection", "value": "86.5" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "ICDAR 2017 MLT", "metric": "Recall", "model": "CharNet R-50 ", "row": 5, "task": "Scene Text Detection", "value": "70.1" }, { "column": 2, "dataset": "ICDAR 2017 MLT", "metric": "Precision", "model": "CharNet R-50 ", "row": 5, "task": "Scene Text Detection", "value": "77.07" }, { "column": 3, "dataset": "ICDAR 2017 MLT", "metric": "F-Measure", "model": "CharNet R-50 ", "row": 5, "task": "Scene Text Detection", "value": "73.42" }, { "column": 1, "dataset": "ICDAR 2017 MLT", "metric": "Recall", "model": "CharNet H-88", "row": 6, "task": "Scene Text Detection", "value": "70.97" }, { "column": 2, "dataset": "ICDAR 2017 MLT", "metric": "F-Measure", "model": "CharNet H-88", "row": 6, "task": "Scene Text Detection", "value": "81.27" }, { "column": 2, "dataset": "ICDAR 2017 MLT", "metric": "Precision", "model": "CharNet H-88", "row": 6, "task": "Scene Text Detection", "value": "81.27" }, { "column": 3, "dataset": "ICDAR 2017 MLT", "metric": "F-Measure", "model": "CharNet H-88", "row": 6, "task": "Scene Text Detection", "value": "75.77" } ] } ]
1910.08761v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "FFHQ 1024 x 1024 - 4x upscaling", "metric": "PSNR", "model": "CAGFace", "row": 9, "task": "Image Super-Resolution", "value": "34.1" }, { "column": 2, "dataset": "FFHQ 1024 x 1024 - 4x upscaling", "metric": "SSIM", "model": "CAGFace", "row": 9, "task": "Image Super-Resolution", "value": "0.906" }, { "column": 3, "dataset": "FFHQ 1024 x 1024 - 4x upscaling", "metric": "MS-SSIM", "model": "CAGFace", "row": 9, "task": "Image Super-Resolution", "value": "0.971" }, { "column": 4, "dataset": "FFHQ 1024 x 1024 - 4x upscaling", "metric": "FID", "model": "CAGFace", "row": 9, "task": "Image Super-Resolution", "value": "12.4" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "FFHQ 256 x 256 - 4x upscaling", "metric": "PSNR", "model": "CAGFace", "row": 9, "task": "Image Super-Resolution", "value": "27.42" }, { "column": 2, "dataset": "FFHQ 256 x 256 - 4x upscaling", "metric": "SSIM", "model": "CAGFace", "row": 9, "task": "Image Super-Resolution", "value": "0.816" }, { "column": 3, "dataset": "FFHQ 256 x 256 - 4x upscaling", "metric": "MS-SSIM", "model": "CAGFace", "row": 9, "task": "Image Super-Resolution", "value": "0.958" }, { "column": 4, "dataset": "FFHQ 256 x 256 - 4x upscaling", "metric": "FID", "model": "CAGFace", "row": 9, "task": "Image Super-Resolution", "value": "74.43" } ] } ]
1910.08853v1
[ { "index": 0, "records": [ { "column": 5, "dataset": "BSD200 sigma10", "metric": "PSNR", "model": "RC-Net", "row": 2, "task": "Grayscale Image Denoising", "value": "36.36" }, { "column": 5, "dataset": "BSD200 sigma30", "metric": "PSNR", "model": "RC-Net", "row": 3, "task": "Grayscale Image Denoising", "value": "33.57" }, { "column": 5, "dataset": "BSD200 sigma50", "metric": "PSNR", "model": "RC-Net", "row": 4, "task": "Grayscale Image Denoising", "value": "32.48" }, { "column": 5, "dataset": "BSD200 sigma70", "metric": "PSNR", "model": "RC-Net", "row": 5, "task": "Grayscale Image Denoising", "value": "31.17" } ] }, { "index": 2, "records": [ { "column": 5, "dataset": "Set5 - 2x upscaling", "metric": "PSNR", "model": "RC-Net", "row": 2, "task": "Image Super-Resolution", "value": "37.42" }, { "column": 5, "dataset": "Set5 - 3x upscaling", "metric": "PSNR", "model": "RC-Net", "row": 3, "task": "Image Super-Resolution", "value": "33.43" }, { "column": 5, "dataset": "Set5 - 4x upscaling", "metric": "PSNR", "model": "RC-Net", "row": 4, "task": "Image Super-Resolution", "value": "31.01" }, { "column": 5, "dataset": "BSD100 - 2x upscaling", "metric": "PSNR", "model": "RC-Net", "row": 5, "task": "Image Super-Resolution", "value": "31.86" }, { "column": 5, "dataset": "BSD100 - 3x upscaling", "metric": "PSNR", "model": "RC-Net", "row": 6, "task": "Image Super-Resolution", "value": "28.76" }, { "column": 5, "dataset": "BSD100 - 4x upscaling", "metric": "PSNR", "model": "RC-Net", "row": 7, "task": "Image Super-Resolution", "value": "27.21" } ] } ]
1910.10111v1
[ { "index": 4, "records": [ { "column": 1, "dataset": "Market-1501", "metric": "Rank-1", "model": "P2-Net (triplet loss)", "row": 19, "task": "Person Re-Identification", "value": "95.2" }, { "column": 2, "dataset": "Market-1501", "metric": "Rank-5", "model": "P2-Net (triplet loss)", "row": 19, "task": "Person Re-Identification", "value": "98.2" }, { "column": 3, "dataset": "Market-1501", "metric": "Rank-10", "model": "P2-Net (triplet loss)", "row": 19, "task": "Person Re-Identification", "value": "99.1" }, { "column": 4, "dataset": "Market-1501", "metric": "MAP", "model": "P2-Net (triplet loss)", "row": 19, "task": "Person Re-Identification", "value": "85.6" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "DukeMTMC-reID", "metric": "Rank-1", "model": "P2-Net (triplet loss)", "row": 15, "task": "Person Re-Identification", "value": "86.5" }, { "column": 2, "dataset": "DukeMTMC-reID", "metric": "Rank-5", "model": "P2-Net (triplet loss)", "row": 15, "task": "Person Re-Identification", "value": "93.1" }, { "column": 3, "dataset": "DukeMTMC-reID", "metric": "Rank-10", "model": "P2-Net (triplet loss)", "row": 15, "task": "Person Re-Identification", "value": "95" }, { "column": 4, "dataset": "DukeMTMC-reID", "metric": "MAP", "model": "P2-Net (triplet loss)", "row": 15, "task": "Person Re-Identification", "value": "73.1" } ] } ]
1910.10683v2
[ { "index": 13, "records": [ { "column": 2, "dataset": "CoLA", "metric": "Accuracy", "model": "T5-Base", "row": 4, "task": "Linguistic Acceptability", "value": "51.1" }, { "column": 2, "dataset": "CoLA", "metric": "Accuracy", "model": "T5-Large", "row": 5, "task": "Linguistic Acceptability", "value": "61.2" }, { "column": 4, "dataset": "MRPC", "metric": "F1", "model": "T5-Large", "row": 5, "task": "Semantic Textual Similarity", "value": "92.4" }, { "column": 2, "dataset": "CoLA", "metric": "Accuracy", "model": "T5-3B", "row": 6, "task": "Linguistic Acceptability", "value": "67.1" }, { "column": 3, "dataset": "SST-2 Binary classification", "metric": "Accuracy", "model": "T5-3B", "row": 6, "task": "Sentiment Analysis", "value": "97.4" }, { "column": 4, "dataset": "STS Benchmark", "metric": "Pearson Correlation", "model": "T5-11B", "row": 6, "task": "Semantic Textual Similarity", "value": "0.925" }, { "column": 2, "dataset": "CoLA", "metric": "Accuracy", "model": "T5-11B", "row": 7, "task": "Linguistic Acceptability", "value": "70.8" }, { "column": 4, "dataset": "MRPC", "metric": "F1", "model": "T5-11B", "row": 7, "task": "Semantic Textual Similarity", "value": "91.9" } ] }, { "index": 14, "records": [ { "column": 3, "dataset": "MultiNLI", "metric": "Matched", "model": "T5-Small", "row": 3, "task": "Natural Language Inference", "value": "82.4" }, { "column": 7, "dataset": "WNLI", "metric": "Accuracy", "model": "T5-Base", "row": 4, "task": "Natural Language Inference", "value": "78.8" }, { "column": 6, "dataset": "RTE", "metric": "Accuracy", "model": "T5-3B", "row": 6, "task": "Natural Language Inference", "value": "91.1" }, { "column": 5, "dataset": "QNLI", "metric": "Accuracy", "model": "T5-11B", "row": 7, "task": "Natural Language Inference", "value": "96.7" }, { "column": 7, "dataset": "WNLI", "metric": "Accuracy", "model": "T5-11B", "row": 7, "task": "Natural Language Inference", "value": "93.2" } ] }, { "index": 15, "records": [ { "column": 1, "dataset": "SQuAD1.1 dev", "metric": "EM", "model": "T5-Small", "row": 3, "task": "Question Answering", "value": "79.1" }, { "column": 2, "dataset": "SQuAD1.1 dev", "metric": "F1", "model": "T5-Small", "row": 3, "task": "Question Answering", "value": "87.24" }, { "column": 1, "dataset": "SQuAD1.1 dev", "metric": "EM", "model": "T5-Base", "row": 4, "task": "Question Answering", "value": "85.44" }, { "column": 2, "dataset": "SQuAD1.1 dev", "metric": "F1", "model": "T5-Base", "row": 4, "task": "Question Answering", "value": "92.08" }, { "column": 1, "dataset": "SQuAD1.1 dev", "metric": "EM", "model": "T5-Large", "row": 5, "task": "Question Answering", "value": "86.66" }, { "column": 2, "dataset": "SQuAD1.1 dev", "metric": "F1", "model": "T5-Large", "row": 5, "task": "Question Answering", "value": "93.79" }, { "column": 2, "dataset": "SQuAD1.1 dev", "metric": "F1", "model": "T5-3B", "row": 6, "task": "Question Answering", "value": "94.95" }, { "column": 2, "dataset": "SQuAD1.1 dev", "metric": "F1", "model": "T5-11B", "row": 7, "task": "Question Answering", "value": "95.64" } ] }, { "index": 16, "records": [ { "column": 3, "dataset": "ReCoRD", "metric": "F1", "model": "T5-11B", "row": 7, "task": "Question Answering", "value": "93.3" }, { "column": 6, "dataset": "Words in Context", "metric": "Accuracy", "model": "T5-11B", "row": 7, "task": "Word Sense Disambiguation", "value": "76.1" } ] }, { "index": 17, "records": [ { "column": 1, "dataset": "WMT2014 English-German", "metric": "BLEU score", "model": "T5-11B", "row": 7, "task": "Machine Translation", "value": "32.1" }, { "column": 2, "dataset": "WMT2014 English-French", "metric": "BLEU score", "model": "T5", "row": 7, "task": "Machine Translation", "value": "43.4" }, { "column": 4, "dataset": "CNN / Daily Mail", "metric": "ROUGE-1", "model": "T5-11B", "row": 7, "task": "Document Summarization", "value": "43.52" }, { "column": 5, "dataset": "CNN / Daily Mail", "metric": "ROUGE-2", "model": "T5-11B", "row": 7, "task": "Document Summarization", "value": "21.55" }, { "column": 6, "dataset": "CNN / Daily Mail", "metric": "ROUGE-L", "model": "T5-11B", "row": 7, "task": "Document Summarization", "value": "40.69" } ] } ]
1910.10866v5
[ { "index": 3, "records": [ { "column": 1, "dataset": "Cora", "metric": "Accuracy", "model": "DFNet-ATT", "row": 16, "task": "Node Classification", "value": "86" }, { "column": 2, "dataset": "Citeseer", "metric": "Accuracy", "model": "DFNet-ATT", "row": 16, "task": "Node Classification", "value": "74.7" }, { "column": 3, "dataset": "Pubmed", "metric": "Accuracy", "model": "DFNet-ATT", "row": 16, "task": "Node Classification", "value": "85.2" }, { "column": 4, "dataset": "NELL", "metric": "Accuracy", "model": "DFNet-ATT", "row": 16, "task": "Node Classification", "value": "68.8" } ] } ]
1910.10897v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "ML10", "metric": "Average Success Rate", "model": "Multi-task multi-head SAC", "row": 5, "task": "Meta-Learning", "value": "88%" }, { "column": 2, "dataset": "MT50", "metric": "Average Success Rate", "model": "Multi-task multi-head SAC", "row": 5, "task": "Meta-Learning", "value": "35.85%" } ] } ]
1910.11319v1
[ { "index": 2, "records": [ { "column": 9, "dataset": "Cityscapes-to-Foggy Cityscapes", "metric": "mAP", "model": "Progressive Domain Adaptation", "row": 9, "task": "Image-to-Image Translation", "value": "36.9" } ] } ]
1910.11328v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "Edge-to-Handbags", "metric": "LPIPS", "model": "bFT", "row": 4, "task": "Image Reconstruction", "value": "0.161" }, { "column": 2, "dataset": "Edge-to-Handbags", "metric": "FID", "model": "bFT", "row": 4, "task": "Image Reconstruction", "value": "74.885" }, { "column": 3, "dataset": "Edge-to-Shoes", "metric": "LPIPS", "model": "bFT", "row": 4, "task": "Image Reconstruction", "value": "0.124" }, { "column": 4, "dataset": "Edge-to-Shoes", "metric": "FID", "model": "bFT", "row": 4, "task": "Image Reconstruction", "value": "121.241" }, { "column": 5, "dataset": "Edge-to-Clothes", "metric": "LPIPS", "model": "bFT", "row": 4, "task": "Image Reconstruction", "value": "0.067" }, { "column": 6, "dataset": "Edge-to-Clothes", "metric": "FID", "model": "bFT", "row": 4, "task": "Image Reconstruction", "value": "58.407" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "Deep-Fashion", "metric": "SSIM", "model": "bFT", "row": 6, "task": "Pose Transfer", "value": "0.767" }, { "column": 2, "dataset": "Deep-Fashion", "metric": "IS", "model": "bFT", "row": 6, "task": "Pose Transfer", "value": "3.22" }, { "column": 3, "dataset": "Deep-Fashion", "metric": "FID", "model": "bFT", "row": 6, "task": "Pose Transfer", "value": "12.266" } ] } ]
1910.11436v1
[ { "index": 0, "records": [ { "column": 8, "dataset": "5pt. Bench-Easy", "metric": "Accuracy", "model": "NDP", "row": 1, "task": "Graph Classification", "value": "97.9" }, { "column": 8, "dataset": "Bench-hard", "metric": "Accuracy", "model": "NDP", "row": 2, "task": "Graph Classification", "value": "72.6" }, { "column": 8, "dataset": "PROTEINS", "metric": "Accuracy", "model": "Graph2Vec", "row": 3, "task": "Graph Classification", "value": "73.3" }, { "column": 8, "dataset": "ENZYMES", "metric": "Accuracy", "model": "NDP", "row": 4, "task": "Graph Classification", "value": "43.9" }, { "column": 8, "dataset": "NCI1", "metric": "Accuracy", "model": "NDP", "row": 5, "task": "Graph Classification", "value": "73.5" }, { "column": 8, "dataset": "MUTAG", "metric": "Accuracy", "model": "NDP", "row": 6, "task": "Graph Classification", "value": "84.7" }, { "column": 8, "dataset": "Mutagenicity", "metric": "Accuracy", "model": "NDP", "row": 7, "task": "Graph Classification", "value": "78.1" }, { "column": 8, "dataset": "D&D", "metric": "Accuracy", "model": "NDP", "row": 8, "task": "Graph Classification", "value": "72" }, { "column": 8, "dataset": "COLLAB", "metric": "Accuracy", "model": "NDP", "row": 9, "task": "Graph Classification", "value": "79.1" }, { "column": 8, "dataset": "REDDIT-B", "metric": "Accuracy", "model": "NDP", "row": 10, "task": "Graph Classification", "value": "84.3" } ] } ]
1910.13049v2
[ { "index": 0, "records": [ { "column": 20, "dataset": "GTAV-to-Cityscapes Labels", "metric": "mIoU", "model": "CAG-UDA", "row": 13, "task": "Synthetic-to-Real Translation", "value": "50.2" } ] }, { "index": 2, "records": [ { "column": 17, "dataset": "SYNTHIA-to-Cityscapes", "metric": "mIoU", "model": "CAG-UDA", "row": 8, "task": "Image-to-Image Translation", "value": "44.5" } ] } ]
1910.13664v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "I2B2 2006: Smoking", "metric": "Micro F1", "model": "fLSTM", "row": 4, "task": "Clinical Note Phenotyping", "value": "98.1" }, { "column": 2, "dataset": "I2B2 2008: Obesity", "metric": "Micro F1", "model": "fLSTM", "row": 4, "task": "Clinical Note Phenotyping", "value": "99.7" } ] } ]
1911.00720v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "MSR", "metric": "F1", "model": "ZEN (Random Init)", "row": 12, "task": "Chinese Word Segmentation", "value": "97.89" }, { "column": 2, "dataset": "CTB5 Dev", "metric": "F1", "model": "ZEN (Random Init)", "row": 12, "task": "Chinese Part-of-Speech Tagging", "value": "96.12" }, { "column": 3, "dataset": "CTB5", "metric": "F1", "model": "ZEN (Random Init)", "row": 12, "task": "Chinese Part-of-Speech Tagging", "value": "95.82" }, { "column": 4, "dataset": "MSRA", "metric": "F1", "model": "ZEN (Random Init)", "row": 12, "task": "Chinese Named Entity Recognition", "value": "93.24" }, { "column": 5, "dataset": "THUCNews Dev", "metric": "F1", "model": "ZEN (Random Init)", "row": 12, "task": "Chinese Document Classification", "value": "97.2" }, { "column": 6, "dataset": "THUCNews", "metric": "F1", "model": "ZEN (Random Init)", "row": 12, "task": "Chinese Document Classification", "value": "96.87" }, { "column": 7, "dataset": "ChnSentiCorp Dev", "metric": "F1", "model": "ZEN (Random Init)", "row": 12, "task": "Chinese Sentiment Analysis", "value": "94.87" }, { "column": 8, "dataset": "ChnSentiCorp", "metric": "F1", "model": "ZEN (Random Init)", "row": 12, "task": "Chinese Sentiment Analysis", "value": "94.42" }, { "column": 9, "dataset": "LCQMC Dev", "metric": "F1", "model": "ZEN (Random Init)", "row": 12, "task": "Chinese Sentence Pair Classification", "value": "88.1" }, { "column": 10, "dataset": "LCQMC", "metric": "F1", "model": "ZEN (Random Init)", "row": 12, "task": "Chinese Sentence Pair Classification", "value": "85.27" }, { "column": 11, "dataset": "XNLI Dev", "metric": "F1", "model": "ZEN (Random Init)", "row": 12, "task": "Chinese Sentence Pair Classification", "value": "77.11" }, { "column": 12, "dataset": "XNLI", "metric": "F1", "model": "ZEN (Random Init)", "row": 12, "task": "Chinese Sentence Pair Classification", "value": "77.03" }, { "column": 1, "dataset": "MSR", "metric": "F1", "model": "ZEN (Init with Chinese BERT)", "row": 13, "task": "Chinese Word Segmentation", "value": "98.35" }, { "column": 2, "dataset": "CTB5 Dev", "metric": "F1", "model": "ZEN (Init with Chinese BERT)", "row": 13, "task": "Chinese Part-of-Speech Tagging", "value": "97.43" }, { "column": 3, "dataset": "CTB5", "metric": "F1", "model": "ZEN (Init with Chinese BERT)", "row": 13, "task": "Chinese Part-of-Speech Tagging", "value": "96.64" }, { "column": 4, "dataset": "MSRA", "metric": "F1", "model": "ZEN (Init with Chinese BERT)", "row": 13, "task": "Chinese Named Entity Recognition", "value": "95.25" }, { "column": 5, "dataset": "THUCNews Dev", "metric": "F1", "model": "ZEN (Init with Chinese BERT)", "row": 13, "task": "Chinese Document Classification", "value": "97.66" }, { "column": 6, "dataset": "THUCNews", "metric": "F1", "model": "ZEN (Init with Chinese BERT)", "row": 13, "task": "Chinese Document Classification", "value": "97.64" }, { "column": 7, "dataset": "ChnSentiCorp Dev", "metric": "F1", "model": "ZEN (Init with Chinese BERT)", "row": 13, "task": "Chinese Sentiment Analysis", "value": "95.66" }, { "column": 8, "dataset": "ChnSentiCorp", "metric": "F1", "model": "ZEN (Init with Chinese BERT)", "row": 13, "task": "Chinese Sentiment Analysis", "value": "96.08" }, { "column": 9, "dataset": "LCQMC Dev", "metric": "F1", "model": "ZEN (Init with Chinese BERT)", "row": 13, "task": "Chinese Sentence Pair Classification", "value": "90.2" }, { "column": 10, "dataset": "LCQMC", "metric": "F1", "model": "ZEN (Init with Chinese BERT)", "row": 13, "task": "Chinese Sentence Pair Classification", "value": "87.95" }, { "column": 11, "dataset": "XNLI Dev", "metric": "F1", "model": "ZEN (Init with Chinese BERT)", "row": 13, "task": "Chinese Sentence Pair Classification", "value": "80.48" }, { "column": 12, "dataset": "XNLI", "metric": "F1", "model": "ZEN (Init with Chinese BERT)", "row": 13, "task": "Chinese Sentence Pair Classification", "value": "79.2" } ] } ]
1911.03281v1
[ { "index": 1, "records": [ { "column": 2, "dataset": "Labeled Faces in the Wild", "metric": "Accuracy", "model": "Dynamic MTL", "row": 11, "task": "Face Verification", "value": "99.21" }, { "column": 3, "dataset": "YouTube Faces DB", "metric": "Accuracy", "model": "Dynamic MTL", "row": 11, "task": "Face Verification", "value": "94.3" }, { "column": 4, "dataset": "CK+", "metric": "Accuracy", "model": "Dynamic MTL", "row": 11, "task": "Face Verification", "value": "99" }, { "column": 5, "dataset": "Oulu-CASIA", "metric": "Accuracy", "model": "Dynamic MTL", "row": 11, "task": "Face Verification", "value": "99.14" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "Oulu-CASIA", "metric": "Accuracy (10-fold)", "model": "Dynamic MTL", "row": 8, "task": "Facial Expression Recognition", "value": "89.6" } ] } ]
1911.03584v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "CIFAR-10", "metric": "Percentage correct", "model": "SA quadratic embedding", "row": 2, "task": "Image Classification", "value": "93.8" } ] } ]
1911.03894v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "French GSD", "metric": "UPOS", "model": "CamemBERT", "row": 5, "task": "Part-Of-Speech Tagging", "value": "98.19" }, { "column": 2, "dataset": "French GSD", "metric": "UAS", "model": "CamemBERT", "row": 5, "task": "Dependency Parsing", "value": "94.82" }, { "column": 3, "dataset": "French GSD", "metric": "LAS", "model": "CamemBERT", "row": 5, "task": "Dependency Parsing", "value": "92.47" }, { "column": 4, "dataset": "Sequoia Treebank", "metric": "UPOS", "model": "CamemBERT", "row": 5, "task": "Part-Of-Speech Tagging", "value": "99.21" }, { "column": 5, "dataset": "Sequoia Treebank", "metric": "UAS", "model": "CamemBERT", "row": 5, "task": "Dependency Parsing", "value": "95.56" }, { "column": 6, "dataset": "Sequoia Treebank", "metric": "LAS", "model": "CamemBERT", "row": 5, "task": "Dependency Parsing", "value": "94.39" }, { "column": 7, "dataset": "Spoken Corpus", "metric": "UPOS", "model": "CamemBERT", "row": 5, "task": "Part-Of-Speech Tagging", "value": "96.68" }, { "column": 8, "dataset": "Spoken Corpus", "metric": "UAS", "model": "CamemBERT", "row": 5, "task": "Dependency Parsing", "value": "86.05" }, { "column": 9, "dataset": "Spoken Corpus", "metric": "LAS", "model": "CamemBERT", "row": 5, "task": "Dependency Parsing", "value": "80.07" }, { "column": 10, "dataset": "ParTUT", "metric": "UPOS", "model": "CamemBERT", "row": 5, "task": "Part-Of-Speech Tagging", "value": "97.63" }, { "column": 11, "dataset": "ParTUT", "metric": "UAS", "model": "CamemBERT", "row": 5, "task": "Dependency Parsing", "value": "95.21" }, { "column": 12, "dataset": "ParTUT", "metric": "LAS", "model": "CamemBERT", "row": 5, "task": "Dependency Parsing", "value": "92.9" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "XNLI French", "metric": "Accuracy", "model": "CamemBERT", "row": 7, "task": "Natural Language Inference", "value": "81.2" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "French Treebank", "metric": "Precision", "model": "CamemBERT (subword masking)", "row": 4, "task": "Named Entity Recognition", "value": "88.35" }, { "column": 2, "dataset": "French Treebank", "metric": "Recall", "model": "CamemBERT (subword masking)", "row": 4, "task": "Named Entity Recognition", "value": "87.46" }, { "column": 3, "dataset": "French Treebank", "metric": "F1", "model": "CamemBERT (subword masking)", "row": 4, "task": "Named Entity Recognition", "value": "87.93" } ] } ]
1911.04053v2
[ { "index": 2, "records": [ { "column": 6, "dataset": "WN18RR", "metric": "MRR", "model": "RESCAL + Decom", "row": 3, "task": "Link Prediction", "value": "0.457" } ] } ]
1911.04252v2
[ { "index": 1, "records": [ { "column": 4, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "NoisyStudent (EfficientNet-L2)", "row": 22, "task": "Image Classification", "value": "98.7" } ] } ]
1911.04623v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "SimpleShot (CL2N-DenseNet)", "row": 48, "task": "Few-Shot Image Classification", "value": "64.29" }, { "column": 3, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "SimpleShot (CL2N-DenseNet)", "row": 48, "task": "Few-Shot Image Classification", "value": "81.5" } ] } ]
1911.04936v1
[ { "index": 4, "records": [ { "column": 2, "dataset": "TSPLIB", "metric": "Optimality Gap", "model": "Graph Pointer Network", "row": 1, "task": "Traveling Salesman Problem", "value": "9.35" }, { "column": 2, "dataset": "TSPLIB", "metric": "runtime (s)", "model": "Graph Pointer Network", "row": 2, "task": "Traveling Salesman Problem", "value": "200" } ] } ]
1911.05954v3
[ { "index": 1, "records": [ { "column": 2, "dataset": "ENZYMES", "metric": "Accuracy", "model": "HGP-SL", "row": 17, "task": "Graph Classification", "value": "68.79" }, { "column": 3, "dataset": "PROTEINS", "metric": "Accuracy", "model": "HGP-SL", "row": 17, "task": "Graph Classification", "value": "84.91" }, { "column": 4, "dataset": "D&D", "metric": "Accuracy", "model": "HGP-SL", "row": 17, "task": "Graph Classification", "value": "80.96" }, { "column": 5, "dataset": "NCI1", "metric": "Accuracy", "model": "HGP-SL", "row": 17, "task": "Graph Classification", "value": "78.45" }, { "column": 6, "dataset": "NCI109", "metric": "Accuracy", "model": "HGP-SL", "row": 17, "task": "Graph Classification", "value": "80.67" }, { "column": 7, "dataset": "Mutagenicity", "metric": "Accuracy", "model": "HGP-SL", "row": 17, "task": "Graph Classification", "value": "82.15" } ] } ]
1911.06045v2
[ { "index": 1, "records": [ { "column": 2, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "AmdimNet", "row": 26, "task": "Few-Shot Image Classification", "value": "76.82" }, { "column": 3, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "AmdimNet", "row": 26, "task": "Few-Shot Image Classification", "value": "90.98" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "CUB 200 5-way 1-shot", "metric": "Accuracy", "model": "AmdimNet", "row": 14, "task": "Few-Shot Image Classification", "value": "77.09" }, { "column": 3, "dataset": "CUB 200 5-way 5-shot", "metric": "Accuracy", "model": "AmdimNet", "row": 14, "task": "Few-Shot Image Classification", "value": "89.18" } ] } ]
1911.06147v1
[ { "index": 2, "records": [ { "column": 2, "dataset": "eRisk 2017", "metric": "ERDE5", "model": "t-SS3", "row": 1, "task": "Depression Detection", "value": "12.6" }, { "column": 3, "dataset": "eRisk 2017", "metric": "ERDE50", "model": "t-SS3", "row": 1, "task": "Depression Detection", "value": "7.7" }, { "column": 2, "dataset": "eRisk 2017", "metric": "ERDE5", "model": "SS3", "row": 2, "task": "Depression Detection", "value": "12.6" }, { "column": 3, "dataset": "eRisk 2017", "metric": "ERDE50", "model": "SS3", "row": 2, "task": "Depression Detection", "value": "8.12" }, { "column": 2, "dataset": "eRisk 2018", "metric": "ERDE5", "model": "t-SS3", "row": 5, "task": "Depression Detection", "value": "9.48" }, { "column": 3, "dataset": "eRisk 2018", "metric": "ERDE50", "model": "t-SS3", "row": 5, "task": "Depression Detection", "value": "6.17" }, { "column": 2, "dataset": "eRisk 2018", "metric": "ERDE5", "model": "SS3", "row": 6, "task": "Depression Detection", "value": "9.54" }, { "column": 3, "dataset": "eRisk 2018", "metric": "ERDE50", "model": "SS3", "row": 6, "task": "Depression Detection", "value": "6.35" }, { "column": 2, "dataset": "eRisk 2018", "metric": "ERDE5", "model": "t-SS3", "row": 9, "task": "Anorexia Detection", "value": "11.31" }, { "column": 3, "dataset": "eRisk 2018", "metric": "ERDE50", "model": "t-SS3", "row": 9, "task": "Anorexia Detection", "value": "6.26" }, { "column": 2, "dataset": "eRisk 2018", "metric": "ERDE5", "model": "SS3", "row": 10, "task": "Anorexia Detection", "value": "11.56" }, { "column": 3, "dataset": "eRisk 2018", "metric": "ERDE50", "model": "SS3", "row": 10, "task": "Anorexia Detection", "value": "6.69" } ] } ]
1911.06644v1
[ { "index": 4, "records": [ { "column": 1, "dataset": "J-HMDB-21", "metric": "Frame-mAP", "model": "YOWO (16-frame)", "row": 9, "task": "Temporal Action Localization", "value": "74.4" }, { "column": 2, "dataset": "J-HMDB-21", "metric": "Video-mAP 0.2", "model": "YOWO (16-frame)", "row": 9, "task": "Temporal Action Localization", "value": "87.8" }, { "column": 3, "dataset": "J-HMDB-21", "metric": "Video-mAP 0.5", "model": "YOWO (16-frame)", "row": 9, "task": "Temporal Action Localization", "value": "85.7" }, { "column": 4, "dataset": "J-HMDB-21", "metric": "Video-mAP 0.75", "model": "YOWO (16-frame)", "row": 9, "task": "Temporal Action Localization", "value": "58.1" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "UCF101-24", "metric": "mAP", "model": "YOWO (16-frame)", "row": 9, "task": "Temporal Action Localization", "value": "87.2" }, { "column": 2, "dataset": "UCF101-24", "metric": "mAP", "model": "YOWO (16-frame)", "row": 9, "task": "Temporal Action Localization", "value": "82.5" }, { "column": 3, "dataset": "UCF101-24", "metric": "mAP", "model": "YOWO (16-frame)", "row": 9, "task": "Temporal Action Localization", "value": "75.8" }, { "column": 4, "dataset": "UCF101-24", "metric": "mAP", "model": "YOWO (16-frame)", "row": 9, "task": "Temporal Action Localization", "value": "48.8" } ] } ]
1911.06667v1
[ { "index": 0, "records": [ { "column": 3, "dataset": "COCO test-dev", "metric": "APL", "model": "CenterMask + VoVNetV2-99 (single-scale)", "row": 1, "task": "Instance Segmentation", "value": "57.0" } ] }, { "index": 2, "records": [ { "column": 5, "dataset": "COCO minival", "metric": "APM", "model": "Mask R-CNN (VoVNetV2-99, single-scale)", "row": 2, "task": "Object Detection", "value": "48.1" }, { "column": 5, "dataset": "COCO test-dev", "metric": "AP75", "model": "CenterMask+VoVNetV2-99 (single-scale)", "row": 3, "task": "Object Detection", "value": "49.9" }, { "column": 9, "dataset": "COCO minival", "metric": "APM", "model": "CenterMask+VoVNetV2-99 (single-scale)", "row": 3, "task": "Object Detection", "value": "49.3" }, { "column": 6, "dataset": "COCO test-dev", "metric": "mask AP", "model": "CenterMask + VoVNetV2-99 (single-scale)", "row": 7, "task": "Instance Segmentation", "value": "40.6" }, { "column": 8, "dataset": "COCO panoptic", "metric": "PQ", "model": "Panoptic-FPN-VoVNet57", "row": 8, "task": "Panoptic Segmentation", "value": "44.3" }, { "column": 9, "dataset": "COCO test-dev", "metric": "APL", "model": "CenterMask + VoVNetV2-57 (single-scale)", "row": 9, "task": "Instance Segmentation", "value": "55.3" }, { "column": 9, "dataset": "COCO test-dev", "metric": "APL", "model": "CenterMask + X-101-32x8d (single-scale)", "row": 10, "task": "Object Detection", "value": "55.2" }, { "column": 9, "dataset": "COCO test-dev", "metric": "APL", "model": "CenterMask + X101-32x8d (single-scale)", "row": 10, "task": "Instance Segmentation", "value": "55.2" }, { "column": 9, "dataset": "COCO minival", "metric": "APL", "model": "CenterMask+VoVNetV2-57 (single-scale)", "row": 12, "task": "Object Detection", "value": "57.3" } ] }, { "index": 4, "records": [ { "column": 7, "dataset": "COCO test-dev", "metric": "APM", "model": "CenterMask + X101-32x8d (single-scale)", "row": 2, "task": "Instance Segmentation", "value": "42.0" }, { "column": 9, "dataset": "COCO test-dev", "metric": "APM", "model": "Centermask + ResNet101", "row": 5, "task": "Object Detection", "value": "46.1" }, { "column": 12, "dataset": "COCO", "metric": "FPS", "model": "CenterMaskLite-MobileNetV2", "row": 7, "task": "Real-Time Object Detection", "value": "50.0" }, { "column": 6, "dataset": "COCO minival", "metric": "APM", "model": "CenterMask+X101-32x8d (single-scale)", "row": 10, "task": "Object Detection", "value": "47.7" }, { "column": 6, "dataset": "COCO test-dev", "metric": "APM", "model": "CenterMask+VoVNet2-57 (single-scale)", "row": 11, "task": "Object Detection", "value": "47.1" } ] } ]
1911.07251v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "VisDial v0.9 val", "metric": "MRR", "model": "DualVD", "row": 12, "task": "Visual Dialog", "value": "62.94" }, { "column": 2, "dataset": "VisDial v0.9 val", "metric": "R@1", "model": "DualVD", "row": 12, "task": "Visual Dialog", "value": "48.64" }, { "column": 3, "dataset": "VisDial v0.9 val", "metric": "R@5", "model": "DualVD", "row": 12, "task": "Visual Dialog", "value": "80.89" }, { "column": 4, "dataset": "VisDial v0.9 val", "metric": "R@10", "model": "DualVD", "row": 12, "task": "Visual Dialog", "value": "89.94" }, { "column": 5, "dataset": "VisDial v0.9 val", "metric": "Mean Rank", "model": "DualVD", "row": 12, "task": "Visual Dialog", "value": "4.17" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "VisDial v1.0 test-std", "metric": "MRR", "model": "DualVD", "row": 10, "task": "Visual Dialog", "value": "63.23" }, { "column": 2, "dataset": "VisDial v1.0 test-std", "metric": "R@1", "model": "DualVD", "row": 10, "task": "Visual Dialog", "value": "49.25" }, { "column": 3, "dataset": "VisDial v1.0 test-std", "metric": "R@5", "model": "DualVD", "row": 10, "task": "Visual Dialog", "value": "80.23" }, { "column": 4, "dataset": "VisDial v1.0 test-std", "metric": "R@10", "model": "DualVD", "row": 10, "task": "Visual Dialog", "value": "89.7" }, { "column": 5, "dataset": "VisDial v1.0 test-std", "metric": "Mean Rank", "model": "DualVD", "row": 10, "task": "Visual Dialog", "value": "4.11" }, { "column": 6, "dataset": "VisDial v1.0 test-std", "metric": "NDCG", "model": "DualVD", "row": 10, "task": "Visual Dialog", "value": "56.32" } ] } ]
1911.07451v2
[ { "index": 4, "records": [ { "column": 1, "dataset": "COCO test-dev", "metric": "AP", "model": "DirectPose (ResNet-101)", "row": 18, "task": "Keypoint Detection", "value": "64.8" }, { "column": 2, "dataset": "COCO test-dev", "metric": "AP50", "model": "DirectPose (ResNet-101)", "row": 18, "task": "Keypoint Detection", "value": "87.8" }, { "column": 3, "dataset": "COCO test-dev", "metric": "AP75", "model": "DirectPose (ResNet-101)", "row": 18, "task": "Keypoint Detection", "value": "71.1" }, { "column": 4, "dataset": "COCO test-dev", "metric": "APM", "model": "DirectPose (ResNet-101)", "row": 18, "task": "Keypoint Detection", "value": "60.4" }, { "column": 5, "dataset": "COCO test-dev", "metric": "APL", "model": "DirectPose (ResNet-101)", "row": 18, "task": "Keypoint Detection", "value": "71.5" } ] } ]
1911.07524v1
[ { "index": 1, "records": [ { "column": 5, "dataset": "COCO test-dev", "metric": "AP", "model": "HRNet + UDP (HRNet-W48)", "row": 26, "task": "Pose Estimation", "value": "76.5" }, { "column": 6, "dataset": "COCO test-dev", "metric": "AP50", "model": "HRNet + UDP (HRNet-W48)", "row": 26, "task": "Pose Estimation", "value": "92.7" }, { "column": 7, "dataset": "COCO test-dev", "metric": "AP75", "model": "HRNet + UDP (HRNet-W48)", "row": 26, "task": "Pose Estimation", "value": "84" }, { "column": 8, "dataset": "COCO test-dev", "metric": "APM", "model": "HRNet + UDP (HRNet-W48)", "row": 26, "task": "Pose Estimation", "value": "73" }, { "column": 9, "dataset": "COCO test-dev", "metric": "APL", "model": "HRNet + UDP (HRNet-W48)", "row": 26, "task": "Pose Estimation", "value": "82.4" }, { "column": 10, "dataset": "COCO test-dev", "metric": "AR", "model": "HRNet + UDP (HRNet-W48)", "row": 26, "task": "Pose Estimation", "value": "81.6" } ] } ]
1911.07771v1
[ { "index": 0, "records": [ { "column": 4, "dataset": "LineMOD", "metric": "Mean ADD", "model": "MaskedFusion", "row": 15, "task": "6D Pose Estimation using RGBD", "value": "96.9" } ] } ]
1911.07918v1
[ { "index": 2, "records": [ { "column": 1, "dataset": "20NEWS", "metric": "Accuracy", "model": "SCDV-MS", "row": 1, "task": "Text Classification", "value": "86.19" }, { "column": 2, "dataset": "20NEWS", "metric": "Precision", "model": "SCDV-MS", "row": 1, "task": "Text Classification", "value": "86.2" }, { "column": 3, "dataset": "20NEWS", "metric": "Recall", "model": "SCDV-MS", "row": 1, "task": "Text Classification", "value": "86.18" }, { "column": 4, "dataset": "20NEWS", "metric": "F-measure", "model": "SCDV-MS", "row": 1, "task": "Text Classification", "value": "86.16" } ] }, { "index": 4, "records": [ { "column": 6, "dataset": "Reuters-21578", "metric": "F1", "model": "SCDV-MS", "row": 6, "task": "Document Classification", "value": "82.71" } ] } ]
1911.07979v3
[ { "index": 1, "records": [ { "column": 1, "dataset": "D&D", "metric": "Accuracy", "model": "ASAP", "row": 7, "task": "Graph Classification", "value": "76.87" }, { "column": 2, "dataset": "PROTEINS", "metric": "Accuracy", "model": "ASAP", "row": 7, "task": "Graph Classification", "value": "74.19" }, { "column": 3, "dataset": "NCI1", "metric": "Accuracy", "model": "ASAP", "row": 7, "task": "Graph Classification", "value": "71.48" }, { "column": 4, "dataset": "NCI109", "metric": "Accuracy", "model": "ASAP", "row": 7, "task": "Graph Classification", "value": "70.07" }, { "column": 5, "dataset": "FRANKENSTEIN", "metric": "Accuracy", "model": "ASAP", "row": 7, "task": "Graph Classification", "value": "66.26" } ] } ]
1911.07982v1
[ { "index": 0, "records": [ { "column": 13, "dataset": "Office-Caltech", "metric": "Average Accuracy", "model": "SPL", "row": 9, "task": "Domain Adaptation", "value": "93" } ] }, { "index": 1, "records": [ { "column": 7, "dataset": "Office-31", "metric": "Average Accuracy", "model": "SPL", "row": 11, "task": "Domain Adaptation", "value": "89.6" } ] }, { "index": 2, "records": [ { "column": 7, "dataset": "ImageCLEF-DA", "metric": "Accuracy", "model": "SPL", "row": 7, "task": "Domain Adaptation", "value": "90.3" } ] }, { "index": 3, "records": [ { "column": 13, "dataset": "Office-Home", "metric": "Accuracy", "model": "SPL", "row": 7, "task": "Domain Adaptation", "value": "71" } ] } ]
1911.09099v4
[ { "index": 2, "records": [ { "column": 4, "dataset": "EG1800", "metric": "F1-score", "model": "SINet+", "row": 12, "task": "Portrait Segmentation", "value": "0.892" }, { "column": 5, "dataset": "EG1800", "metric": "mIoU", "model": "SINet+", "row": 12, "task": "Portrait Segmentation", "value": "95.29" } ] }, { "index": 5, "records": [ { "column": 4, "dataset": "Cityscapes test", "metric": "Mean IoU (class)", "model": "SINet", "row": 6, "task": "Semantic Segmentation", "value": "66.5" } ] } ]
1911.09419v2
[ { "index": 2, "records": [ { "column": 1, "dataset": "WN18RR", "metric": "MRR", "model": "HAKE", "row": 8, "task": "Link Prediction", "value": "0.49700000000000005" }, { "column": 2, "dataset": "WN18RR", "metric": "Hits@1", "model": "HAKE", "row": 8, "task": "Link Prediction", "value": "0.452" }, { "column": 3, "dataset": "WN18RR", "metric": "Hits@3", "model": "HAKE", "row": 8, "task": "Knowledge Graph Completion", "value": "0.516" }, { "column": 4, "dataset": "WN18RR", "metric": "Hits@10", "model": "HAKE", "row": 8, "task": "Link Prediction", "value": "0.5820000000000001" }, { "column": 5, "dataset": "FB15k-237", "metric": "MRR", "model": "HAKE", "row": 8, "task": "Link Prediction", "value": "0.34600000000000003" }, { "column": 6, "dataset": "FB15k-237", "metric": "Hits@1", "model": "HAKE", "row": 8, "task": "Link Prediction", "value": "0.25" }, { "column": 7, "dataset": "FB15k-237", "metric": "Hits@3", "model": "HAKE", "row": 8, "task": "Link Prediction", "value": "0.381" }, { "column": 8, "dataset": "FB15k-237", "metric": "Hits@10", "model": "HAKE", "row": 8, "task": "Knowledge Graph Completion", "value": "0.542" }, { "column": 9, "dataset": "YAGO3-10", "metric": "MRR", "model": "HAKE", "row": 8, "task": "Link Prediction", "value": "0.545" }, { "column": 10, "dataset": "YAGO3-10", "metric": "Hits@1", "model": "HAKE", "row": 8, "task": "Link Prediction", "value": "0.462" }, { "column": 11, "dataset": "YAGO3-10", "metric": "Hits@3", "model": "HAKE", "row": 8, "task": "Link Prediction", "value": "0.596" }, { "column": 12, "dataset": "YAGO3-10", "metric": "Hits@10", "model": "HAKE", "row": 8, "task": "Link Prediction", "value": "0.6940000000000001" } ] } ]
1911.09655v1
[ { "index": 1, "records": [ { "column": 7, "dataset": "DAQA", "metric": "Accuracy", "model": "MALiMo (6 Blocks)", "row": 32, "task": "Audio Question Answering", "value": "88.86" } ] } ]
1911.09963v1
[ { "index": 0, "records": [ { "column": 2, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 29, "task": "Temporal Action Localization", "value": "58.2" }, { "column": 3, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 29, "task": "Temporal Action Localization", "value": "52.3" }, { "column": 4, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 29, "task": "Temporal Action Localization", "value": "44.6" }, { "column": 5, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 29, "task": "Temporal Action Localization", "value": "36" }, { "column": 6, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 29, "task": "Temporal Action Localization", "value": "27" }, { "column": 7, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 29, "task": "Temporal Action Localization", "value": "18.6" }, { "column": 8, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 29, "task": "Temporal Action Localization", "value": "10.4" }, { "column": 9, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 29, "task": "Temporal Action Localization", "value": "3.9" }, { "column": 10, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 29, "task": "Temporal Action Localization", "value": "0.5" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "ActivityNet-1.3", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 15, "task": "Temporal Action Localization", "value": "34.5" }, { "column": 3, "dataset": "ActivityNet-1.3", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 15, "task": "Temporal Action Localization", "value": "22.5" }, { "column": 4, "dataset": "ActivityNet-1.3", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 15, "task": "Temporal Action Localization", "value": "4.9" }, { "column": 5, "dataset": "ActivityNet-1.3", "metric": "mAP", "model": "BaS-Net", "row": 15, "task": "Temporal Action Localization", "value": "22.2" } ] }, { "index": 3, "records": [ { "column": 2, "dataset": "ActivityNet-1.2", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 6, "task": "Temporal Action Localization", "value": "38.5" }, { "column": 3, "dataset": "ActivityNet-1.2", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 6, "task": "Temporal Action Localization", "value": "24.2" }, { "column": 4, "dataset": "ActivityNet-1.2", "metric": "mAP [email protected]", "model": "BaS-Net", "row": 6, "task": "Temporal Action Localization", "value": "5.6" }, { "column": 5, "dataset": "ActivityNet-1.2", "metric": "mAP", "model": "BaS-Net", "row": 6, "task": "Temporal Action Localization", "value": "24.3" } ] } ]
1911.10529v1
[ { "index": 1, "records": [ { "column": 6, "dataset": "COCO test-dev", "metric": "AP", "model": "Identity Mapping Hourglass", "row": 11, "task": "Multi-Person Pose Estimation", "value": "68.1" }, { "column": 7, "dataset": "COCO test-dev", "metric": "APM", "model": "Identity Mapping Hourglass", "row": 11, "task": "Multi-Person Pose Estimation", "value": "66.8" }, { "column": 8, "dataset": "COCO test-dev", "metric": "APL", "model": "Identity Mapping Hourglass", "row": 11, "task": "Multi-Person Pose Estimation", "value": "70.5" }, { "column": 9, "dataset": "COCO test-dev", "metric": "AR", "model": "Identity Mapping Hourglass", "row": 11, "task": "Multi-Person Pose Estimation", "value": "72.1" }, { "column": 10, "dataset": "COCO test-dev", "metric": "AR50", "model": "Identity Mapping Hourglass", "row": 11, "task": "Multi-Person Pose Estimation", "value": "88.2" } ] } ]
1911.10807v1
[ { "index": 0, "records": [ { "column": 3, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "ACC + Amphibian", "row": 18, "task": "Few-Shot Image Classification", "value": "64.21" }, { "column": 4, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "ACC + Amphibian", "row": 18, "task": "Few-Shot Image Classification", "value": "87.75" }, { "column": 5, "dataset": "Tiered ImageNet 5-way (1-shot)", "metric": "Accuracy", "model": "ACC + Amphibian", "row": 18, "task": "Few-Shot Image Classification", "value": "68.77" }, { "column": 6, "dataset": "Tiered ImageNet 5-way (5-shot)", "metric": "Accuracy", "model": "ACC + Amphibian", "row": 18, "task": "Few-Shot Image Classification", "value": "86.75" } ] }, { "index": 1, "records": [ { "column": 3, "dataset": "CIFAR-FS 5-way (1-shot)", "metric": "Accuracy", "model": "ACC + Amphibian", "row": 9, "task": "Few-Shot Image Classification", "value": "73.1" }, { "column": 4, "dataset": "CIFAR-FS 5-way (5-shot)", "metric": "Accuracy", "model": "ACC + Amphibian", "row": 9, "task": "Few-Shot Image Classification", "value": "89.3" }, { "column": 5, "dataset": "FC100 5-way (1-shot)", "metric": "Accuracy", "model": "ACC + Amphibian", "row": 9, "task": "Few-Shot Image Classification", "value": "41.6" }, { "column": 6, "dataset": "FC100 5-way (5-shot)", "metric": "Accuracy", "model": "ACC + Amphibian", "row": 9, "task": "Few-Shot Image Classification", "value": "66.9" } ] } ]
1911.11897v4
[ { "index": 1, "records": [ { "column": 2, "dataset": "AR Face", "metric": "AMT", "model": "AttentionGAN", "row": 14, "task": "Facial Expression Translation", "value": "12.8" }, { "column": 3, "dataset": "AR Face", "metric": "PSNR", "model": "AttentionGAN", "row": 14, "task": "Facial Expression Translation", "value": "14.9187" }, { "column": 4, "dataset": "CelebA", "metric": "AMT", "model": "AttentionGAN", "row": 14, "task": "Facial Expression Translation", "value": "38.9" } ] } ]
1911.12036v2
[ { "index": 1, "records": [ { "column": 7, "dataset": "Office-31", "metric": "Average Accuracy", "model": "DADA", "row": 14, "task": "Domain Adaptation", "value": "89" } ] }, { "index": 2, "records": [ { "column": 13, "dataset": "Syn2Real-C", "metric": "Accuracy", "model": "DADA", "row": 7, "task": "Synthetic-to-Real Translation", "value": "79.8" } ] } ]
1911.12796v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "MNIST-to-USPS", "metric": "Accuracy", "model": "CyCleGAN (Light-weight Calibrator)", "row": 10, "task": "Domain Adaptation", "value": "97.1" }, { "column": 2, "dataset": "USPS-to-MNIST", "metric": "Accuracy", "model": "CyCleGAN (Light-weight Calibrator)", "row": 10, "task": "Domain Adaptation", "value": "98.3" }, { "column": 3, "dataset": "SVHN-to-MNIST", "metric": "Accuracy", "model": "CyCleGAN (Light-weight Calibrator)", "row": 10, "task": "Domain Adaptation", "value": "97.5" } ] }, { "index": 1, "records": [ { "column": 20, "dataset": "GTAV-to-Cityscapes Labels", "metric": "mIoU", "model": "Light-weight Calibrator", "row": 3, "task": "Synthetic-to-Real Translation", "value": "40.5" } ] } ]
1911.12983v1
[ { "index": 0, "records": [ { "column": 7, "dataset": "Office-31", "metric": "Average Accuracy", "model": "CAADA", "row": 13, "task": "Domain Adaptation", "value": "78.3" } ] }, { "index": 1, "records": [ { "column": 13, "dataset": "Office-Home", "metric": "Accuracy", "model": "CAADA", "row": 8, "task": "Domain Adaptation", "value": "48.19" } ] }, { "index": 2, "records": [ { "column": 7, "dataset": "ImageCLEF-DA", "metric": "Accuracy", "model": "CAADA", "row": 7, "task": "Domain Adaptation", "value": "80.2" } ] } ]
1911.13175v1
[ { "index": 3, "records": [ { "column": 1, "dataset": "MIT-Adobe 5k", "metric": "PSNR", "model": "DIFAR (MSCA, level 1)", "row": 1, "task": "Image Enhancement", "value": "24.2" }, { "column": 2, "dataset": "MIT-Adobe 5k", "metric": "SSIM", "model": "DIFAR (MSCA, level 1)", "row": 1, "task": "Image Enhancement", "value": "0.88" }, { "column": 3, "dataset": "MIT-Adobe 5k", "metric": "LPIPS", "model": "DIFAR (MSCA, level 1)", "row": 1, "task": "Image Enhancement", "value": "0.108" } ] } ]
1912.00509v1
[ { "index": 1, "records": [ { "column": 5, "dataset": "20NEWS", "metric": "Accuracy", "model": "REL-RWMD k-NN", "row": 1, "task": "Text Classification", "value": "74.78" }, { "column": 5, "dataset": "Amazon", "metric": "Accuracy", "model": "REL-RWMD k-NN", "row": 2, "task": "Document Classification", "value": "93.03" }, { "column": 5, "dataset": "BBCSport", "metric": "Accuracy", "model": "REL-RWMD k-NN", "row": 3, "task": "Document Classification", "value": "95.18" }, { "column": 5, "dataset": "Classic", "metric": "Accuracy", "model": "REL-RWMD k-NN", "row": 4, "task": "Document Classification", "value": "96.85" }, { "column": 5, "dataset": "Ohsumed", "metric": "Accuracy", "model": "REL-RWMD k-NN", "row": 5, "task": "Text Classification", "value": "58.74" }, { "column": 5, "dataset": "Recipe", "metric": "Accuracy", "model": "REL-RWMD k-NN", "row": 6, "task": "Document Classification", "value": "56.80" }, { "column": 5, "dataset": "Reuters-21578", "metric": "Accuracy", "model": "REL-RWMD k-NN", "row": 7, "task": "Document Classification", "value": "95.61" }, { "column": 5, "dataset": "Twitter", "metric": "Accuracy", "model": "REL-RWMD k-NN", "row": 8, "task": "Document Classification", "value": "71.05" } ] } ]
1912.00536v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "Cora", "metric": "AUC", "model": "GLACE", "row": 12, "task": "Link Prediction", "value": "98.6" }, { "column": 2, "dataset": "Cora", "metric": "AP", "model": "GLACE", "row": 12, "task": "Link Prediction", "value": "98.52" }, { "column": 3, "dataset": "Citeseer", "metric": "AUC", "model": "GLACE", "row": 12, "task": "Link Prediction", "value": "98.43" }, { "column": 4, "dataset": "Citeseer", "metric": "AP", "model": "GLACE", "row": 12, "task": "Link Prediction", "value": "98.37" }, { "column": 5, "dataset": "DBLP", "metric": "AUC", "model": "GLACE", "row": 12, "task": "Link Prediction", "value": "98.55" }, { "column": 6, "dataset": "DBLP", "metric": "AP", "model": "GLACE", "row": 12, "task": "Link Prediction", "value": "98.4" }, { "column": 7, "dataset": "Pubmed", "metric": "AUC", "model": "GLACE", "row": 12, "task": "Link Prediction", "value": "97.82" }, { "column": 8, "dataset": "Pubmed", "metric": "AP", "model": "GLACE", "row": 12, "task": "Link Prediction", "value": "97.49" }, { "column": 9, "dataset": "ACM", "metric": "AUC", "model": "GLACE", "row": 12, "task": "Link Prediction", "value": "98.34" }, { "column": 10, "dataset": "ACM", "metric": "AP", "model": "GLACE", "row": 12, "task": "Link Prediction", "value": "98.24" } ] } ]
1912.01300v1
[ { "index": 0, "records": [ { "column": 2, "dataset": "Market-1501", "metric": "MAP", "model": "Viewpoint-Aware Loss", "row": 19, "task": "Person Re-Identification", "value": "95.43" }, { "column": 3, "dataset": "Market-1501", "metric": "Rank-1", "model": "Viewpoint-Aware Loss", "row": 19, "task": "Person Re-Identification", "value": "96.79" }, { "column": 4, "dataset": "Market-1501", "metric": "Rank-5", "model": "Viewpoint-Aware Loss", "row": 19, "task": "Person Re-Identification", "value": "98.31" }, { "column": 5, "dataset": "DukeMTMC-reID", "metric": "MAP", "model": "Viewpoint-Aware Loss", "row": 19, "task": "Person Re-Identification", "value": "91.82" }, { "column": 6, "dataset": "DukeMTMC-reID", "metric": "Rank-1", "model": "Viewpoint-Aware Loss", "row": 19, "task": "Person Re-Identification", "value": "93.85" }, { "column": 7, "dataset": "DukeMTMC-reID", "metric": "Rank-5", "model": "Viewpoint-Aware Loss", "row": 19, "task": "Person Re-Identification", "value": "96.5" } ] } ]
1912.01954v2
[ { "index": 0, "records": [ { "column": 5, "dataset": "COCO test-dev", "metric": "mask AP", "model": "EmbedMask (ResNet-101-FPN)", "row": 10, "task": "Instance Segmentation", "value": "37.7" }, { "column": 6, "dataset": "COCO test-dev", "metric": "AP50", "model": "EmbedMask (ResNet-101-FPN)", "row": 10, "task": "Instance Segmentation", "value": "59.1" }, { "column": 7, "dataset": "COCO test-dev", "metric": "AP75", "model": "EmbedMask (ResNet-101-FPN)", "row": 10, "task": "Instance Segmentation", "value": "40.3" }, { "column": 8, "dataset": "COCO test-dev", "metric": "APS", "model": "EmbedMask (ResNet-101-FPN)", "row": 10, "task": "Instance Segmentation", "value": "17.9" }, { "column": 9, "dataset": "COCO test-dev", "metric": "APM", "model": "EmbedMask (ResNet-101-FPN)", "row": 10, "task": "Instance Segmentation", "value": "40.4" }, { "column": 10, "dataset": "COCO test-dev", "metric": "APL", "model": "EmbedMask (ResNet-101-FPN)", "row": 10, "task": "Instance Segmentation", "value": "53" } ] } ]
1912.02738v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "MetaFun-Attention", "row": 23, "task": "Few-Shot Image Classification", "value": "64.13" }, { "column": 2, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "MetaFun-Attention", "row": 23, "task": "Few-Shot Image Classification", "value": "80.82" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "Tiered ImageNet 5-way (1-shot)", "metric": "Accuracy", "model": "MetaFun-Attention", "row": 11, "task": "Few-Shot Image Classification", "value": "67.72" }, { "column": 2, "dataset": "Tiered ImageNet 5-way (5-shot)", "metric": "Accuracy", "model": "MetaFun-Kernel", "row": 12, "task": "Few-Shot Image Classification", "value": "83.28" } ] } ]
1912.04376v1
[ { "index": 3, "records": [ { "column": 3, "dataset": "RVL-CDIP", "metric": "Accuracy", "model": "VGG16 + BoW-300K", "row": 16, "task": "Multi-Modal Document Classification", "value": "93.03" } ] } ]
1912.04488v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "COCO test-dev", "metric": "mask AP", "model": "SOLO (ResNet-DCN-101-FPN)", "row": 16, "task": "Instance Segmentation", "value": "40.4%" }, { "column": 3, "dataset": "COCO test-dev", "metric": "AP50", "model": "SOLO (ResNet-DCN-101-FPN)", "row": 16, "task": "Instance Segmentation", "value": "62.7%" }, { "column": 4, "dataset": "COCO test-dev", "metric": "AP75", "model": "SOLO (ResNet-DCN-101-FPN)", "row": 16, "task": "Instance Segmentation", "value": "43.3%" }, { "column": 5, "dataset": "COCO test-dev", "metric": "APS", "model": "SOLO (ResNet-DCN-101-FPN)", "row": 16, "task": "Instance Segmentation", "value": "17.6%" }, { "column": 6, "dataset": "COCO test-dev", "metric": "APM", "model": "SOLO (ResNet-DCN-101-FPN)", "row": 16, "task": "Instance Segmentation", "value": "43.3%" }, { "column": 7, "dataset": "COCO test-dev", "metric": "APL", "model": "SOLO (ResNet-DCN-101-FPN)", "row": 16, "task": "Instance Segmentation", "value": "58.9%" } ] } ]
1912.05074v2
[ { "index": 0, "records": [ { "column": 3, "dataset": "EM", "metric": "IoU", "model": "UNet++", "row": 9, "task": "Medical Image Segmentation", "value": "89.33" }, { "column": 4, "dataset": "Cell", "metric": "IoU", "model": "UNet++", "row": 9, "task": "Medical Image Segmentation", "value": "91.21" }, { "column": 5, "dataset": "Brain Tumor", "metric": "IoU", "model": "UNet++", "row": 9, "task": "Brain Image Segmentation", "value": "91.21" } ] } ]
1912.06112v1
[ { "index": 5, "records": [ { "column": 1, "dataset": "NTU Hand Digit", "metric": "PSNR", "model": "UniGAN", "row": 7, "task": "Gesture-to-Gesture Translation", "value": "32.6574" }, { "column": 2, "dataset": "NTU Hand Digit", "metric": "IS", "model": "UniGAN", "row": 7, "task": "Gesture-to-Gesture Translation", "value": "2.3783" }, { "column": 3, "dataset": "NTU Hand Digit", "metric": "AMT", "model": "UniGAN", "row": 7, "task": "Gesture-to-Gesture Translation", "value": "29.3" }, { "column": 4, "dataset": "NTU Hand Digit", "metric": "FID", "model": "UniGAN", "row": 7, "task": "Gesture-to-Gesture Translation", "value": "6.7493" }, { "column": 5, "dataset": "NTU Hand Digit", "metric": "FRD", "model": "UniGAN", "row": 7, "task": "Gesture-to-Gesture Translation", "value": "1.7401" }, { "column": 6, "dataset": "Senz3D", "metric": "PSNR", "model": "UniGAN", "row": 7, "task": "Gesture-to-Gesture Translation", "value": "31.541999999999998" }, { "column": 7, "dataset": "Senz3D", "metric": "IS", "model": "UniGAN", "row": 7, "task": "Gesture-to-Gesture Translation", "value": "2.2159" }, { "column": 8, "dataset": "Senz3D", "metric": "AMT", "model": "UniGAN", "row": 7, "task": "Gesture-to-Gesture Translation", "value": "27.6" }, { "column": 9, "dataset": "Senz3D", "metric": "FID", "model": "UniGAN", "row": 7, "task": "Gesture-to-Gesture Translation", "value": "12.4465" }, { "column": 10, "dataset": "Senz3D", "metric": "FRD", "model": "UniGAN", "row": 7, "task": "Gesture-to-Gesture Translation", "value": "2.2104" } ] }, { "index": 6, "records": [ { "column": 9, "dataset": "Dayton (64×64) - aerial-to-ground", "metric": "SSIM", "model": "UniGAN", "row": 11, "task": "Cross-View Image-to-Image Translation", "value": "0.5064" }, { "column": 10, "dataset": "Dayton (64×64) - aerial-to-ground", "metric": "PSNR", "model": "UniGAN", "row": 11, "task": "Cross-View Image-to-Image Translation", "value": "23.3632" }, { "column": 11, "dataset": "Dayton (64×64) - aerial-to-ground", "metric": "SD", "model": "UniGAN", "row": 11, "task": "Cross-View Image-to-Image Translation", "value": "16.4788" }, { "column": 12, "dataset": "Dayton (64×64) - aerial-to-ground", "metric": "KL", "model": "UniGAN", "row": 11, "task": "Cross-View Image-to-Image Translation", "value": "2.16" } ] }, { "index": 7, "records": [ { "column": 9, "dataset": "Dayton (256×256) - aerial-to-ground", "metric": "SSIM", "model": "UniGAN", "row": 11, "task": "Cross-View Image-to-Image Translation", "value": "0.3357" }, { "column": 10, "dataset": "Dayton (256×256) - aerial-to-ground", "metric": "PSNR", "model": "UniGAN", "row": 11, "task": "Cross-View Image-to-Image Translation", "value": "22.0273" }, { "column": 11, "dataset": "Dayton (256×256) - aerial-to-ground", "metric": "SD", "model": "UniGAN", "row": 11, "task": "Cross-View Image-to-Image Translation", "value": "17.6542" }, { "column": 12, "dataset": "Dayton (256×256) - aerial-to-ground", "metric": "KL", "model": "UniGAN", "row": 11, "task": "Cross-View Image-to-Image Translation", "value": "5.17" } ] }, { "index": 8, "records": [ { "column": 8, "dataset": "cvusa", "metric": "SSIM", "model": "UniGAN", "row": 7, "task": "Cross-View Image-to-Image Translation", "value": "0.5366" }, { "column": 9, "dataset": "cvusa", "metric": "PSNR", "model": "UniGAN", "row": 7, "task": "Cross-View Image-to-Image Translation", "value": "22.8223" }, { "column": 10, "dataset": "cvusa", "metric": "SD", "model": "UniGAN", "row": 7, "task": "Cross-View Image-to-Image Translation", "value": "19.8276" }, { "column": 11, "dataset": "cvusa", "metric": "KL", "model": "UniGAN", "row": 7, "task": "Cross-View Image-to-Image Translation", "value": "2.6" } ] }, { "index": 9, "records": [ { "column": 2, "dataset": "Dayton (64×64) - aerial-to-ground", "metric": "LPIPS", "model": "UniGAN", "row": 2, "task": "Cross-View Image-to-Image Translation", "value": "0.1712" }, { "column": 3, "dataset": "Dayton (64×64) - aerial-to-ground", "metric": "LPIPS", "model": "UniGAN", "row": 2, "task": "Cross-View Image-to-Image Translation", "value": "0.3529" }, { "column": 4, "dataset": "Dayton (64×64) - aerial-to-ground", "metric": "LPIPS", "model": "UniGAN", "row": 2, "task": "Cross-View Image-to-Image Translation", "value": "0.3817" }, { "column": 2, "dataset": "Dayton (64x64) - ground-to-aerial", "metric": "LPIPS", "model": "UniGAN", "row": 4, "task": "Cross-View Image-to-Image Translation", "value": "0.2382" }, { "column": 3, "dataset": "Dayton (64x64) - ground-to-aerial", "metric": "LPIPS", "model": "UniGAN", "row": 4, "task": "Cross-View Image-to-Image Translation", "value": "0.4527" } ] } ]