|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- datasets |
|
- machine-learning |
|
- deep-learning |
|
- physics-modeling |
|
- scientific-ML |
|
- material-point-method |
|
- MPM |
|
- smooth-particle-hydrodynamics |
|
- SPH |
|
- Lagrangian-dynamics |
|
pretty_name: MPM-Verse-Large |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
# MPM-Verse-MaterialSim-Large |
|
|
|
## Dataset Summary |
|
This dataset contains Material-Point-Method (MPM) simulations for various materials, including water, sand, plasticine, and jelly. |
|
Each material is represented as point-clouds that evolve over time. The dataset is designed for learning and predicting MPM-based |
|
physical simulations. The dataset is rendered using five geometric models - Stanford-bunny, Spot, Dragon, Armadillo, and Blub. |
|
Each setting has 10 trajectories per object. |
|
|
|
## Supported Tasks and Leaderboards |
|
The dataset supports tasks such as: |
|
- Physics-informed learning |
|
- Point-cloud sequence prediction |
|
- Fluid and granular material modeling |
|
- Neural simulation acceleration |
|
|
|
## Dataset Structure |
|
### Materials and Metadata |
|
Due to the longer duration, water and sand are split into multiple files for `rollout_full` and `train`. |
|
`rollout_full` represents the rollout trajectory over the full-order point-cloud, |
|
while `rollout` is on a sample size of 2600. |
|
The first 40 trajectories are used in the train set, and the remaining 10 are used in the test set. |
|
|
|
### Dataset Characteristics |
|
| Material | # of Trajectories | Duration | Time Step (dt) | Shapes | Train Sample Size | |
|
|-----------|------------------|----------|----------------|--------|------------------| |
|
| Water3DNCLAW | 50 | 1000 | 5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 | |
|
| Sand3DNCLAW | 50 | 500 | 2.5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 | |
|
| Plasticine3DNCLAW | 50 | 200 | 2.5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 | |
|
| Jelly3DNCLAW | 50 | 334 | 7.5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 | |
|
| Contact3DNCLAW | 50 | 600 | 2.5e-3 | Blub, Spot, Bunny | 2600 | |
|
|
|
### Dataset Files |
|
Each dataset file is a dictionary with the following keys: |
|
|
|
#### `train.obj/test.pt` |
|
- `particle_type` (list): Indicator for material (only relevant for multimaterial simulations). Each element has shape `[N]` corresponding to the number of particles in the point-cloud. |
|
- `position` (list): Snippet of past states, each element has shape `[N, W, D]` where: |
|
- `N`: Sample size |
|
- `W`: Time window (6) |
|
- `D`: Dimension (2D or 3D) |
|
- `n_particles_per_example` (list): Integer `[1,]` indicating the size of the sample `N` |
|
- `output` (list): Ground truth for predicted state `[N, D]` |
|
|
|
#### `rollout.pt/rollout_full.pt` |
|
- `position` (list): Contains a list of all trajectories, where each element corresponds to a complete trajectory with shape `[N, T, D]` where: |
|
- `N`: Number of particles |
|
- `T`: Rollout duration |
|
- `D`: Dimension (2D or 3D) |
|
|
|
### Metadata Files |
|
Each dataset folder contains a `metadata.json` file with the following information: |
|
- `bounds` (list): Boundary conditions. |
|
- `default_connectivity_radius` (float): Radius used within the graph neural network. |
|
- `vel_mean` (list): Mean velocity of the entire dataset `[x, y, (z)]` for noise profiling. |
|
- `vel_std` (list): Standard deviation of velocity `[x, y, (z)]` for noise profiling. |
|
- `acc_mean` (list): Mean acceleration `[x, y, (z)]` for noise profiling. |
|
- `acc_std` (list): Standard deviation of acceleration `[x, y, (z)]` for noise profiling. |
|
|
|
## Downloading the Dataset |
|
```python |
|
from huggingface_hub import hf_hub_download, snapshot_download |
|
|
|
files = ['train.obj', 'test.pt', 'rollout.pt', 'metadata.json', 'rollout_full.pt'] |
|
|
|
train_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[0]), cache_dir="./dataset_mpmverse") |
|
test_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[1]), cache_dir="./dataset_mpmverse") |
|
rollout_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[2]), cache_dir="./dataset_mpmverse") |
|
metadata_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[3]), cache_dir="./dataset_mpmverse") |
|
rollout_full_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[4]), cache_dir="./dataset_mpmverse") |
|
|
|
``` |
|
|
|
### Processing Train |
|
|
|
```python |
|
import torch |
|
import pickle |
|
|
|
with open("path/to/train.obj", "rb") as f: |
|
data = pickle.load(f) |
|
|
|
positions = data["position"][0] |
|
print(positions.shape) # Example output: (N, W, D) |
|
``` |
|
|
|
### Processing Rollout |
|
|
|
```python |
|
import torch |
|
import pickle |
|
|
|
with open("path/to/rollout_full.obj", "rb") as f: |
|
data = pickle.load(f) |
|
|
|
positions = data["position"] |
|
print(len(positions)) # Example output: 50 |
|
print(positions.shape) # Example output: (N, T, 3) |
|
``` |
|
|
|
## Example Simulations |
|
|
|
<table> |
|
<tr> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/armadillo_water.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/blub_water.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/bunny_water.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/dragon_water.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/spot_water.gif" width="150"></td> |
|
</tr> |
|
<tr> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/armadillo_sand.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/blub_sand.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/bunny_sand.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/dragon_sand.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/spot_sand.gif" width="150"></td> |
|
</tr> |
|
<tr> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/armadillo_plasticine.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/blub_plasticine.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/bunny_plasticine.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/dragon_plasticine.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/spot_plasticine.gif" width="150"></td> |
|
</tr> |
|
</tr> |
|
<tr> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/armadillo_jelly.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/blub_jelly.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/bunny_jelly.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/dragon_jelly.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/spot_jelly.gif" width="150"></td> |
|
</tr> |
|
</tr> |
|
<tr> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact1.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact2.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact3.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact4.gif" width="150"></td> |
|
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact2.gif" width="150"></td> |
|
</tr> |
|
</table> |
|
|
|
|
|
## Citation |
|
If you use this dataset, please cite: |
|
|
|
```bibtex |
|
@article{viswanath2024reduced, |
|
title={Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs}, |
|
author={Viswanath, Hrishikesh and Chang, Yue and Berner, Julius and Chen, Peter Yichen and Bera, Aniket}, |
|
journal={arXiv preprint arXiv:2407.03925}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## Source |
|
The 3D datasets (e.g., Water3D, Sand3D, Plasticine3D, Jelly3D, RigidCollision3D, Melting3D) were generated using the NCLAW Simulator, |
|
developed by [Ma et al. (ICML 2023)](https://proceedings.mlr.press/v202/ma23a/ma23a.pdf). |
|
|