File size: 9,233 Bytes
f9e3258 771e5c4 f9e3258 bf3661f f9e3258 bf3661f f9e3258 bf3661f f9e3258 611ecfa f38baf3 f9ac869 46a36a6 f9ac869 46a36a6 f9ac869 c78d9d5 35f1900 f9ac869 f38baf3 46a36a6 f9e3258 f38baf3 3625843 fb5c32e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
license: apache-2.0
language:
- en
tags:
- datasets
- machine-learning
- deep-learning
- physics-modeling
- scientific-ML
- material-point-method
- MPM
- smooth-particle-hydrodynamics
- SPH
- Lagrangian-dynamics
pretty_name: MPM-Verse-Large
size_categories:
- 100K<n<1M
---
# MPM-Verse-MaterialSim-Large
## Dataset Summary
This dataset contains Material-Point-Method (MPM) simulations for various materials, including water, sand, plasticine, and jelly.
Each material is represented as point-clouds that evolve over time. The dataset is designed for learning and predicting MPM-based
physical simulations. The dataset is rendered using five geometric models - Stanford-bunny, Spot, Dragon, Armadillo, and Blub.
Each setting has 10 trajectories per object.
## Supported Tasks and Leaderboards
The dataset supports tasks such as:
- Physics-informed learning
- Point-cloud sequence prediction
- Fluid and granular material modeling
- Neural simulation acceleration
## Dataset Structure
### Materials and Metadata
Due to the longer duration, water and sand are split into multiple files for `rollout_full` and `train`.
`rollout_full` represents the rollout trajectory over the full-order point-cloud,
while `rollout` is on a sample size of 2600.
The first 40 trajectories are used in the train set, and the remaining 10 are used in the test set.
### Dataset Characteristics
| Material | # of Trajectories | Duration | Time Step (dt) | Shapes | Train Sample Size |
|-----------|------------------|----------|----------------|--------|------------------|
| Water3DNCLAW | 50 | 1000 | 5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 |
| Sand3DNCLAW | 50 | 500 | 2.5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 |
| Plasticine3DNCLAW | 50 | 200 | 2.5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 |
| Jelly3DNCLAW | 50 | 334 | 7.5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 |
| Contact3DNCLAW | 50 | 600 | 2.5e-3 | Blub, Spot, Bunny | 2600 |
### Dataset Files
Each dataset file is a dictionary with the following keys:
#### `train.obj/test.pt`
- `particle_type` (list): Indicator for material (only relevant for multimaterial simulations). Each element has shape `[N]` corresponding to the number of particles in the point-cloud.
- `position` (list): Snippet of past states, each element has shape `[N, W, D]` where:
- `N`: Sample size
- `W`: Time window (6)
- `D`: Dimension (2D or 3D)
- `n_particles_per_example` (list): Integer `[1,]` indicating the size of the sample `N`
- `output` (list): Ground truth for predicted state `[N, D]`
#### `rollout.pt/rollout_full.pt`
- `position` (list): Contains a list of all trajectories, where each element corresponds to a complete trajectory with shape `[N, T, D]` where:
- `N`: Number of particles
- `T`: Rollout duration
- `D`: Dimension (2D or 3D)
### Metadata Files
Each dataset folder contains a `metadata.json` file with the following information:
- `bounds` (list): Boundary conditions.
- `default_connectivity_radius` (float): Radius used within the graph neural network.
- `vel_mean` (list): Mean velocity of the entire dataset `[x, y, (z)]` for noise profiling.
- `vel_std` (list): Standard deviation of velocity `[x, y, (z)]` for noise profiling.
- `acc_mean` (list): Mean acceleration `[x, y, (z)]` for noise profiling.
- `acc_std` (list): Standard deviation of acceleration `[x, y, (z)]` for noise profiling.
## Downloading the Dataset
```python
from huggingface_hub import hf_hub_download, snapshot_download
files = ['train.obj', 'test.pt', 'rollout.pt', 'metadata.json', 'rollout_full.pt']
train_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[0]), cache_dir="./dataset_mpmverse")
test_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[1]), cache_dir="./dataset_mpmverse")
rollout_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[2]), cache_dir="./dataset_mpmverse")
metadata_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[3]), cache_dir="./dataset_mpmverse")
rollout_full_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[4]), cache_dir="./dataset_mpmverse")
```
### Processing Train
```python
import torch
import pickle
with open("path/to/train.obj", "rb") as f:
data = pickle.load(f)
positions = data["position"][0]
print(positions.shape) # Example output: (N, W, D)
```
### Processing Rollout
```python
import torch
import pickle
with open("path/to/rollout_full.obj", "rb") as f:
data = pickle.load(f)
positions = data["position"]
print(len(positions)) # Example output: 50
print(positions.shape) # Example output: (N, T, 3)
```
## Example Simulations
<table>
<tr>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/armadillo_water.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/blub_water.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/bunny_water.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/dragon_water.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/spot_water.gif" width="150"></td>
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/armadillo_sand.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/blub_sand.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/bunny_sand.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/dragon_sand.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/spot_sand.gif" width="150"></td>
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/armadillo_plasticine.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/blub_plasticine.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/bunny_plasticine.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/dragon_plasticine.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/spot_plasticine.gif" width="150"></td>
</tr>
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/armadillo_jelly.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/blub_jelly.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/bunny_jelly.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/dragon_jelly.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/spot_jelly.gif" width="150"></td>
</tr>
</tr>
<tr>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact1.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact2.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact3.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact4.gif" width="150"></td>
<td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact2.gif" width="150"></td>
</tr>
</table>
## Citation
If you use this dataset, please cite:
```bibtex
@article{viswanath2024reduced,
title={Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs},
author={Viswanath, Hrishikesh and Chang, Yue and Berner, Julius and Chen, Peter Yichen and Bera, Aniket},
journal={arXiv preprint arXiv:2407.03925},
year={2024}
}
```
## Source
The 3D datasets (e.g., Water3D, Sand3D, Plasticine3D, Jelly3D, RigidCollision3D, Melting3D) were generated using the NCLAW Simulator,
developed by [Ma et al. (ICML 2023)](https://proceedings.mlr.press/v202/ma23a/ma23a.pdf).
|