File size: 9,233 Bytes
f9e3258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
771e5c4
f9e3258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf3661f
 
f9e3258
bf3661f
f9e3258
 
 
 
 
bf3661f
f9e3258
 
611ecfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f38baf3
 
f9ac869
 
46a36a6
 
 
 
 
f9ac869
46a36a6
 
 
 
 
 
 
 
 
 
 
 
 
f9ac869
c78d9d5
 
 
 
 
 
 
 
35f1900
 
 
 
 
 
 
 
f9ac869
f38baf3
46a36a6
f9e3258
 
 
 
 
 
 
 
 
 
 
 
f38baf3
3625843
fb5c32e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---
license: apache-2.0
language:
- en
tags:
- datasets
- machine-learning
- deep-learning
- physics-modeling
- scientific-ML
- material-point-method
- MPM
- smooth-particle-hydrodynamics
- SPH
- Lagrangian-dynamics
pretty_name: MPM-Verse-Large
size_categories:
- 100K<n<1M
---
# MPM-Verse-MaterialSim-Large

## Dataset Summary
This dataset contains Material-Point-Method (MPM) simulations for various materials, including water, sand, plasticine, and jelly. 
Each material is represented as point-clouds that evolve over time. The dataset is designed for learning and predicting MPM-based 
physical simulations. The dataset is rendered using five geometric models - Stanford-bunny, Spot, Dragon, Armadillo, and Blub. 
Each setting has 10 trajectories per object.

## Supported Tasks and Leaderboards
The dataset supports tasks such as:
- Physics-informed learning
- Point-cloud sequence prediction
- Fluid and granular material modeling
- Neural simulation acceleration

## Dataset Structure
### Materials and Metadata
Due to the longer duration, water and sand are split into multiple files for `rollout_full` and `train`. 
`rollout_full` represents the rollout trajectory over the full-order point-cloud, 
while `rollout` is on a sample size of 2600. 
The first 40 trajectories are used in the train set, and the remaining 10 are used in the test set.

### Dataset Characteristics
| Material  | # of Trajectories | Duration | Time Step (dt) | Shapes | Train Sample Size |
|-----------|------------------|----------|----------------|--------|------------------|
| Water3DNCLAW | 50 | 1000 | 5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 |
| Sand3DNCLAW | 50 | 500 | 2.5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 |
| Plasticine3DNCLAW | 50 | 200 | 2.5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 |
| Jelly3DNCLAW | 50 | 334 | 7.5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 |
| Contact3DNCLAW | 50 | 600 | 2.5e-3 | Blub, Spot, Bunny | 2600 |

### Dataset Files
Each dataset file is a dictionary with the following keys:

#### `train.obj/test.pt`
- `particle_type` (list): Indicator for material (only relevant for multimaterial simulations). Each element has shape `[N]` corresponding to the number of particles in the point-cloud.
- `position` (list): Snippet of past states, each element has shape `[N, W, D]` where:
  - `N`: Sample size
  - `W`: Time window (6)
  - `D`: Dimension (2D or 3D)
- `n_particles_per_example` (list): Integer `[1,]` indicating the size of the sample `N`
- `output` (list): Ground truth for predicted state `[N, D]`

#### `rollout.pt/rollout_full.pt`
- `position` (list): Contains a list of all trajectories, where each element corresponds to a complete trajectory with shape `[N, T, D]` where:
  - `N`: Number of particles
  - `T`: Rollout duration
  - `D`: Dimension (2D or 3D)

### Metadata Files
Each dataset folder contains a `metadata.json` file with the following information:
- `bounds` (list): Boundary conditions.
- `default_connectivity_radius` (float): Radius used within the graph neural network.
- `vel_mean` (list): Mean velocity of the entire dataset `[x, y, (z)]` for noise profiling.
- `vel_std` (list): Standard deviation of velocity `[x, y, (z)]` for noise profiling.
- `acc_mean` (list): Mean acceleration `[x, y, (z)]` for noise profiling.
- `acc_std` (list): Standard deviation of acceleration `[x, y, (z)]` for noise profiling.

## Downloading the Dataset
```python
from huggingface_hub import hf_hub_download, snapshot_download

files = ['train.obj', 'test.pt', 'rollout.pt', 'metadata.json', 'rollout_full.pt']

train_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[0]), cache_dir="./dataset_mpmverse")
test_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[1]), cache_dir="./dataset_mpmverse")
rollout_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[2]), cache_dir="./dataset_mpmverse")
metadata_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[3]), cache_dir="./dataset_mpmverse")
rollout_full_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[4]), cache_dir="./dataset_mpmverse")

```

### Processing Train

```python
import torch
import pickle

with open("path/to/train.obj", "rb") as f:
  data = pickle.load(f)

positions = data["position"][0]
print(positions.shape)  # Example output: (N, W, D)
```

### Processing Rollout

```python
import torch
import pickle

with open("path/to/rollout_full.obj", "rb") as f:
  data = pickle.load(f)

positions = data["position"]
print(len(positions))  # Example output: 50
print(positions.shape) # Example output: (N, T, 3)
```

## Example Simulations

<table>
  <tr>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/armadillo_water.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/blub_water.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/bunny_water.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/dragon_water.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/spot_water.gif" width="150"></td>
  </tr>
    <tr>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/armadillo_sand.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/blub_sand.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/bunny_sand.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/dragon_sand.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/spot_sand.gif" width="150"></td>
  </tr>
    <tr>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/armadillo_plasticine.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/blub_plasticine.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/bunny_plasticine.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/dragon_plasticine.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/spot_plasticine.gif" width="150"></td>
  </tr>
  </tr>
    <tr>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/armadillo_jelly.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/blub_jelly.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/bunny_jelly.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/dragon_jelly.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/spot_jelly.gif" width="150"></td>
  </tr>
    </tr>
    <tr>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact1.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact2.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact3.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact4.gif" width="150"></td>
    <td><img src="https://huggingface.co/datasets/hrishivish23/MPM-Verse-MaterialSim-Large/resolve/main/Viz/contact2.gif" width="150"></td>
  </tr>
</table>


## Citation
If you use this dataset, please cite:

```bibtex
@article{viswanath2024reduced,
  title={Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs},
  author={Viswanath, Hrishikesh and Chang, Yue and Berner, Julius and Chen, Peter Yichen and Bera, Aniket},
  journal={arXiv preprint arXiv:2407.03925},
  year={2024}
}
```

## Source
The 3D datasets (e.g., Water3D, Sand3D, Plasticine3D, Jelly3D, RigidCollision3D, Melting3D) were generated using the NCLAW Simulator, 
developed by [Ma et al. (ICML 2023)](https://proceedings.mlr.press/v202/ma23a/ma23a.pdf).