file
stringlengths
21
79
dependencies
listlengths
1
16
definitions
listlengths
1
625
theorem_idx
int64
0
574
theorem
stringlengths
3
121
theorem_loc
listlengths
2
2
tactic_idx
int64
0
155
tactic_len
int64
1
156
tactic
stringlengths
3
5.76k
state_before
stringlengths
7
13.6k
state_after
stringlengths
7
13.6k
Mathlib/SetTheory/ZFC/Ordinal.lean
[ [ "Mathlib.SetTheory.ZFC.Basic", "Mathlib/SetTheory/ZFC/Basic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def IsTransitive (x : ZFSet) : Prop :=\n βˆ€ y ∈ x, y βŠ† x", "end": [ 41, 17 ], "full_name": "ZFSet.IsTransitive", "kind": "commanddeclaration", "start": [ 39, 1 ] }, { "code": "@[simp]\ntheorem empty_isTransitive : IsTransitive βˆ…", "end": [ 45, 85 ], "full_name": "ZFSet.empty_isTransitive", "kind": "commanddeclaration", "start": [ 44, 1 ] }, { "code": "theorem IsTransitive.subset_of_mem (h : x.IsTransitive) : y ∈ x β†’ y βŠ† x", "end": [ 49, 6 ], "full_name": "ZFSet.IsTransitive.subset_of_mem", "kind": "commanddeclaration", "start": [ 48, 1 ] }, { "code": "theorem isTransitive_iff_mem_trans : z.IsTransitive ↔ βˆ€ {x y : ZFSet}, x ∈ y β†’ y ∈ z β†’ x ∈ z", "end": [ 53, 73 ], "full_name": "ZFSet.isTransitive_iff_mem_trans", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "protected theorem IsTransitive.inter (hx : x.IsTransitive) (hy : y.IsTransitive) :\n (x ∩ y).IsTransitive", "end": [ 62, 53 ], "full_name": "ZFSet.IsTransitive.inter", "kind": "commanddeclaration", "start": [ 59, 1 ] }, { "code": "protected theorem IsTransitive.sUnion (h : x.IsTransitive) :\n (⋃₀ x : ZFSet).IsTransitive", "end": [ 68, 50 ], "full_name": "ZFSet.IsTransitive.sUnion", "kind": "commanddeclaration", "start": [ 65, 1 ] }, { "code": "theorem IsTransitive.sUnion' (H : βˆ€ y ∈ x, IsTransitive y) :\n (⋃₀ x : ZFSet).IsTransitive", "end": [ 74, 57 ], "full_name": "ZFSet.IsTransitive.sUnion'", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "protected theorem IsTransitive.union (hx : x.IsTransitive) (hy : y.IsTransitive) :\n (x βˆͺ y).IsTransitive", "end": [ 84, 14 ], "full_name": "ZFSet.IsTransitive.union", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "protected theorem IsTransitive.powerset (h : x.IsTransitive) : (powerset x).IsTransitive", "end": [ 90, 32 ], "full_name": "ZFSet.IsTransitive.powerset", "kind": "commanddeclaration", "start": [ 87, 1 ] }, { "code": "theorem isTransitive_iff_sUnion_subset : x.IsTransitive ↔ (⋃₀ x : ZFSet) βŠ† x", "end": [ 96, 79 ], "full_name": "ZFSet.isTransitive_iff_sUnion_subset", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem isTransitive_iff_subset_powerset : x.IsTransitive ↔ x βŠ† powerset x", "end": [ 103, 100 ], "full_name": "ZFSet.isTransitive_iff_subset_powerset", "kind": "commanddeclaration", "start": [ 102, 1 ] } ]
6
ZFSet.IsTransitive.union
[ [ 78, 29 ], [ 84, 14 ] ]
0
6
rw [← sUnion_pair]
x y z : ZFSet hx : x.IsTransitive hy : y.IsTransitive ⊒ (x βˆͺ y).IsTransitive
x y z : ZFSet hx : x.IsTransitive hy : y.IsTransitive ⊒ (⋃₀ {x, y}).IsTransitive
Mathlib/SetTheory/ZFC/Ordinal.lean
[ [ "Mathlib.SetTheory.ZFC.Basic", "Mathlib/SetTheory/ZFC/Basic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def IsTransitive (x : ZFSet) : Prop :=\n βˆ€ y ∈ x, y βŠ† x", "end": [ 41, 17 ], "full_name": "ZFSet.IsTransitive", "kind": "commanddeclaration", "start": [ 39, 1 ] }, { "code": "@[simp]\ntheorem empty_isTransitive : IsTransitive βˆ…", "end": [ 45, 85 ], "full_name": "ZFSet.empty_isTransitive", "kind": "commanddeclaration", "start": [ 44, 1 ] }, { "code": "theorem IsTransitive.subset_of_mem (h : x.IsTransitive) : y ∈ x β†’ y βŠ† x", "end": [ 49, 6 ], "full_name": "ZFSet.IsTransitive.subset_of_mem", "kind": "commanddeclaration", "start": [ 48, 1 ] }, { "code": "theorem isTransitive_iff_mem_trans : z.IsTransitive ↔ βˆ€ {x y : ZFSet}, x ∈ y β†’ y ∈ z β†’ x ∈ z", "end": [ 53, 73 ], "full_name": "ZFSet.isTransitive_iff_mem_trans", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "protected theorem IsTransitive.inter (hx : x.IsTransitive) (hy : y.IsTransitive) :\n (x ∩ y).IsTransitive", "end": [ 62, 53 ], "full_name": "ZFSet.IsTransitive.inter", "kind": "commanddeclaration", "start": [ 59, 1 ] }, { "code": "protected theorem IsTransitive.sUnion (h : x.IsTransitive) :\n (⋃₀ x : ZFSet).IsTransitive", "end": [ 68, 50 ], "full_name": "ZFSet.IsTransitive.sUnion", "kind": "commanddeclaration", "start": [ 65, 1 ] }, { "code": "theorem IsTransitive.sUnion' (H : βˆ€ y ∈ x, IsTransitive y) :\n (⋃₀ x : ZFSet).IsTransitive", "end": [ 74, 57 ], "full_name": "ZFSet.IsTransitive.sUnion'", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "protected theorem IsTransitive.union (hx : x.IsTransitive) (hy : y.IsTransitive) :\n (x βˆͺ y).IsTransitive", "end": [ 84, 14 ], "full_name": "ZFSet.IsTransitive.union", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "protected theorem IsTransitive.powerset (h : x.IsTransitive) : (powerset x).IsTransitive", "end": [ 90, 32 ], "full_name": "ZFSet.IsTransitive.powerset", "kind": "commanddeclaration", "start": [ 87, 1 ] }, { "code": "theorem isTransitive_iff_sUnion_subset : x.IsTransitive ↔ (⋃₀ x : ZFSet) βŠ† x", "end": [ 96, 79 ], "full_name": "ZFSet.isTransitive_iff_sUnion_subset", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem isTransitive_iff_subset_powerset : x.IsTransitive ↔ x βŠ† powerset x", "end": [ 103, 100 ], "full_name": "ZFSet.isTransitive_iff_subset_powerset", "kind": "commanddeclaration", "start": [ 102, 1 ] } ]
6
ZFSet.IsTransitive.union
[ [ 78, 29 ], [ 84, 14 ] ]
1
6
apply IsTransitive.sUnion' fun z => _
x y z : ZFSet hx : x.IsTransitive hy : y.IsTransitive ⊒ (⋃₀ {x, y}).IsTransitive
x y z : ZFSet hx : x.IsTransitive hy : y.IsTransitive ⊒ βˆ€ z ∈ {x, y}, z.IsTransitive
Mathlib/SetTheory/ZFC/Ordinal.lean
[ [ "Mathlib.SetTheory.ZFC.Basic", "Mathlib/SetTheory/ZFC/Basic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def IsTransitive (x : ZFSet) : Prop :=\n βˆ€ y ∈ x, y βŠ† x", "end": [ 41, 17 ], "full_name": "ZFSet.IsTransitive", "kind": "commanddeclaration", "start": [ 39, 1 ] }, { "code": "@[simp]\ntheorem empty_isTransitive : IsTransitive βˆ…", "end": [ 45, 85 ], "full_name": "ZFSet.empty_isTransitive", "kind": "commanddeclaration", "start": [ 44, 1 ] }, { "code": "theorem IsTransitive.subset_of_mem (h : x.IsTransitive) : y ∈ x β†’ y βŠ† x", "end": [ 49, 6 ], "full_name": "ZFSet.IsTransitive.subset_of_mem", "kind": "commanddeclaration", "start": [ 48, 1 ] }, { "code": "theorem isTransitive_iff_mem_trans : z.IsTransitive ↔ βˆ€ {x y : ZFSet}, x ∈ y β†’ y ∈ z β†’ x ∈ z", "end": [ 53, 73 ], "full_name": "ZFSet.isTransitive_iff_mem_trans", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "protected theorem IsTransitive.inter (hx : x.IsTransitive) (hy : y.IsTransitive) :\n (x ∩ y).IsTransitive", "end": [ 62, 53 ], "full_name": "ZFSet.IsTransitive.inter", "kind": "commanddeclaration", "start": [ 59, 1 ] }, { "code": "protected theorem IsTransitive.sUnion (h : x.IsTransitive) :\n (⋃₀ x : ZFSet).IsTransitive", "end": [ 68, 50 ], "full_name": "ZFSet.IsTransitive.sUnion", "kind": "commanddeclaration", "start": [ 65, 1 ] }, { "code": "theorem IsTransitive.sUnion' (H : βˆ€ y ∈ x, IsTransitive y) :\n (⋃₀ x : ZFSet).IsTransitive", "end": [ 74, 57 ], "full_name": "ZFSet.IsTransitive.sUnion'", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "protected theorem IsTransitive.union (hx : x.IsTransitive) (hy : y.IsTransitive) :\n (x βˆͺ y).IsTransitive", "end": [ 84, 14 ], "full_name": "ZFSet.IsTransitive.union", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "protected theorem IsTransitive.powerset (h : x.IsTransitive) : (powerset x).IsTransitive", "end": [ 90, 32 ], "full_name": "ZFSet.IsTransitive.powerset", "kind": "commanddeclaration", "start": [ 87, 1 ] }, { "code": "theorem isTransitive_iff_sUnion_subset : x.IsTransitive ↔ (⋃₀ x : ZFSet) βŠ† x", "end": [ 96, 79 ], "full_name": "ZFSet.isTransitive_iff_sUnion_subset", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem isTransitive_iff_subset_powerset : x.IsTransitive ↔ x βŠ† powerset x", "end": [ 103, 100 ], "full_name": "ZFSet.isTransitive_iff_subset_powerset", "kind": "commanddeclaration", "start": [ 102, 1 ] } ]
6
ZFSet.IsTransitive.union
[ [ 78, 29 ], [ 84, 14 ] ]
2
6
intro
x y z : ZFSet hx : x.IsTransitive hy : y.IsTransitive ⊒ βˆ€ z ∈ {x, y}, z.IsTransitive
x y z : ZFSet hx : x.IsTransitive hy : y.IsTransitive z✝ : ZFSet ⊒ z✝ ∈ {x, y} β†’ z✝.IsTransitive
Mathlib/SetTheory/ZFC/Ordinal.lean
[ [ "Mathlib.SetTheory.ZFC.Basic", "Mathlib/SetTheory/ZFC/Basic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def IsTransitive (x : ZFSet) : Prop :=\n βˆ€ y ∈ x, y βŠ† x", "end": [ 41, 17 ], "full_name": "ZFSet.IsTransitive", "kind": "commanddeclaration", "start": [ 39, 1 ] }, { "code": "@[simp]\ntheorem empty_isTransitive : IsTransitive βˆ…", "end": [ 45, 85 ], "full_name": "ZFSet.empty_isTransitive", "kind": "commanddeclaration", "start": [ 44, 1 ] }, { "code": "theorem IsTransitive.subset_of_mem (h : x.IsTransitive) : y ∈ x β†’ y βŠ† x", "end": [ 49, 6 ], "full_name": "ZFSet.IsTransitive.subset_of_mem", "kind": "commanddeclaration", "start": [ 48, 1 ] }, { "code": "theorem isTransitive_iff_mem_trans : z.IsTransitive ↔ βˆ€ {x y : ZFSet}, x ∈ y β†’ y ∈ z β†’ x ∈ z", "end": [ 53, 73 ], "full_name": "ZFSet.isTransitive_iff_mem_trans", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "protected theorem IsTransitive.inter (hx : x.IsTransitive) (hy : y.IsTransitive) :\n (x ∩ y).IsTransitive", "end": [ 62, 53 ], "full_name": "ZFSet.IsTransitive.inter", "kind": "commanddeclaration", "start": [ 59, 1 ] }, { "code": "protected theorem IsTransitive.sUnion (h : x.IsTransitive) :\n (⋃₀ x : ZFSet).IsTransitive", "end": [ 68, 50 ], "full_name": "ZFSet.IsTransitive.sUnion", "kind": "commanddeclaration", "start": [ 65, 1 ] }, { "code": "theorem IsTransitive.sUnion' (H : βˆ€ y ∈ x, IsTransitive y) :\n (⋃₀ x : ZFSet).IsTransitive", "end": [ 74, 57 ], "full_name": "ZFSet.IsTransitive.sUnion'", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "protected theorem IsTransitive.union (hx : x.IsTransitive) (hy : y.IsTransitive) :\n (x βˆͺ y).IsTransitive", "end": [ 84, 14 ], "full_name": "ZFSet.IsTransitive.union", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "protected theorem IsTransitive.powerset (h : x.IsTransitive) : (powerset x).IsTransitive", "end": [ 90, 32 ], "full_name": "ZFSet.IsTransitive.powerset", "kind": "commanddeclaration", "start": [ 87, 1 ] }, { "code": "theorem isTransitive_iff_sUnion_subset : x.IsTransitive ↔ (⋃₀ x : ZFSet) βŠ† x", "end": [ 96, 79 ], "full_name": "ZFSet.isTransitive_iff_sUnion_subset", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem isTransitive_iff_subset_powerset : x.IsTransitive ↔ x βŠ† powerset x", "end": [ 103, 100 ], "full_name": "ZFSet.isTransitive_iff_subset_powerset", "kind": "commanddeclaration", "start": [ 102, 1 ] } ]
6
ZFSet.IsTransitive.union
[ [ 78, 29 ], [ 84, 14 ] ]
3
6
rw [mem_pair]
x y z : ZFSet hx : x.IsTransitive hy : y.IsTransitive z✝ : ZFSet ⊒ z✝ ∈ {x, y} β†’ z✝.IsTransitive
x y z : ZFSet hx : x.IsTransitive hy : y.IsTransitive z✝ : ZFSet ⊒ z✝ = x ∨ z✝ = y β†’ z✝.IsTransitive
Mathlib/SetTheory/ZFC/Ordinal.lean
[ [ "Mathlib.SetTheory.ZFC.Basic", "Mathlib/SetTheory/ZFC/Basic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def IsTransitive (x : ZFSet) : Prop :=\n βˆ€ y ∈ x, y βŠ† x", "end": [ 41, 17 ], "full_name": "ZFSet.IsTransitive", "kind": "commanddeclaration", "start": [ 39, 1 ] }, { "code": "@[simp]\ntheorem empty_isTransitive : IsTransitive βˆ…", "end": [ 45, 85 ], "full_name": "ZFSet.empty_isTransitive", "kind": "commanddeclaration", "start": [ 44, 1 ] }, { "code": "theorem IsTransitive.subset_of_mem (h : x.IsTransitive) : y ∈ x β†’ y βŠ† x", "end": [ 49, 6 ], "full_name": "ZFSet.IsTransitive.subset_of_mem", "kind": "commanddeclaration", "start": [ 48, 1 ] }, { "code": "theorem isTransitive_iff_mem_trans : z.IsTransitive ↔ βˆ€ {x y : ZFSet}, x ∈ y β†’ y ∈ z β†’ x ∈ z", "end": [ 53, 73 ], "full_name": "ZFSet.isTransitive_iff_mem_trans", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "protected theorem IsTransitive.inter (hx : x.IsTransitive) (hy : y.IsTransitive) :\n (x ∩ y).IsTransitive", "end": [ 62, 53 ], "full_name": "ZFSet.IsTransitive.inter", "kind": "commanddeclaration", "start": [ 59, 1 ] }, { "code": "protected theorem IsTransitive.sUnion (h : x.IsTransitive) :\n (⋃₀ x : ZFSet).IsTransitive", "end": [ 68, 50 ], "full_name": "ZFSet.IsTransitive.sUnion", "kind": "commanddeclaration", "start": [ 65, 1 ] }, { "code": "theorem IsTransitive.sUnion' (H : βˆ€ y ∈ x, IsTransitive y) :\n (⋃₀ x : ZFSet).IsTransitive", "end": [ 74, 57 ], "full_name": "ZFSet.IsTransitive.sUnion'", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "protected theorem IsTransitive.union (hx : x.IsTransitive) (hy : y.IsTransitive) :\n (x βˆͺ y).IsTransitive", "end": [ 84, 14 ], "full_name": "ZFSet.IsTransitive.union", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "protected theorem IsTransitive.powerset (h : x.IsTransitive) : (powerset x).IsTransitive", "end": [ 90, 32 ], "full_name": "ZFSet.IsTransitive.powerset", "kind": "commanddeclaration", "start": [ 87, 1 ] }, { "code": "theorem isTransitive_iff_sUnion_subset : x.IsTransitive ↔ (⋃₀ x : ZFSet) βŠ† x", "end": [ 96, 79 ], "full_name": "ZFSet.isTransitive_iff_sUnion_subset", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem isTransitive_iff_subset_powerset : x.IsTransitive ↔ x βŠ† powerset x", "end": [ 103, 100 ], "full_name": "ZFSet.isTransitive_iff_subset_powerset", "kind": "commanddeclaration", "start": [ 102, 1 ] } ]
6
ZFSet.IsTransitive.union
[ [ 78, 29 ], [ 84, 14 ] ]
4
6
rintro (rfl | rfl)
x y z : ZFSet hx : x.IsTransitive hy : y.IsTransitive z✝ : ZFSet ⊒ z✝ = x ∨ z✝ = y β†’ z✝.IsTransitive
case inl y z : ZFSet hy : y.IsTransitive z✝ : ZFSet hx : z✝.IsTransitive ⊒ z✝.IsTransitive case inr x z : ZFSet hx : x.IsTransitive z✝ : ZFSet hy : z✝.IsTransitive ⊒ z✝.IsTransitive
Mathlib/SetTheory/ZFC/Ordinal.lean
[ [ "Mathlib.SetTheory.ZFC.Basic", "Mathlib/SetTheory/ZFC/Basic.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def IsTransitive (x : ZFSet) : Prop :=\n βˆ€ y ∈ x, y βŠ† x", "end": [ 41, 17 ], "full_name": "ZFSet.IsTransitive", "kind": "commanddeclaration", "start": [ 39, 1 ] }, { "code": "@[simp]\ntheorem empty_isTransitive : IsTransitive βˆ…", "end": [ 45, 85 ], "full_name": "ZFSet.empty_isTransitive", "kind": "commanddeclaration", "start": [ 44, 1 ] }, { "code": "theorem IsTransitive.subset_of_mem (h : x.IsTransitive) : y ∈ x β†’ y βŠ† x", "end": [ 49, 6 ], "full_name": "ZFSet.IsTransitive.subset_of_mem", "kind": "commanddeclaration", "start": [ 48, 1 ] }, { "code": "theorem isTransitive_iff_mem_trans : z.IsTransitive ↔ βˆ€ {x y : ZFSet}, x ∈ y β†’ y ∈ z β†’ x ∈ z", "end": [ 53, 73 ], "full_name": "ZFSet.isTransitive_iff_mem_trans", "kind": "commanddeclaration", "start": [ 52, 1 ] }, { "code": "protected theorem IsTransitive.inter (hx : x.IsTransitive) (hy : y.IsTransitive) :\n (x ∩ y).IsTransitive", "end": [ 62, 53 ], "full_name": "ZFSet.IsTransitive.inter", "kind": "commanddeclaration", "start": [ 59, 1 ] }, { "code": "protected theorem IsTransitive.sUnion (h : x.IsTransitive) :\n (⋃₀ x : ZFSet).IsTransitive", "end": [ 68, 50 ], "full_name": "ZFSet.IsTransitive.sUnion", "kind": "commanddeclaration", "start": [ 65, 1 ] }, { "code": "theorem IsTransitive.sUnion' (H : βˆ€ y ∈ x, IsTransitive y) :\n (⋃₀ x : ZFSet).IsTransitive", "end": [ 74, 57 ], "full_name": "ZFSet.IsTransitive.sUnion'", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "protected theorem IsTransitive.union (hx : x.IsTransitive) (hy : y.IsTransitive) :\n (x βˆͺ y).IsTransitive", "end": [ 84, 14 ], "full_name": "ZFSet.IsTransitive.union", "kind": "commanddeclaration", "start": [ 77, 1 ] }, { "code": "protected theorem IsTransitive.powerset (h : x.IsTransitive) : (powerset x).IsTransitive", "end": [ 90, 32 ], "full_name": "ZFSet.IsTransitive.powerset", "kind": "commanddeclaration", "start": [ 87, 1 ] }, { "code": "theorem isTransitive_iff_sUnion_subset : x.IsTransitive ↔ (⋃₀ x : ZFSet) βŠ† x", "end": [ 96, 79 ], "full_name": "ZFSet.isTransitive_iff_sUnion_subset", "kind": "commanddeclaration", "start": [ 93, 1 ] }, { "code": "theorem isTransitive_iff_subset_powerset : x.IsTransitive ↔ x βŠ† powerset x", "end": [ 103, 100 ], "full_name": "ZFSet.isTransitive_iff_subset_powerset", "kind": "commanddeclaration", "start": [ 102, 1 ] } ]
6
ZFSet.IsTransitive.union
[ [ 78, 29 ], [ 84, 14 ] ]
5
6
assumption'
case inl y z : ZFSet hy : y.IsTransitive z✝ : ZFSet hx : z✝.IsTransitive ⊒ z✝.IsTransitive case inr x z : ZFSet hx : x.IsTransitive z✝ : ZFSet hy : z✝.IsTransitive ⊒ z✝.IsTransitive
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
0
Surreal.Multiplication.P3_comm
[ [ 96, 52 ], [ 98, 34 ] ]
0
2
rw [P3, P3, add_comm]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ ⟦xβ‚‚ * yβ‚βŸ§ + ⟦x₁ * yβ‚‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ ↔ ⟦y₁ * xβ‚‚βŸ§ + ⟦yβ‚‚ * xβ‚βŸ§ < ⟦y₁ * xβ‚βŸ§ + ⟦yβ‚‚ * xβ‚‚βŸ§
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
0
Surreal.Multiplication.P3_comm
[ [ 96, 52 ], [ 98, 34 ] ]
1
2
congr! 2 <;> rw [quot_mul_comm]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ ⟦xβ‚‚ * yβ‚βŸ§ + ⟦x₁ * yβ‚‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ ↔ ⟦y₁ * xβ‚‚βŸ§ + ⟦yβ‚‚ * xβ‚βŸ§ < ⟦y₁ * xβ‚βŸ§ + ⟦yβ‚‚ * xβ‚‚βŸ§
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
1
Surreal.Multiplication.P3.trans
[ [ 100, 80 ], [ 103, 44 ] ]
0
3
rw [P3] at h₁ hβ‚‚
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚ hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚ ⊒ P3 x₁ x₃ y₁ yβ‚‚
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame h₁ : ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ hβ‚‚ : ⟦xβ‚‚ * yβ‚‚βŸ§ + ⟦x₃ * yβ‚βŸ§ < ⟦xβ‚‚ * yβ‚βŸ§ + ⟦x₃ * yβ‚‚βŸ§ ⊒ P3 x₁ x₃ y₁ yβ‚‚
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
1
Surreal.Multiplication.P3.trans
[ [ 100, 80 ], [ 103, 44 ] ]
1
3
rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame h₁ : ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ hβ‚‚ : ⟦xβ‚‚ * yβ‚‚βŸ§ + ⟦x₃ * yβ‚βŸ§ < ⟦xβ‚‚ * yβ‚βŸ§ + ⟦x₃ * yβ‚‚βŸ§ ⊒ P3 x₁ x₃ y₁ yβ‚‚
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame h₁ : ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ hβ‚‚ : ⟦xβ‚‚ * yβ‚‚βŸ§ + ⟦x₃ * yβ‚βŸ§ < ⟦xβ‚‚ * yβ‚βŸ§ + ⟦x₃ * yβ‚‚βŸ§ ⊒ ⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ + (⟦x₁ * yβ‚‚βŸ§ + ⟦x₃ * yβ‚βŸ§) < ⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ + (⟦x₁ * yβ‚βŸ§ + ⟦x₃ * yβ‚‚βŸ§)
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
1
Surreal.Multiplication.P3.trans
[ [ 100, 80 ], [ 103, 44 ] ]
2
3
convert add_lt_add h₁ hβ‚‚ using 1 <;> abel
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame h₁ : ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ hβ‚‚ : ⟦xβ‚‚ * yβ‚‚βŸ§ + ⟦x₃ * yβ‚βŸ§ < ⟦xβ‚‚ * yβ‚βŸ§ + ⟦x₃ * yβ‚‚βŸ§ ⊒ ⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ + (⟦x₁ * yβ‚‚βŸ§ + ⟦x₃ * yβ‚βŸ§) < ⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ + (⟦x₁ * yβ‚βŸ§ + ⟦x₃ * yβ‚‚βŸ§)
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
2
Surreal.Multiplication.P3_neg
[ [ 105, 57 ], [ 108, 10 ] ]
0
3
simp_rw [P3, quot_neg_mul]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ ↔ -⟦xβ‚‚ * yβ‚‚βŸ§ + -⟦x₁ * yβ‚βŸ§ < -⟦xβ‚‚ * yβ‚βŸ§ + -⟦x₁ * yβ‚‚βŸ§
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
2
Surreal.Multiplication.P3_neg
[ [ 105, 57 ], [ 108, 10 ] ]
1
3
rw [← _root_.neg_lt_neg_iff]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ ↔ -⟦xβ‚‚ * yβ‚‚βŸ§ + -⟦x₁ * yβ‚βŸ§ < -⟦xβ‚‚ * yβ‚βŸ§ + -⟦x₁ * yβ‚‚βŸ§
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ -(⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§) < -(⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§) ↔ -⟦xβ‚‚ * yβ‚‚βŸ§ + -⟦x₁ * yβ‚βŸ§ < -⟦xβ‚‚ * yβ‚βŸ§ + -⟦x₁ * yβ‚‚βŸ§
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
2
Surreal.Multiplication.P3_neg
[ [ 105, 57 ], [ 108, 10 ] ]
2
3
abel_nf
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ -(⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§) < -(⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§) ↔ -⟦xβ‚‚ * yβ‚‚βŸ§ + -⟦x₁ * yβ‚βŸ§ < -⟦xβ‚‚ * yβ‚βŸ§ + -⟦x₁ * yβ‚‚βŸ§
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
3
Surreal.Multiplication.P2_neg_left
[ [ 110, 54 ], [ 116, 16 ] ]
0
8
rw [P2, P2]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧ ↔ -xβ‚‚ β‰ˆ -x₁ β†’ ⟦-xβ‚‚ * y⟧ = ⟦-x₁ * y⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
3
Surreal.Multiplication.P2_neg_left
[ [ 110, 54 ], [ 116, 16 ] ]
1
8
constructor
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧ ↔ -xβ‚‚ β‰ˆ -x₁ β†’ ⟦-xβ‚‚ * y⟧ = ⟦-x₁ * y⟧
case mp x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ (x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧) β†’ -xβ‚‚ β‰ˆ -x₁ β†’ ⟦-xβ‚‚ * y⟧ = ⟦-x₁ * y⟧ case mpr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ (-xβ‚‚ β‰ˆ -x₁ β†’ ⟦-xβ‚‚ * y⟧ = ⟦-x₁ * y⟧) β†’ x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
3
Surreal.Multiplication.P2_neg_left
[ [ 110, 54 ], [ 116, 16 ] ]
2
8
Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm] exact (Β· Β·)
case mp x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ (x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧) β†’ -xβ‚‚ β‰ˆ -x₁ β†’ ⟦-xβ‚‚ * y⟧ = ⟦-x₁ * y⟧ case mpr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ (-xβ‚‚ β‰ˆ -x₁ β†’ ⟦-xβ‚‚ * y⟧ = ⟦-x₁ * y⟧) β†’ x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧
case mpr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ (-xβ‚‚ β‰ˆ -x₁ β†’ ⟦-xβ‚‚ * y⟧ = ⟦-x₁ * y⟧) β†’ x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
3
Surreal.Multiplication.P2_neg_left
[ [ 110, 54 ], [ 116, 16 ] ]
3
8
Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm] exact (Β· Β·)
case mpr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ (-xβ‚‚ β‰ˆ -x₁ β†’ ⟦-xβ‚‚ * y⟧ = ⟦-x₁ * y⟧) β†’ x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
3
Surreal.Multiplication.P2_neg_left
[ [ 110, 54 ], [ 116, 16 ] ]
4
8
rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]
case mp x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ (x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧) β†’ -xβ‚‚ β‰ˆ -x₁ β†’ ⟦-xβ‚‚ * y⟧ = ⟦-x₁ * y⟧
case mp x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ (xβ‚‚ β‰ˆ x₁ β†’ ⟦xβ‚‚ * y⟧ = ⟦x₁ * y⟧) β†’ xβ‚‚ β‰ˆ x₁ β†’ ⟦xβ‚‚ * y⟧ = ⟦x₁ * y⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
3
Surreal.Multiplication.P2_neg_left
[ [ 110, 54 ], [ 116, 16 ] ]
5
8
exact (Β· Β·)
case mp x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ (xβ‚‚ β‰ˆ x₁ β†’ ⟦xβ‚‚ * y⟧ = ⟦x₁ * y⟧) β†’ xβ‚‚ β‰ˆ x₁ β†’ ⟦xβ‚‚ * y⟧ = ⟦x₁ * y⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
3
Surreal.Multiplication.P2_neg_left
[ [ 110, 54 ], [ 116, 16 ] ]
6
8
rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]
case mpr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ (-xβ‚‚ β‰ˆ -x₁ β†’ ⟦-xβ‚‚ * y⟧ = ⟦-x₁ * y⟧) β†’ x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧
case mpr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ (x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧) β†’ x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
3
Surreal.Multiplication.P2_neg_left
[ [ 110, 54 ], [ 116, 16 ] ]
7
8
exact (Β· Β·)
case mpr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ (x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧) β†’ x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = ⟦xβ‚‚ * y⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
4
Surreal.Multiplication.P2_neg_right
[ [ 118, 52 ], [ 119, 51 ] ]
0
1
rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y)
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
5
Surreal.Multiplication.P4_neg_left
[ [ 121, 54 ], [ 122, 62 ] ]
0
1
simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
6
Surreal.Multiplication.P4_neg_right
[ [ 124, 52 ], [ 125, 33 ] ]
0
1
rw [P4, P4, neg_neg, and_comm]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y)
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
7
Surreal.Multiplication.P24_neg_left
[ [ 127, 57 ], [ 127, 99 ] ]
0
1
rw [P24, P24, P2_neg_left, P4_neg_left]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
8
Surreal.Multiplication.P24_neg_right
[ [ 128, 55 ], [ 128, 99 ] ]
0
1
rw [P24, P24, P2_neg_right, P4_neg_right]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ⊒ P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y)
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
9
Surreal.Multiplication.mulOption_lt_iff_P1
[ [ 134, 79 ], [ 136, 53 ] ]
0
2
dsimp only [P1, mulOption, quot_sub, quot_add]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧ ↔ P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l)
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves ⊒ ⟦x.moveLeft i * y⟧ + ⟦x * y.moveLeft k⟧ - ⟦x.moveLeft i * y.moveLeft k⟧ < -(⟦x.moveLeft j * -y⟧ + ⟦x * (-y).moveLeft l⟧ - ⟦x.moveLeft j * (-y).moveLeft l⟧) ↔ ⟦x.moveLeft i * y⟧ + ⟦x * y.moveLeft k⟧ - ⟦x.moveLeft i * y.moveLeft k⟧ < ⟦x.moveLeft j * y⟧ + ⟦x * -(-y).moveLeft l⟧ - ⟦x.moveLeft j * -(-y).moveLeft l⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
9
Surreal.Multiplication.mulOption_lt_iff_P1
[ [ 134, 79 ], [ 136, 53 ] ]
1
2
simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves ⊒ ⟦x.moveLeft i * y⟧ + ⟦x * y.moveLeft k⟧ - ⟦x.moveLeft i * y.moveLeft k⟧ < -(⟦x.moveLeft j * -y⟧ + ⟦x * (-y).moveLeft l⟧ - ⟦x.moveLeft j * (-y).moveLeft l⟧) ↔ ⟦x.moveLeft i * y⟧ + ⟦x * y.moveLeft k⟧ - ⟦x.moveLeft i * y.moveLeft k⟧ < ⟦x.moveLeft j * y⟧ + ⟦x * -(-y).moveLeft l⟧ - ⟦x.moveLeft j * -(-y).moveLeft l⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
10
Surreal.Multiplication.mulOption_lt_mul_iff_P3
[ [ 139, 86 ], [ 141, 27 ] ]
0
2
dsimp only [mulOption, quot_sub, quot_add]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame i : x.LeftMoves j : y.LeftMoves ⊒ ⟦x.mulOption y i j⟧ < ⟦x * y⟧ ↔ P3 (x.moveLeft i) x (y.moveLeft j) y
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame i : x.LeftMoves j : y.LeftMoves ⊒ ⟦x.moveLeft i * y⟧ + ⟦x * y.moveLeft j⟧ - ⟦x.moveLeft i * y.moveLeft j⟧ < ⟦x * y⟧ ↔ P3 (x.moveLeft i) x (y.moveLeft j) y
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
10
Surreal.Multiplication.mulOption_lt_mul_iff_P3
[ [ 139, 86 ], [ 141, 27 ] ]
1
2
exact sub_lt_iff_lt_add'
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame i : x.LeftMoves j : y.LeftMoves ⊒ ⟦x.moveLeft i * y⟧ + ⟦x * y.moveLeft j⟧ - ⟦x.moveLeft i * y.moveLeft j⟧ < ⟦x * y⟧ ↔ P3 (x.moveLeft i) x (y.moveLeft j) y
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
11
Surreal.Multiplication.P1_of_eq
[ [ 144, 29 ], [ 146, 56 ] ]
0
2
rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame he : x₁ β‰ˆ x₃ h₁ : P2 x₁ x₃ y₁ h₃ : P2 x₁ x₃ y₃ h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃ ⊒ P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame he : x₁ β‰ˆ x₃ h₁ : P2 x₁ x₃ y₁ h₃ : P2 x₁ x₃ y₃ h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃ ⊒ ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ + ⟦x₁ * yβ‚ƒβŸ§ < ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ + ⟦x₁ * yβ‚‚βŸ§
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
11
Surreal.Multiplication.P1_of_eq
[ [ 144, 29 ], [ 146, 56 ] ]
1
2
convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame he : x₁ β‰ˆ x₃ h₁ : P2 x₁ x₃ y₁ h₃ : P2 x₁ x₃ y₃ h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃ ⊒ ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ + ⟦x₁ * yβ‚ƒβŸ§ < ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ + ⟦x₁ * yβ‚‚βŸ§
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
12
Surreal.Multiplication.P1_of_lt
[ [ 148, 86 ], [ 150, 44 ] ]
0
2
rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃ hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁ ⊒ P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃ hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁ ⊒ ⟦x₃ * yβ‚‚βŸ§ + (⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ + ⟦x₃ * yβ‚ƒβŸ§) < ⟦x₃ * yβ‚‚βŸ§ + (⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ + ⟦x₁ * yβ‚‚βŸ§)
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
12
Surreal.Multiplication.P1_of_lt
[ [ 148, 86 ], [ 150, 44 ] ]
1
2
convert add_lt_add h₁ hβ‚‚ using 1 <;> abel
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃ hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁ ⊒ ⟦x₃ * yβ‚‚βŸ§ + (⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ + ⟦x₃ * yβ‚ƒβŸ§) < ⟦x₃ * yβ‚‚βŸ§ + (⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ + ⟦x₁ * yβ‚‚βŸ§)
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
13
Surreal.Multiplication.Args.numeric_P1
[ [ 165, 80 ], [ 166, 39 ] ]
0
1
simp [Args.Numeric, Args.toMultiset]
x✝ x₁ xβ‚‚ x₃ x' y✝ y₁ yβ‚‚ y₃ y' : PGame x y : PGame ⊒ (P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
14
Surreal.Multiplication.Args.numeric_P24
[ [ 169, 73 ], [ 170, 39 ] ]
0
1
simp [Args.Numeric, Args.toMultiset]
x xβ‚βœ xβ‚‚βœ x₃ x' y✝ y₁ yβ‚‚ y₃ y' : PGame x₁ xβ‚‚ y : PGame ⊒ (P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
22
Surreal.Multiplication.ih1
[ [ 220, 24 ], [ 223, 64 ] ]
0
5
rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a ⊒ IH1 x y
case inl x xβ‚βœ xβ‚‚βœ x₃ x' y₁ yβ‚‚ y₃ y'✝ x₁ xβ‚‚ y' : PGame h₁ : x₁.IsOption x hβ‚‚ : xβ‚‚.IsOption x ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y') β†’ P124 a ⊒ ArgsRel (Args.P24 x₁ xβ‚‚ y') (Args.P1 x y') case inr x xβ‚βœ xβ‚‚βœ x₃ x' y y₁ yβ‚‚ y₃ y'✝ : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a x₁ xβ‚‚ y' : PGame h₁ : x₁.IsOption x hβ‚‚ : xβ‚‚.IsOption x hy : y'.IsOption y ⊒ ArgsRel (Args.P24 x₁ xβ‚‚ y') (Args.P1 x y)
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
22
Surreal.Multiplication.ih1
[ [ 220, 24 ], [ 223, 64 ] ]
1
5
on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)
case inl x xβ‚βœ xβ‚‚βœ x₃ x' y₁ yβ‚‚ y₃ y'✝ x₁ xβ‚‚ y' : PGame h₁ : x₁.IsOption x hβ‚‚ : xβ‚‚.IsOption x ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y') β†’ P124 a ⊒ ArgsRel (Args.P24 x₁ xβ‚‚ y') (Args.P1 x y') case inr x xβ‚βœ xβ‚‚βœ x₃ x' y y₁ yβ‚‚ y₃ y'✝ : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a x₁ xβ‚‚ y' : PGame h₁ : x₁.IsOption x hβ‚‚ : xβ‚‚.IsOption x hy : y'.IsOption y ⊒ ArgsRel (Args.P24 x₁ xβ‚‚ y') (Args.P1 x y)
case inl x xβ‚βœ xβ‚‚βœ x₃ x' y₁ yβ‚‚ y₃ y'✝ x₁ xβ‚‚ y' : PGame h₁ : x₁.IsOption x hβ‚‚ : xβ‚‚.IsOption x ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y') β†’ P124 a ⊒ ArgsRel (Args.P24 x₁ xβ‚‚ y') (Args.P1 x y') case inr x xβ‚βœ xβ‚‚βœ x₃ x' y y₁ yβ‚‚ y₃ y'✝ : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a x₁ xβ‚‚ y' : PGame h₁ : x₁.IsOption x hβ‚‚ : xβ‚‚.IsOption x hy : y'.IsOption y ⊒ TransGen (CutExpand IsOption) (Args.P24 x₁ xβ‚‚ y').toMultiset {x, y'}
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
22
Surreal.Multiplication.ih1
[ [ 220, 24 ], [ 223, 64 ] ]
2
5
all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)
case inl x xβ‚βœ xβ‚‚βœ x₃ x' y₁ yβ‚‚ y₃ y'✝ x₁ xβ‚‚ y' : PGame h₁ : x₁.IsOption x hβ‚‚ : xβ‚‚.IsOption x ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y') β†’ P124 a ⊒ ArgsRel (Args.P24 x₁ xβ‚‚ y') (Args.P1 x y') case inr x xβ‚βœ xβ‚‚βœ x₃ x' y y₁ yβ‚‚ y₃ y'✝ : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a x₁ xβ‚‚ y' : PGame h₁ : x₁.IsOption x hβ‚‚ : xβ‚‚.IsOption x hy : y'.IsOption y ⊒ TransGen (CutExpand IsOption) (Args.P24 x₁ xβ‚‚ y').toMultiset {x, y'}
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
22
Surreal.Multiplication.ih1
[ [ 220, 24 ], [ 223, 64 ] ]
3
5
refine TransGen.tail ?_ (cutExpand_pair_right hy)
case inr x xβ‚βœ xβ‚‚βœ x₃ x' y y₁ yβ‚‚ y₃ y'✝ : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a x₁ xβ‚‚ y' : PGame h₁ : x₁.IsOption x hβ‚‚ : xβ‚‚.IsOption x hy : y'.IsOption y ⊒ ArgsRel (Args.P24 x₁ xβ‚‚ y') (Args.P1 x y)
case inr x xβ‚βœ xβ‚‚βœ x₃ x' y y₁ yβ‚‚ y₃ y'✝ : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a x₁ xβ‚‚ y' : PGame h₁ : x₁.IsOption x hβ‚‚ : xβ‚‚.IsOption x hy : y'.IsOption y ⊒ TransGen (CutExpand IsOption) (Args.P24 x₁ xβ‚‚ y').toMultiset {x, y'}
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
22
Surreal.Multiplication.ih1
[ [ 220, 24 ], [ 223, 64 ] ]
4
5
exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)
case inr x xβ‚βœ xβ‚‚βœ x₃ x' y y₁ yβ‚‚ y₃ y'✝ : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a x₁ xβ‚‚ y' : PGame h₁ : x₁.IsOption x hβ‚‚ : xβ‚‚.IsOption x hy : y'.IsOption y ⊒ TransGen (CutExpand IsOption) (Args.P24 x₁ xβ‚‚ y').toMultiset {x, y'}
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
27
Surreal.Multiplication.mulOption_lt
[ [ 247, 90 ], [ 254, 87 ] ]
0
9
obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧
case inl x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft i < x.moveLeft j ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧ case inr.inl x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft i β‰ˆ x.moveLeft j ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧ case inr.inr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft j < x.moveLeft i ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
27
Surreal.Multiplication.mulOption_lt
[ [ 247, 90 ], [ 254, 87 ] ]
1
9
Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h
case inl x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft i < x.moveLeft j ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧ case inr.inl x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft i β‰ˆ x.moveLeft j ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧ case inr.inr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft j < x.moveLeft i ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧
case inr.inl x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft i β‰ˆ x.moveLeft j ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧ case inr.inr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft j < x.moveLeft i ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
27
Surreal.Multiplication.mulOption_lt
[ [ 247, 90 ], [ 254, 87 ] ]
2
9
Β· have ml := @IsOption.moveLeft exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1 (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)
case inr.inl x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft i β‰ˆ x.moveLeft j ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧ case inr.inr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft j < x.moveLeft i ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧
case inr.inr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft j < x.moveLeft i ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
27
Surreal.Multiplication.mulOption_lt
[ [ 247, 90 ], [ 254, 87 ] ]
3
9
Β· rw [mulOption_neg_neg, lt_neg] exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h
case inr.inr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft j < x.moveLeft i ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
27
Surreal.Multiplication.mulOption_lt
[ [ 247, 90 ], [ 254, 87 ] ]
4
9
exact mulOption_lt_of_lt hy ihxy ihyx i j k l h
case inl x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft i < x.moveLeft j ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
27
Surreal.Multiplication.mulOption_lt
[ [ 247, 90 ], [ 254, 87 ] ]
5
9
have ml := @IsOption.moveLeft
case inr.inl x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft i β‰ˆ x.moveLeft j ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧
case inr.inl x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft i β‰ˆ x.moveLeft j ml : βˆ€ {x : PGame} (i : x.LeftMoves), (x.moveLeft i).IsOption x ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
27
Surreal.Multiplication.mulOption_lt
[ [ 247, 90 ], [ 254, 87 ] ]
6
9
exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1 (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)
case inr.inl x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft i β‰ˆ x.moveLeft j ml : βˆ€ {x : PGame} (i : x.LeftMoves), (x.moveLeft i).IsOption x ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
27
Surreal.Multiplication.mulOption_lt
[ [ 247, 90 ], [ 254, 87 ] ]
7
9
rw [mulOption_neg_neg, lt_neg]
case inr.inr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft j < x.moveLeft i ⊒ ⟦x.mulOption y i k⟧ < -⟦x.mulOption (-y) j l⟧
case inr.inr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft j < x.moveLeft i ⊒ ⟦x.mulOption (-y) j l⟧ < -⟦x.mulOption (- -y) i (toLeftMovesNeg (toRightMovesNeg k))⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
27
Surreal.Multiplication.mulOption_lt
[ [ 247, 90 ], [ 254, 87 ] ]
8
9
exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h
case inr.inr x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x i j : x.LeftMoves k : y.LeftMoves l : (-y).LeftMoves h : x.moveLeft j < x.moveLeft i ⊒ ⟦x.mulOption (-y) j l⟧ < -⟦x.mulOption (- -y) i (toLeftMovesNeg (toRightMovesNeg k))⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
0
29
have ihxy := ih1 ih
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ⊒ (x * y).Numeric
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ⊒ (x * y).Numeric
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
1
29
have ihyx := ih1_swap ih
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ⊒ (x * y).Numeric
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ⊒ (x * y).Numeric
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
2
29
have ihxyn := ih1_neg_left (ih1_neg_right ihxy)
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ⊒ (x * y).Numeric
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ⊒ (x * y).Numeric
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
3
29
have ihyxn := ih1_neg_left (ih1_neg_right ihyx)
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ⊒ (x * y).Numeric
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ (x * y).Numeric
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
4
29
refine numeric_def.mpr ⟨?_, ?_, ?_⟩
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ (x * y).Numeric
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (i : (x * y).LeftMoves) (j : (x * y).RightMoves), (x * y).moveLeft i < (x * y).moveRight j case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (i : (x * y).LeftMoves), ((x * y).moveLeft i).Numeric case refine_3 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (j : (x * y).RightMoves), ((x * y).moveRight j).Numeric
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
5
29
Β· simp_rw [lt_iff_game_lt] intro i rw [rightMoves_mul_iff] constructor <;> (intro j l; revert i; rw [leftMoves_mul_iff (_ > Β·)]; constructor <;> intro i k) Β· apply mulOption_lt hx hy ihxy ihyx Β· simp_rw [← mulOption_symm (-y), mulOption_neg_neg x] apply mulOption_lt hy.neg hx.neg ihyxn ihxyn Β· simp only [← mulOption_symm y] apply mulOption_lt hy hx ihyx ihxy Β· rw [mulOption_neg_neg y] apply mulOption_lt hx.neg hy.neg ihxyn ihyxn
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (i : (x * y).LeftMoves) (j : (x * y).RightMoves), (x * y).moveLeft i < (x * y).moveRight j case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (i : (x * y).LeftMoves), ((x * y).moveLeft i).Numeric case refine_3 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (j : (x * y).RightMoves), ((x * y).moveRight j).Numeric
case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (i : (x * y).LeftMoves), ((x * y).moveLeft i).Numeric case refine_3 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (j : (x * y).RightMoves), ((x * y).moveRight j).Numeric
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
6
29
all_goals cases x; cases y rintro (⟨i,j⟩|⟨i,j⟩) <;> refine ((numeric_option_mul ih ?_).add <| numeric_mul_option ih ?_).sub (numeric_option_mul_option ih ?_ ?_) <;> solve_by_elim [IsOption.mk_left, IsOption.mk_right]
case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (i : (x * y).LeftMoves), ((x * y).moveLeft i).Numeric case refine_3 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (j : (x * y).RightMoves), ((x * y).moveRight j).Numeric
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
7
29
simp_rw [lt_iff_game_lt]
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (i : (x * y).LeftMoves) (j : (x * y).RightMoves), (x * y).moveLeft i < (x * y).moveRight j
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (i : (x * y).LeftMoves) (j : (x * y).RightMoves), ⟦(x * y).moveLeft i⟧ < ⟦(x * y).moveRight j⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
8
29
intro i
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (i : (x * y).LeftMoves) (j : (x * y).RightMoves), ⟦(x * y).moveLeft i⟧ < ⟦(x * y).moveRight j⟧
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) i : (x * y).LeftMoves ⊒ βˆ€ (j : (x * y).RightMoves), ⟦(x * y).moveLeft i⟧ < ⟦(x * y).moveRight j⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
9
29
rw [rightMoves_mul_iff]
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) i : (x * y).LeftMoves ⊒ βˆ€ (j : (x * y).RightMoves), ⟦(x * y).moveLeft i⟧ < ⟦(x * y).moveRight j⟧
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) i : (x * y).LeftMoves ⊒ (βˆ€ (i_1 : x.LeftMoves) (j : (-y).LeftMoves), ⟦(x * y).moveLeft i⟧ < -⟦x.mulOption (-y) i_1 j⟧) ∧ βˆ€ (i_1 : (-x).LeftMoves) (j : y.LeftMoves), ⟦(x * y).moveLeft i⟧ < -⟦(-x).mulOption y i_1 j⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
10
29
constructor <;> (intro j l; revert i; rw [leftMoves_mul_iff (_ > Β·)]; constructor <;> intro i k)
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) i : (x * y).LeftMoves ⊒ (βˆ€ (i_1 : x.LeftMoves) (j : (-y).LeftMoves), ⟦(x * y).moveLeft i⟧ < -⟦x.mulOption (-y) i_1 j⟧) ∧ βˆ€ (i_1 : (-x).LeftMoves) (j : y.LeftMoves), ⟦(x * y).moveLeft i⟧ < -⟦(-x).mulOption y i_1 j⟧
case refine_1.left.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : x.LeftMoves l : (-y).LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦x.mulOption (-y) j l⟧ > ⟦x.mulOption y i k⟧ case refine_1.left.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : x.LeftMoves l : (-y).LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦x.mulOption (-y) j l⟧ > ⟦(-x).mulOption (-y) i k⟧ case refine_1.right.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦x.mulOption y i k⟧ case refine_1.right.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦(-x).mulOption (-y) i k⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
11
29
Β· apply mulOption_lt hx hy ihxy ihyx
case refine_1.left.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : x.LeftMoves l : (-y).LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦x.mulOption (-y) j l⟧ > ⟦x.mulOption y i k⟧ case refine_1.left.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : x.LeftMoves l : (-y).LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦x.mulOption (-y) j l⟧ > ⟦(-x).mulOption (-y) i k⟧ case refine_1.right.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦x.mulOption y i k⟧ case refine_1.right.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦(-x).mulOption (-y) i k⟧
case refine_1.left.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : x.LeftMoves l : (-y).LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦x.mulOption (-y) j l⟧ > ⟦(-x).mulOption (-y) i k⟧ case refine_1.right.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦x.mulOption y i k⟧ case refine_1.right.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦(-x).mulOption (-y) i k⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
12
29
Β· simp_rw [← mulOption_symm (-y), mulOption_neg_neg x] apply mulOption_lt hy.neg hx.neg ihyxn ihxyn
case refine_1.left.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : x.LeftMoves l : (-y).LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦x.mulOption (-y) j l⟧ > ⟦(-x).mulOption (-y) i k⟧ case refine_1.right.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦x.mulOption y i k⟧ case refine_1.right.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦(-x).mulOption (-y) i k⟧
case refine_1.right.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦x.mulOption y i k⟧ case refine_1.right.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦(-x).mulOption (-y) i k⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
13
29
Β· simp only [← mulOption_symm y] apply mulOption_lt hy hx ihyx ihxy
case refine_1.right.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦x.mulOption y i k⟧ case refine_1.right.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦(-x).mulOption (-y) i k⟧
case refine_1.right.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦(-x).mulOption (-y) i k⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
14
29
Β· rw [mulOption_neg_neg y] apply mulOption_lt hx.neg hy.neg ihxyn ihyxn
case refine_1.right.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦(-x).mulOption (-y) i k⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
15
29
intro j l
case refine_1.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) i : (x * y).LeftMoves ⊒ βˆ€ (i_1 : (-x).LeftMoves) (j : y.LeftMoves), ⟦(x * y).moveLeft i⟧ < -⟦(-x).mulOption y i_1 j⟧
case refine_1.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) i : (x * y).LeftMoves j : (-x).LeftMoves l : y.LeftMoves ⊒ ⟦(x * y).moveLeft i⟧ < -⟦(-x).mulOption y j l⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
16
29
revert i
case refine_1.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) i : (x * y).LeftMoves j : (-x).LeftMoves l : y.LeftMoves ⊒ ⟦(x * y).moveLeft i⟧ < -⟦(-x).mulOption y j l⟧
case refine_1.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves ⊒ βˆ€ (i : (x * y).LeftMoves), ⟦(x * y).moveLeft i⟧ < -⟦(-x).mulOption y j l⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
17
29
rw [leftMoves_mul_iff (_ > Β·)]
case refine_1.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves ⊒ βˆ€ (i : (x * y).LeftMoves), ⟦(x * y).moveLeft i⟧ < -⟦(-x).mulOption y j l⟧
case refine_1.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves ⊒ (βˆ€ (i : x.LeftMoves) (j_1 : y.LeftMoves), -⟦(-x).mulOption y j l⟧ > ⟦x.mulOption y i j_1⟧) ∧ βˆ€ (i : (-x).LeftMoves) (j_1 : (-y).LeftMoves), -⟦(-x).mulOption y j l⟧ > ⟦(-x).mulOption (-y) i j_1⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
18
29
constructor <;> intro i k
case refine_1.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves ⊒ (βˆ€ (i : x.LeftMoves) (j_1 : y.LeftMoves), -⟦(-x).mulOption y j l⟧ > ⟦x.mulOption y i j_1⟧) ∧ βˆ€ (i : (-x).LeftMoves) (j_1 : (-y).LeftMoves), -⟦(-x).mulOption y j l⟧ > ⟦(-x).mulOption (-y) i j_1⟧
case refine_1.right.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦x.mulOption y i k⟧ case refine_1.right.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦(-x).mulOption (-y) i k⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
19
29
apply mulOption_lt hx hy ihxy ihyx
case refine_1.left.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : x.LeftMoves l : (-y).LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦x.mulOption (-y) j l⟧ > ⟦x.mulOption y i k⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
20
29
simp_rw [← mulOption_symm (-y), mulOption_neg_neg x]
case refine_1.left.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : x.LeftMoves l : (-y).LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦x.mulOption (-y) j l⟧ > ⟦(-x).mulOption (-y) i k⟧
case refine_1.left.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : x.LeftMoves l : (-y).LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-y).mulOption (- -x) l (toLeftMovesNeg (toRightMovesNeg j))⟧ > ⟦(-y).mulOption (-x) k i⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
21
29
apply mulOption_lt hy.neg hx.neg ihyxn ihxyn
case refine_1.left.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : x.LeftMoves l : (-y).LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-y).mulOption (- -x) l (toLeftMovesNeg (toRightMovesNeg j))⟧ > ⟦(-y).mulOption (-x) k i⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
22
29
simp only [← mulOption_symm y]
case refine_1.right.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦x.mulOption y i k⟧
case refine_1.right.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦y.mulOption (-x) l j⟧ > ⟦y.mulOption x k i⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
23
29
apply mulOption_lt hy hx ihyx ihxy
case refine_1.right.left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : x.LeftMoves k : y.LeftMoves ⊒ -⟦y.mulOption (-x) l j⟧ > ⟦y.mulOption x k i⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
24
29
rw [mulOption_neg_neg y]
case refine_1.right.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-x).mulOption y j l⟧ > ⟦(-x).mulOption (-y) i k⟧
case refine_1.right.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-x).mulOption (- -y) j (toLeftMovesNeg (toRightMovesNeg l))⟧ > ⟦(-x).mulOption (-y) i k⟧
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
25
29
apply mulOption_lt hx.neg hy.neg ihxyn ihyxn
case refine_1.right.right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) j : (-x).LeftMoves l : y.LeftMoves i : (-x).LeftMoves k : (-y).LeftMoves ⊒ -⟦(-x).mulOption (- -y) j (toLeftMovesNeg (toRightMovesNeg l))⟧ > ⟦(-x).mulOption (-y) i k⟧
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
26
29
cases x
case refine_3 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ihxy : IH1 x y ihyx : IH1 y x ihxyn : IH1 (-x) (-y) ihyxn : IH1 (-y) (-x) ⊒ βˆ€ (j : (x * y).RightMoves), ((x * y).moveRight j).Numeric
case refine_3.mk x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame hy : y.Numeric α✝ β✝ : Type u a✝¹ : α✝ β†’ PGame a✝ : β✝ β†’ PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 (PGame.mk α✝ β✝ a✝¹ a✝) y) β†’ P124 a hx : (PGame.mk α✝ β✝ a✝¹ a✝).Numeric ihxy : IH1 (PGame.mk α✝ β✝ a✝¹ a✝) y ihyx : IH1 y (PGame.mk α✝ β✝ a✝¹ a✝) ihxyn : IH1 (-PGame.mk α✝ β✝ a✝¹ a✝) (-y) ihyxn : IH1 (-y) (-PGame.mk α✝ β✝ a✝¹ a✝) ⊒ βˆ€ (j : (PGame.mk α✝ β✝ a✝¹ a✝ * y).RightMoves), ((PGame.mk α✝ β✝ a✝¹ a✝ * y).moveRight j).Numeric
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
27
29
cases y
case refine_3.mk x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame hy : y.Numeric α✝ β✝ : Type u a✝¹ : α✝ β†’ PGame a✝ : β✝ β†’ PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 (PGame.mk α✝ β✝ a✝¹ a✝) y) β†’ P124 a hx : (PGame.mk α✝ β✝ a✝¹ a✝).Numeric ihxy : IH1 (PGame.mk α✝ β✝ a✝¹ a✝) y ihyx : IH1 y (PGame.mk α✝ β✝ a✝¹ a✝) ihxyn : IH1 (-PGame.mk α✝ β✝ a✝¹ a✝) (-y) ihyxn : IH1 (-y) (-PGame.mk α✝ β✝ a✝¹ a✝) ⊒ βˆ€ (j : (PGame.mk α✝ β✝ a✝¹ a✝ * y).RightMoves), ((PGame.mk α✝ β✝ a✝¹ a✝ * y).moveRight j).Numeric
case refine_3.mk.mk x₁ xβ‚‚ x₃ x' y₁ yβ‚‚ y₃ y' : PGame α✝¹ β✝¹ : Type u a✝³ : α✝¹ β†’ PGame a✝² : β✝¹ β†’ PGame hx : (PGame.mk α✝¹ β✝¹ a✝³ a✝²).Numeric α✝ β✝ : Type u a✝¹ : α✝ β†’ PGame a✝ : β✝ β†’ PGame hy : (PGame.mk α✝ β✝ a✝¹ a✝).Numeric ih : βˆ€ (a : Args), ArgsRel a (Args.P1 (PGame.mk α✝¹ β✝¹ a✝³ a✝²) (PGame.mk α✝ β✝ a✝¹ a✝)) β†’ P124 a ihxy : IH1 (PGame.mk α✝¹ β✝¹ a✝³ a✝²) (PGame.mk α✝ β✝ a✝¹ a✝) ihyx : IH1 (PGame.mk α✝ β✝ a✝¹ a✝) (PGame.mk α✝¹ β✝¹ a✝³ a✝²) ihxyn : IH1 (-PGame.mk α✝¹ β✝¹ a✝³ a✝²) (-PGame.mk α✝ β✝ a✝¹ a✝) ihyxn : IH1 (-PGame.mk α✝ β✝ a✝¹ a✝) (-PGame.mk α✝¹ β✝¹ a✝³ a✝²) ⊒ βˆ€ (j : (PGame.mk α✝¹ β✝¹ a✝³ a✝² * PGame.mk α✝ β✝ a✝¹ a✝).RightMoves), ((PGame.mk α✝¹ β✝¹ a✝³ a✝² * PGame.mk α✝ β✝ a✝¹ a✝).moveRight j).Numeric
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
28
Surreal.Multiplication.P1_of_ih
[ [ 259, 39 ], [ 281, 56 ] ]
28
29
rintro (⟨i,j⟩|⟨i,j⟩) <;> refine ((numeric_option_mul ih ?_).add <| numeric_mul_option ih ?_).sub (numeric_option_mul_option ih ?_ ?_) <;> solve_by_elim [IsOption.mk_left, IsOption.mk_right]
case refine_3.mk.mk x₁ xβ‚‚ x₃ x' y₁ yβ‚‚ y₃ y' : PGame α✝¹ β✝¹ : Type u a✝³ : α✝¹ β†’ PGame a✝² : β✝¹ β†’ PGame hx : (PGame.mk α✝¹ β✝¹ a✝³ a✝²).Numeric α✝ β✝ : Type u a✝¹ : α✝ β†’ PGame a✝ : β✝ β†’ PGame hy : (PGame.mk α✝ β✝ a✝¹ a✝).Numeric ih : βˆ€ (a : Args), ArgsRel a (Args.P1 (PGame.mk α✝¹ β✝¹ a✝³ a✝²) (PGame.mk α✝ β✝ a✝¹ a✝)) β†’ P124 a ihxy : IH1 (PGame.mk α✝¹ β✝¹ a✝³ a✝²) (PGame.mk α✝ β✝ a✝¹ a✝) ihyx : IH1 (PGame.mk α✝ β✝ a✝¹ a✝) (PGame.mk α✝¹ β✝¹ a✝³ a✝²) ihxyn : IH1 (-PGame.mk α✝¹ β✝¹ a✝³ a✝²) (-PGame.mk α✝ β✝ a✝¹ a✝) ihyxn : IH1 (-PGame.mk α✝ β✝ a✝¹ a✝) (-PGame.mk α✝¹ β✝¹ a✝³ a✝²) ⊒ βˆ€ (j : (PGame.mk α✝¹ β✝¹ a✝³ a✝² * PGame.mk α✝ β✝ a✝¹ a✝).RightMoves), ((PGame.mk α✝¹ β✝¹ a✝³ a✝² * PGame.mk α✝ β✝ a✝¹ a✝).moveRight j).Numeric
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
29
Surreal.Multiplication.ih₁₂
[ [ 295, 30 ], [ 301, 63 ] ]
0
8
rw [IH24]
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a ⊒ IH24 x₁ xβ‚‚ y
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a ⊒ βˆ€ ⦃z : PGame⦄, (z.IsOption x₁ β†’ P24 z xβ‚‚ y) ∧ (z.IsOption xβ‚‚ β†’ P24 x₁ z y) ∧ (z.IsOption y β†’ P24 x₁ xβ‚‚ z)
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
29
Surreal.Multiplication.ih₁₂
[ [ 295, 30 ], [ 301, 63 ] ]
1
8
refine fun z ↦ ⟨?_, ?_, ?_⟩ <;> refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a ⊒ βˆ€ ⦃z : PGame⦄, (z.IsOption x₁ β†’ P24 z xβ‚‚ y) ∧ (z.IsOption xβ‚‚ β†’ P24 x₁ z y) ∧ (z.IsOption y β†’ P24 x₁ xβ‚‚ z)
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption x₁ ⊒ CutExpand IsOption (Args.P24 z xβ‚‚ y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption xβ‚‚ ⊒ CutExpand IsOption (Args.P24 x₁ z y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset case refine_3 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption y ⊒ CutExpand IsOption (Args.P24 x₁ xβ‚‚ z).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
29
Surreal.Multiplication.ih₁₂
[ [ 295, 30 ], [ 301, 63 ] ]
2
8
Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption x₁ ⊒ CutExpand IsOption (Args.P24 z xβ‚‚ y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption xβ‚‚ ⊒ CutExpand IsOption (Args.P24 x₁ z y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset case refine_3 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption y ⊒ CutExpand IsOption (Args.P24 x₁ xβ‚‚ z).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption xβ‚‚ ⊒ CutExpand IsOption (Args.P24 x₁ z y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset case refine_3 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption y ⊒ CutExpand IsOption (Args.P24 x₁ xβ‚‚ z).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
29
Surreal.Multiplication.ih₁₂
[ [ 295, 30 ], [ 301, 63 ] ]
3
8
Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)
case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption xβ‚‚ ⊒ CutExpand IsOption (Args.P24 x₁ z y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset case refine_3 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption y ⊒ CutExpand IsOption (Args.P24 x₁ xβ‚‚ z).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
case refine_3 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption y ⊒ CutExpand IsOption (Args.P24 x₁ xβ‚‚ z).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
29
Surreal.Multiplication.ih₁₂
[ [ 295, 30 ], [ 301, 63 ] ]
4
8
Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)
case refine_3 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption y ⊒ CutExpand IsOption (Args.P24 x₁ xβ‚‚ z).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
29
Surreal.Multiplication.ih₁₂
[ [ 295, 30 ], [ 301, 63 ] ]
5
8
exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption x₁ ⊒ CutExpand IsOption (Args.P24 z xβ‚‚ y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
29
Surreal.Multiplication.ih₁₂
[ [ 295, 30 ], [ 301, 63 ] ]
6
8
exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)
case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption xβ‚‚ ⊒ CutExpand IsOption (Args.P24 x₁ z y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
29
Surreal.Multiplication.ih₁₂
[ [ 295, 30 ], [ 301, 63 ] ]
7
8
exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)
case refine_3 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z : PGame h : z.IsOption y ⊒ CutExpand IsOption (Args.P24 x₁ xβ‚‚ z).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
31
Surreal.Multiplication.ih4
[ [ 309, 28 ], [ 316, 69 ] ]
0
8
refine fun z w h ↦ ⟨?_, ?_⟩
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a ⊒ IH4 x₁ xβ‚‚ y
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z w : PGame h : w.IsOption y ⊒ z.IsOption x₁ β†’ P2 z xβ‚‚ w case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z w : PGame h : w.IsOption y ⊒ z.IsOption xβ‚‚ β†’ P2 x₁ z w
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
31
Surreal.Multiplication.ih4
[ [ 309, 28 ], [ 316, 69 ] ]
1
8
all_goals intro h' apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <| (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1 try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h' try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'
case refine_1 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z w : PGame h : w.IsOption y ⊒ z.IsOption x₁ β†’ P2 z xβ‚‚ w case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z w : PGame h : w.IsOption y ⊒ z.IsOption xβ‚‚ β†’ P2 x₁ z w
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
31
Surreal.Multiplication.ih4
[ [ 309, 28 ], [ 316, 69 ] ]
2
8
intro h'
case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z w : PGame h : w.IsOption y ⊒ z.IsOption xβ‚‚ β†’ P2 x₁ z w
case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z w : PGame h : w.IsOption y h' : z.IsOption xβ‚‚ ⊒ P2 x₁ z w
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
31
Surreal.Multiplication.ih4
[ [ 309, 28 ], [ 316, 69 ] ]
3
8
apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <| (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1
case refine_2 x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z w : PGame h : w.IsOption y h' : z.IsOption xβ‚‚ ⊒ P2 x₁ z w
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z w : PGame h : w.IsOption y h' : z.IsOption xβ‚‚ ⊒ CutExpand IsOption (Args.P24 x₁ z w).toMultiset ({x₁} + {xβ‚‚, w})
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
31
Surreal.Multiplication.ih4
[ [ 309, 28 ], [ 316, 69 ] ]
4
8
try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z w : PGame h : w.IsOption y h' : z.IsOption x₁ ⊒ CutExpand IsOption (Args.P24 z xβ‚‚ w).toMultiset ({x₁} + {xβ‚‚, w})
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
31
Surreal.Multiplication.ih4
[ [ 309, 28 ], [ 316, 69 ] ]
5
8
try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z w : PGame h : w.IsOption y h' : z.IsOption xβ‚‚ ⊒ CutExpand IsOption (Args.P24 x₁ z w).toMultiset ({x₁} + {xβ‚‚, w})
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
31
Surreal.Multiplication.ih4
[ [ 309, 28 ], [ 316, 69 ] ]
6
8
exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z w : PGame h : w.IsOption y h' : z.IsOption x₁ ⊒ CutExpand IsOption (Args.P24 z xβ‚‚ w).toMultiset ({x₁} + {xβ‚‚, w})
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
31
Surreal.Multiplication.ih4
[ [ 309, 28 ], [ 316, 69 ] ]
7
8
exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a z w : PGame h : w.IsOption y h' : z.IsOption xβ‚‚ ⊒ CutExpand IsOption (Args.P24 x₁ z w).toMultiset ({x₁} + {xβ‚‚, w})
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
32
Surreal.Multiplication.numeric_of_ih
[ [ 318, 62 ], [ 321, 57 ] ]
0
5
constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)
x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a ⊒ (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric
case left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a ⊒ CutExpand IsOption (Args.P1 x₁ y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset case right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a ⊒ CutExpand IsOption (Args.P1 xβ‚‚ y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
32
Surreal.Multiplication.numeric_of_ih
[ [ 318, 62 ], [ 321, 57 ] ]
1
5
Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero
case left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a ⊒ CutExpand IsOption (Args.P1 x₁ y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset case right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a ⊒ CutExpand IsOption (Args.P1 xβ‚‚ y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
case right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a ⊒ CutExpand IsOption (Args.P1 xβ‚‚ y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
32
Surreal.Multiplication.numeric_of_ih
[ [ 318, 62 ], [ 321, 57 ] ]
2
5
Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero
case right x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a ⊒ CutExpand IsOption (Args.P1 xβ‚‚ y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
no goals
Mathlib/SetTheory/Surreal/Multiplication.lean
[ [ "Mathlib.SetTheory.Surreal.Basic", "Mathlib/SetTheory/Surreal/Basic.lean" ], [ "Mathlib.Logic.Hydra", "Mathlib/Logic/Hydra.lean" ], [ "Init", ".lake/packages/lean4/src/lean/Init.lean" ] ]
[ { "code": "def P1 (x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ : PGame) :=\n ⟦x₁ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§ - ⟦x₁ * yβ‚‚βŸ§ < ⟦x₃ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚ƒβŸ§ - (⟦x₃ * yβ‚ƒβŸ§ : Game)", "end": [ 74, 81 ], "full_name": "Surreal.Multiplication.P1", "kind": "commanddeclaration", "start": [ 71, 1 ] }, { "code": "def P2 (x₁ xβ‚‚ y : PGame) := x₁ β‰ˆ xβ‚‚ β†’ ⟦x₁ * y⟧ = (⟦xβ‚‚ * y⟧ : Game)", "end": [ 77, 67 ], "full_name": "Surreal.Multiplication.P2", "kind": "commanddeclaration", "start": [ 76, 1 ] }, { "code": "def P3 (x₁ xβ‚‚ y₁ yβ‚‚ : PGame) := ⟦x₁ * yβ‚‚βŸ§ + ⟦xβ‚‚ * yβ‚βŸ§ < ⟦x₁ * yβ‚βŸ§ + (⟦xβ‚‚ * yβ‚‚βŸ§ : Game)", "end": [ 80, 87 ], "full_name": "Surreal.Multiplication.P3", "kind": "commanddeclaration", "start": [ 79, 1 ] }, { "code": "def P4 (x₁ xβ‚‚ y : PGame) :=\n x₁ < xβ‚‚ β†’ (βˆ€ i, P3 x₁ xβ‚‚ (y.moveLeft i) y) ∧ βˆ€ j, P3 x₁ xβ‚‚ ((-y).moveLeft j) (-y)", "end": [ 87, 84 ], "full_name": "Surreal.Multiplication.P4", "kind": "commanddeclaration", "start": [ 82, 1 ] }, { "code": "def P24 (x₁ xβ‚‚ y : PGame) : Prop := P2 x₁ xβ‚‚ y ∧ P4 x₁ xβ‚‚ y", "end": [ 90, 60 ], "full_name": "Surreal.Multiplication.P24", "kind": "commanddeclaration", "start": [ 89, 1 ] }, { "code": "lemma P3_comm : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 y₁ yβ‚‚ x₁ xβ‚‚ := by\n rw [P3, P3, add_comm]\n congr! 2 <;> rw [quot_mul_comm]", "end": [ 98, 34 ], "full_name": "Surreal.Multiplication.P3_comm", "kind": "lemma", "start": [ 96, 1 ] }, { "code": "lemma P3.trans (h₁ : P3 x₁ xβ‚‚ y₁ yβ‚‚) (hβ‚‚ : P3 xβ‚‚ x₃ y₁ yβ‚‚) : P3 x₁ x₃ y₁ yβ‚‚ := by\n rw [P3] at h₁ hβ‚‚\n rw [P3, ← add_lt_add_iff_left (⟦xβ‚‚ * yβ‚βŸ§ + ⟦xβ‚‚ * yβ‚‚βŸ§)]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 103, 44 ], "full_name": "Surreal.Multiplication.P3.trans", "kind": "lemma", "start": [ 100, 1 ] }, { "code": "lemma P3_neg : P3 x₁ xβ‚‚ y₁ yβ‚‚ ↔ P3 (-xβ‚‚) (-x₁) y₁ yβ‚‚ := by\n simp_rw [P3, quot_neg_mul]\n rw [← _root_.neg_lt_neg_iff]\n abel_nf", "end": [ 108, 10 ], "full_name": "Surreal.Multiplication.P3_neg", "kind": "lemma", "start": [ 105, 1 ] }, { "code": "lemma P2_neg_left : P2 x₁ xβ‚‚ y ↔ P2 (-xβ‚‚) (-x₁) y := by\n rw [P2, P2]\n constructor\n Β· rw [quot_neg_mul, quot_neg_mul, eq_comm, neg_inj, neg_equiv_neg_iff, PGame.equiv_comm]\n exact (Β· Β·)\n Β· rw [PGame.equiv_comm, neg_equiv_neg_iff, quot_neg_mul, quot_neg_mul, neg_inj, eq_comm]\n exact (Β· Β·)", "end": [ 116, 16 ], "full_name": "Surreal.Multiplication.P2_neg_left", "kind": "lemma", "start": [ 110, 1 ] }, { "code": "lemma P2_neg_right : P2 x₁ xβ‚‚ y ↔ P2 x₁ xβ‚‚ (-y) := by\n rw [P2, P2, quot_mul_neg, quot_mul_neg, neg_inj]", "end": [ 119, 51 ], "full_name": "Surreal.Multiplication.P2_neg_right", "kind": "lemma", "start": [ 118, 1 ] }, { "code": "lemma P4_neg_left : P4 x₁ xβ‚‚ y ↔ P4 (-xβ‚‚) (-x₁) y := by\n simp_rw [P4, PGame.neg_lt_neg_iff, moveLeft_neg', ← P3_neg]", "end": [ 122, 62 ], "full_name": "Surreal.Multiplication.P4_neg_left", "kind": "lemma", "start": [ 121, 1 ] }, { "code": "lemma P4_neg_right : P4 x₁ xβ‚‚ y ↔ P4 x₁ xβ‚‚ (-y) := by\n rw [P4, P4, neg_neg, and_comm]", "end": [ 125, 33 ], "full_name": "Surreal.Multiplication.P4_neg_right", "kind": "lemma", "start": [ 124, 1 ] }, { "code": "lemma P24_neg_left : P24 x₁ xβ‚‚ y ↔ P24 (-xβ‚‚) (-x₁) y := by rw [P24, P24, P2_neg_left, P4_neg_left]", "end": [ 127, 99 ], "full_name": "Surreal.Multiplication.P24_neg_left", "kind": "lemma", "start": [ 127, 1 ] }, { "code": "lemma P24_neg_right : P24 x₁ xβ‚‚ y ↔ P24 x₁ xβ‚‚ (-y) := by rw [P24, P24, P2_neg_right, P4_neg_right]", "end": [ 128, 99 ], "full_name": "Surreal.Multiplication.P24_neg_right", "kind": "lemma", "start": [ 128, 1 ] }, { "code": "lemma mulOption_lt_iff_P1 {i j k l} :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ ↔\n P1 (x.moveLeft i) x (x.moveLeft j) y (y.moveLeft k) (-(-y).moveLeft l) := by\n dsimp only [P1, mulOption, quot_sub, quot_add]\n simp_rw [neg_sub', neg_add, quot_mul_neg, neg_neg]", "end": [ 136, 53 ], "full_name": "Surreal.Multiplication.mulOption_lt_iff_P1", "kind": "lemma", "start": [ 132, 1 ] }, { "code": "lemma mulOption_lt_mul_iff_P3 {i j} :\n ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game) ↔ P3 (x.moveLeft i) x (y.moveLeft j) y := by\n dsimp only [mulOption, quot_sub, quot_add]\n exact sub_lt_iff_lt_add'", "end": [ 141, 27 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_iff_P3", "kind": "lemma", "start": [ 138, 1 ] }, { "code": "lemma P1_of_eq (he : x₁ β‰ˆ x₃) (h₁ : P2 x₁ x₃ y₁) (h₃ : P2 x₁ x₃ y₃) (h3 : P3 x₁ xβ‚‚ yβ‚‚ y₃) :\n P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, ← h₁ he, ← h₃ he, sub_lt_sub_iff]\n convert add_lt_add_left h3 ⟦x₁ * yβ‚βŸ§ using 1 <;> abel", "end": [ 146, 56 ], "full_name": "Surreal.Multiplication.P1_of_eq", "kind": "lemma", "start": [ 143, 1 ] }, { "code": "lemma P1_of_lt (h₁ : P3 x₃ xβ‚‚ yβ‚‚ y₃) (hβ‚‚ : P3 x₁ x₃ yβ‚‚ y₁) : P1 x₁ xβ‚‚ x₃ y₁ yβ‚‚ y₃ := by\n rw [P1, sub_lt_sub_iff, ← add_lt_add_iff_left ⟦x₃ * yβ‚‚βŸ§]\n convert add_lt_add h₁ hβ‚‚ using 1 <;> abel", "end": [ 150, 44 ], "full_name": "Surreal.Multiplication.P1_of_lt", "kind": "lemma", "start": [ 148, 1 ] }, { "code": "inductive Args : Type (u+1)\n | P1 (x y : PGame.{u}) : Args\n | P24 (x₁ xβ‚‚ y : PGame.{u}) : Args", "end": [ 155, 37 ], "full_name": "Surreal.Multiplication.Args", "kind": "commanddeclaration", "start": [ 152, 1 ] }, { "code": "def Args.toMultiset : Args β†’ Multiset PGame\n | (Args.P1 x y) => {x, y}\n | (Args.P24 x₁ xβ‚‚ y) => {x₁, xβ‚‚, y}", "end": [ 160, 38 ], "full_name": "Surreal.Multiplication.Args.toMultiset", "kind": "commanddeclaration", "start": [ 157, 1 ] }, { "code": "def Args.Numeric (a : Args) := βˆ€ x ∈ a.toMultiset, SetTheory.PGame.Numeric x", "end": [ 163, 77 ], "full_name": "Surreal.Multiplication.Args.Numeric", "kind": "commanddeclaration", "start": [ 162, 1 ] }, { "code": "lemma Args.numeric_P1 {x y} : (Args.P1 x y).Numeric ↔ x.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 166, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P1", "kind": "lemma", "start": [ 165, 1 ] }, { "code": "lemma Args.numeric_P24 {x₁ xβ‚‚ y} :\n (Args.P24 x₁ xβ‚‚ y).Numeric ↔ x₁.Numeric ∧ xβ‚‚.Numeric ∧ y.Numeric := by\n simp [Args.Numeric, Args.toMultiset]", "end": [ 170, 39 ], "full_name": "Surreal.Multiplication.Args.numeric_P24", "kind": "lemma", "start": [ 168, 1 ] }, { "code": "def ArgsRel := InvImage (TransGen <| CutExpand IsOption) Args.toMultiset", "end": [ 177, 73 ], "full_name": "Surreal.Multiplication.ArgsRel", "kind": "commanddeclaration", "start": [ 174, 1 ] }, { "code": "theorem argsRel_wf : WellFounded ArgsRel", "end": [ 180, 89 ], "full_name": "Surreal.Multiplication.argsRel_wf", "kind": "commanddeclaration", "start": [ 179, 1 ] }, { "code": "def P124 : Args β†’ Prop\n | (Args.P1 x y) => Numeric (x * y)\n | (Args.P24 x₁ xβ‚‚ y) => P24 x₁ xβ‚‚ y", "end": [ 185, 38 ], "full_name": "Surreal.Multiplication.P124", "kind": "commanddeclaration", "start": [ 182, 1 ] }, { "code": "lemma ArgsRel.numeric_closed {a' a} : ArgsRel a' a β†’ a.Numeric β†’ a'.Numeric :=\n TransGen.closed' <| @cutExpand_closed _ IsOption ⟨wf_isOption.isIrrefl.1⟩ _ Numeric.isOption", "end": [ 189, 95 ], "full_name": "Surreal.Multiplication.ArgsRel.numeric_closed", "kind": "lemma", "start": [ 187, 1 ] }, { "code": "def IH1 (x y : PGame) : Prop :=\n βˆ€ ⦃x₁ xβ‚‚ y'⦄, IsOption x₁ x β†’ IsOption xβ‚‚ x β†’ (y' = y ∨ IsOption y' y) β†’ P24 x₁ xβ‚‚ y'", "end": [ 193, 88 ], "full_name": "Surreal.Multiplication.IH1", "kind": "commanddeclaration", "start": [ 191, 1 ] }, { "code": "lemma ih1_neg_left : IH1 x y β†’ IH1 (-x) y :=\n fun h x₁ xβ‚‚ y' h₁ hβ‚‚ hy ↦ by\n rw [isOption_neg] at h₁ hβ‚‚\n exact P24_neg_left.2 (h hβ‚‚ h₁ hy)", "end": [ 200, 38 ], "full_name": "Surreal.Multiplication.ih1_neg_left", "kind": "lemma", "start": [ 197, 1 ] }, { "code": "lemma ih1_neg_right : IH1 x y β†’ IH1 x (-y) :=\n fun h x₁ xβ‚‚ y' ↦ by\n rw [← neg_eq_iff_eq_neg, isOption_neg, P24_neg_right]\n apply h", "end": [ 205, 12 ], "full_name": "Surreal.Multiplication.ih1_neg_right", "kind": "lemma", "start": [ 202, 1 ] }, { "code": "lemma numeric_option_mul (h : IsOption x' x) : (x' * y).Numeric :=\n ih (Args.P1 x' y) (TransGen.single <| cutExpand_pair_left h)", "end": [ 212, 63 ], "full_name": "Surreal.Multiplication.numeric_option_mul", "kind": "lemma", "start": [ 211, 1 ] }, { "code": "lemma numeric_mul_option (h : IsOption y' y) : (x * y').Numeric :=\n ih (Args.P1 x y') (TransGen.single <| cutExpand_pair_right h)", "end": [ 215, 64 ], "full_name": "Surreal.Multiplication.numeric_mul_option", "kind": "lemma", "start": [ 214, 1 ] }, { "code": "lemma numeric_option_mul_option (hx : IsOption x' x) (hy : IsOption y' y) : (x' * y').Numeric :=\n ih (Args.P1 x' y') ((TransGen.single <| cutExpand_pair_right hy).tail <| cutExpand_pair_left hx)", "end": [ 218, 99 ], "full_name": "Surreal.Multiplication.numeric_option_mul_option", "kind": "lemma", "start": [ 217, 1 ] }, { "code": "lemma ih1 : IH1 x y := by\n rintro x₁ xβ‚‚ y' h₁ hβ‚‚ (rfl|hy) <;> apply ih (Args.P24 _ _ _)\n on_goal 2 => refine TransGen.tail ?_ (cutExpand_pair_right hy)\n all_goals exact TransGen.single (cutExpand_double_left h₁ hβ‚‚)", "end": [ 223, 64 ], "full_name": "Surreal.Multiplication.ih1", "kind": "lemma", "start": [ 220, 1 ] }, { "code": "lemma ih1_swap : IH1 y x := ih1 <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih ⊒\n exact ih", "end": [ 227, 11 ], "full_name": "Surreal.Multiplication.ih1_swap", "kind": "lemma", "start": [ 225, 1 ] }, { "code": "lemma P3_of_ih (hy : Numeric y) (ihyx : IH1 y x) (i k l) :\n P3 (x.moveLeft i) x (y.moveLeft k) (-(-y).moveLeft l) :=\n P3_comm.2 <| ((ihyx (IsOption.moveLeft k) (isOption_neg.1 <| .moveLeft l) <| Or.inl rfl).2\n (by rw [← moveRight_neg_symm]; apply hy.left_lt_right)).1 i", "end": [ 232, 64 ], "full_name": "Surreal.Multiplication.P3_of_ih", "kind": "lemma", "start": [ 229, 1 ] }, { "code": "lemma P24_of_ih (ihxy : IH1 x y) (i j) : P24 (x.moveLeft i) (x.moveLeft j) y :=\n ihxy (IsOption.moveLeft i) (IsOption.moveLeft j) (Or.inl rfl)", "end": [ 235, 64 ], "full_name": "Surreal.Multiplication.P24_of_ih", "kind": "lemma", "start": [ 234, 1 ] }, { "code": "lemma mulOption_lt_of_lt (i j k l) (h : x.moveLeft i < x.moveLeft j) :\n (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ :=\n mulOption_lt_iff_P1.2 <| P1_of_lt (P3_of_ih hy ihyx j k l) <| ((P24_of_ih ihxy i j).2 h).1 k", "end": [ 245, 95 ], "full_name": "Surreal.Multiplication.mulOption_lt_of_lt", "kind": "lemma", "start": [ 243, 1 ] }, { "code": "lemma mulOption_lt (i j k l) : (⟦mulOption x y i k⟧ : Game) < -⟦mulOption x (-y) j l⟧ := by\n obtain (h|h|h) := lt_or_equiv_or_gt (hx.moveLeft i) (hx.moveLeft j)\n Β· exact mulOption_lt_of_lt hy ihxy ihyx i j k l h\n Β· have ml := @IsOption.moveLeft\n exact mulOption_lt_iff_P1.2 (P1_of_eq h (P24_of_ih ihxy i j).1\n (ihxy (ml i) (ml j) <| Or.inr <| isOption_neg.1 <| ml l).1 <| P3_of_ih hy ihyx i k l)\n Β· rw [mulOption_neg_neg, lt_neg]\n exact mulOption_lt_of_lt hy.neg (ih1_neg_right ihxy) (ih1_neg_left ihyx) j i l _ h", "end": [ 254, 87 ], "full_name": "Surreal.Multiplication.mulOption_lt", "kind": "lemma", "start": [ 247, 1 ] }, { "code": "theorem P1_of_ih : (x * y).Numeric", "end": [ 281, 56 ], "full_name": "Surreal.Multiplication.P1_of_ih", "kind": "commanddeclaration", "start": [ 258, 1 ] }, { "code": "def IH24 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z⦄, (IsOption z x₁ β†’ P24 z xβ‚‚ y) ∧ (IsOption z xβ‚‚ β†’ P24 x₁ z y) ∧ (IsOption z y β†’ P24 x₁ xβ‚‚ z)", "end": [ 285, 100 ], "full_name": "Surreal.Multiplication.IH24", "kind": "commanddeclaration", "start": [ 283, 1 ] }, { "code": "def IH4 (x₁ xβ‚‚ y : PGame) : Prop :=\n βˆ€ ⦃z w⦄, IsOption w y β†’ (IsOption z x₁ β†’ P2 z xβ‚‚ w) ∧ (IsOption z xβ‚‚ β†’ P2 x₁ z w)", "end": [ 289, 84 ], "full_name": "Surreal.Multiplication.IH4", "kind": "commanddeclaration", "start": [ 287, 1 ] }, { "code": "lemma ih₁₂ : IH24 x₁ xβ‚‚ y := by\n rw [IH24]\n refine fun z ↦ ⟨?_, ?_, ?_⟩ <;>\n refine fun h ↦ ih' (Args.P24 _ _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_left h)\n Β· exact (cutExpand_add_left {x₁}).2 (cutExpand_pair_right h)", "end": [ 301, 63 ], "full_name": "Surreal.Multiplication.ih₁₂", "kind": "lemma", "start": [ 295, 1 ] }, { "code": "lemma ih₂₁ : IH24 xβ‚‚ x₁ y := ih₁₂ <| by\n simp_rw [ArgsRel, InvImage, Args.toMultiset, Multiset.pair_comm] at ih' ⊒\n suffices {x₁, y, xβ‚‚} = {xβ‚‚, y, x₁} by rwa [← this]\n dsimp only [Multiset.insert_eq_cons, ← Multiset.singleton_add] at ih' ⊒\n abel", "end": [ 307, 7 ], "full_name": "Surreal.Multiplication.ih₂₁", "kind": "lemma", "start": [ 303, 1 ] }, { "code": "lemma ih4 : IH4 x₁ xβ‚‚ y := by\n refine fun z w h ↦ ⟨?_, ?_⟩\n all_goals\n intro h'\n apply (ih' (Args.P24 _ _ _) <| (TransGen.single _).tail <|\n (cutExpand_add_left {x₁}).2 <| cutExpand_pair_right h).1\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_left h'\n try exact (cutExpand_add_right {w}).2 <| cutExpand_pair_right h'", "end": [ 316, 69 ], "full_name": "Surreal.Multiplication.ih4", "kind": "lemma", "start": [ 309, 1 ] }, { "code": "lemma numeric_of_ih : (x₁ * y).Numeric ∧ (xβ‚‚ * y).Numeric := by\n constructor <;> refine ih' (Args.P1 _ _) (TransGen.single ?_)\n Β· exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero\n Β· exact (cutExpand_add_right {xβ‚‚, y}).2 cutExpand_zero", "end": [ 321, 57 ], "full_name": "Surreal.Multiplication.numeric_of_ih", "kind": "lemma", "start": [ 318, 1 ] }, { "code": "lemma ih24_neg : IH24 x₁ xβ‚‚ y β†’ IH24 (-xβ‚‚) (-x₁) y ∧ IH24 x₁ xβ‚‚ (-y) := by\n simp_rw [IH24, ← P24_neg_right, isOption_neg]\n refine fun h ↦ ⟨fun z ↦ ⟨?_, ?_, ?_⟩,\n fun z ↦ ⟨(@h z).1, (@h z).2.1, P24_neg_right.2 ∘ (@h <| -z).2.2⟩⟩\n all_goals\n rw [P24_neg_left]\n simp only [neg_neg]\n first | exact (@h <| -z).2.1 | exact (@h <| -z).1 | exact (@h z).2.2", "end": [ 331, 73 ], "full_name": "Surreal.Multiplication.ih24_neg", "kind": "lemma", "start": [ 323, 1 ] }, { "code": "lemma ih4_neg : IH4 x₁ xβ‚‚ y β†’ IH4 (-xβ‚‚) (-x₁) y ∧ IH4 x₁ xβ‚‚ (-y) := by\n simp_rw [IH4, isOption_neg]\n refine fun h ↦ ⟨fun z w h' ↦ ?_, fun z w h' ↦ ?_⟩\n Β· convert (h h').symm using 2 <;> rw [P2_neg_left, neg_neg]\n Β· convert h h' using 2 <;> rw [P2_neg_right]", "end": [ 338, 47 ], "full_name": "Surreal.Multiplication.ih4_neg", "kind": "lemma", "start": [ 333, 1 ] }, { "code": "lemma mulOption_lt_mul_of_equiv (hn : x₁.Numeric) (h : IH24 x₁ xβ‚‚ y) (he : x₁ β‰ˆ xβ‚‚) (i j) :\n ⟦mulOption x₁ y i j⟧ < (⟦xβ‚‚ * y⟧ : Game) := by\n convert sub_lt_iff_lt_add'.2 ((((@h _).1 <| IsOption.moveLeft i).2 _).1 j) using 1\n Β· rw [← ((@h _).2.2 <| IsOption.moveLeft j).1 he]\n rfl\n Β· rw [← lt_congr_right he]\n apply hn.moveLeft_lt", "end": [ 346, 25 ], "full_name": "Surreal.Multiplication.mulOption_lt_mul_of_equiv", "kind": "lemma", "start": [ 340, 1 ] }, { "code": "theorem mul_right_le_of_equiv (h₁ : x₁.Numeric) (hβ‚‚ : xβ‚‚.Numeric)\n (h₁₂ : IH24 x₁ xβ‚‚ y) (h₂₁ : IH24 xβ‚‚ x₁ y) (he : x₁ β‰ˆ xβ‚‚) : x₁ * y ≀ xβ‚‚ * y", "end": [ 362, 73 ], "full_name": "Surreal.Multiplication.mul_right_le_of_equiv", "kind": "commanddeclaration", "start": [ 348, 1 ] }, { "code": "def MulOptionsLTMul (x y : PGame) : Prop := βˆ€ ⦃i j⦄, ⟦mulOption x y i j⟧ < (⟦x * y⟧ : Game)", "end": [ 365, 92 ], "full_name": "Surreal.Multiplication.MulOptionsLTMul", "kind": "commanddeclaration", "start": [ 364, 1 ] }, { "code": "lemma mulOptionsLTMul_of_numeric (hn : (x * y).Numeric) :\n (MulOptionsLTMul x y ∧ MulOptionsLTMul (-x) (-y)) ∧\n (MulOptionsLTMul x (-y) ∧ MulOptionsLTMul (-x) y) := by\n constructor\n Β· have h := hn.moveLeft_lt\n simp_rw [lt_iff_game_lt] at h\n convert (leftMoves_mul_iff <| GT.gt _).1 h\n rw [← quot_neg_mul_neg]\n rfl\n Β· have h := hn.lt_moveRight\n simp_rw [lt_iff_game_lt, rightMoves_mul_iff] at h\n refine h.imp ?_ ?_ <;> refine forallβ‚‚_imp fun a b ↦ ?_\n all_goals\n rw [lt_neg]\n first | rw [quot_mul_neg] | rw [quot_neg_mul]\n exact id", "end": [ 386, 15 ], "full_name": "Surreal.Multiplication.mulOptionsLTMul_of_numeric", "kind": "lemma", "start": [ 367, 1 ] }, { "code": "def IH3 (x₁ x' xβ‚‚ y₁ yβ‚‚ : PGame) : Prop :=\n P2 x₁ x' y₁ ∧ P2 x₁ x' yβ‚‚ ∧ P3 x' xβ‚‚ y₁ yβ‚‚ ∧ (x₁ < x' β†’ P3 x₁ x' y₁ yβ‚‚)", "end": [ 395, 76 ], "full_name": "Surreal.Multiplication.IH3", "kind": "commanddeclaration", "start": [ 388, 1 ] }, { "code": "lemma ih3_of_ih (h24 : IH24 x₁ xβ‚‚ y) (h4 : IH4 x₁ xβ‚‚ y) (hl : MulOptionsLTMul xβ‚‚ y) (i j) :\n IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ (y.moveLeft j) y :=\n have ml := @IsOption.moveLeft\n have h24 := (@h24 _).2.1 (ml i)\n ⟨(h4 <| ml j).2 (ml i), h24.1, mulOption_lt_mul_iff_P3.1 (@hl i j), fun l ↦ (h24.2 l).1 _⟩", "end": [ 401, 93 ], "full_name": "Surreal.Multiplication.ih3_of_ih", "kind": "lemma", "start": [ 397, 1 ] }, { "code": "lemma P3_of_le_left {y₁ yβ‚‚} (i) (h : IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚) (hl : x₁ ≀ xβ‚‚.moveLeft i) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚ := by\n obtain (hl|he) := lt_or_equiv_of_le hl\n Β· exact (h.2.2.2 hl).trans h.2.2.1\n Β· rw [P3, h.1 he, h.2.1 he]\n exact h.2.2.1", "end": [ 408, 18 ], "full_name": "Surreal.Multiplication.P3_of_le_left", "kind": "lemma", "start": [ 403, 1 ] }, { "code": "theorem P3_of_lt {y₁ yβ‚‚} (h : βˆ€ i, IH3 x₁ (xβ‚‚.moveLeft i) xβ‚‚ y₁ yβ‚‚)\n (hs : βˆ€ i, IH3 (-xβ‚‚) ((-x₁).moveLeft i) (-x₁) y₁ yβ‚‚) (hl : x₁ < xβ‚‚) :\n P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 419, 45 ], "full_name": "Surreal.Multiplication.P3_of_lt", "kind": "commanddeclaration", "start": [ 410, 1 ] }, { "code": "theorem main (a : Args) : a.Numeric β†’ P124 a", "end": [ 448, 50 ], "full_name": "Surreal.Multiplication.main", "kind": "commanddeclaration", "start": [ 421, 1 ] }, { "code": "theorem Numeric.mul : Numeric (x * y)", "end": [ 459, 80 ], "full_name": "SetTheory.PGame.Numeric.mul", "kind": "commanddeclaration", "start": [ 459, 1 ] }, { "code": "theorem P24 : P24 x₁ xβ‚‚ y", "end": [ 461, 75 ], "full_name": "SetTheory.PGame.P24", "kind": "commanddeclaration", "start": [ 461, 1 ] }, { "code": "theorem Equiv.mul_congr_left (he : x₁ β‰ˆ xβ‚‚) : x₁ * y β‰ˆ xβ‚‚ * y", "end": [ 464, 47 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_left", "kind": "commanddeclaration", "start": [ 463, 1 ] }, { "code": "theorem Equiv.mul_congr_right (he : y₁ β‰ˆ yβ‚‚) : x * y₁ β‰ˆ x * yβ‚‚", "end": [ 467, 92 ], "full_name": "SetTheory.PGame.Equiv.mul_congr_right", "kind": "commanddeclaration", "start": [ 466, 1 ] }, { "code": "theorem Equiv.mul_congr (hx : x₁ β‰ˆ xβ‚‚) (hy : y₁ β‰ˆ yβ‚‚) : x₁ * y₁ β‰ˆ xβ‚‚ * yβ‚‚", "end": [ 470, 74 ], "full_name": "SetTheory.PGame.Equiv.mul_congr", "kind": "commanddeclaration", "start": [ 469, 1 ] }, { "code": "theorem P3_of_lt_of_lt (hx : x₁ < xβ‚‚) (hy : y₁ < yβ‚‚) : P3 x₁ xβ‚‚ y₁ yβ‚‚", "end": [ 489, 72 ], "full_name": "SetTheory.PGame.P3_of_lt_of_lt", "kind": "commanddeclaration", "start": [ 474, 1 ] }, { "code": "theorem Numeric.mul_pos (hp₁ : 0 < x₁) (hpβ‚‚ : 0 < xβ‚‚) : 0 < x₁ * xβ‚‚", "end": [ 495, 13 ], "full_name": "SetTheory.PGame.Numeric.mul_pos", "kind": "commanddeclaration", "start": [ 491, 1 ] } ]
32
Surreal.Multiplication.numeric_of_ih
[ [ 318, 62 ], [ 321, 57 ] ]
3
5
exact (cutExpand_add_right {y}).2 <| (cutExpand_add_left {x₁}).2 cutExpand_zero
case left x x₁ xβ‚‚ x₃ x' y y₁ yβ‚‚ y₃ y' : PGame ih : βˆ€ (a : Args), ArgsRel a (Args.P1 x y) β†’ P124 a hx : x.Numeric hy : y.Numeric ih' : βˆ€ (a : Args), ArgsRel a (Args.P24 x₁ xβ‚‚ y) β†’ P124 a ⊒ CutExpand IsOption (Args.P1 x₁ y).toMultiset (Args.P24 x₁ xβ‚‚ y).toMultiset
no goals