Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
Danish
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
danish-dynaword / src /dynaword /plot_tokens_over_time.py
KennethEnevoldsen's picture
Add tokens over time (+ rename scrape_hovedstaten) (#73)
0cdc88c verified
raw
history blame
7.6 kB
import json
import logging
import subprocess
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
import pandas as pd
import plotly.graph_objects as go
from dynaword.paths import repo_path
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def get_file_history(
filename: str = "descriptive_stats.json",
) -> List[Tuple[str, str, str]]:
"""Get commit history for a file with commit messages"""
logger.info(f"Retrieving git history for {filename}")
cmd = [
"git",
"log",
"--format=%H|%ci|%s", # commit hash | commit date | subject
"--",
filename,
]
try:
result = subprocess.run(
cmd, capture_output=True, text=True, cwd=repo_path, check=True
)
commits = []
for line in result.stdout.strip().split("\n"):
if line:
parts = line.split("|", 2) # Split on first 2 pipes only
if len(parts) == 3:
commit_hash, date_str, message = parts
commits.append((commit_hash, date_str, message))
logger.info(f"Found {len(commits)} commits for {filename}")
return commits
except subprocess.CalledProcessError as e:
logger.error(f"Failed to get git history: {e}")
return []
def get_file_at_commit(commit_hash: str, filename: str) -> Optional[Dict[str, Any]]:
"""Get file content at specific commit"""
cmd = ["git", "show", f"{commit_hash}:{filename}"]
try:
result = subprocess.run(
cmd, capture_output=True, text=True, cwd=repo_path, check=True
)
return json.loads(result.stdout)
except (subprocess.CalledProcessError, json.JSONDecodeError) as e:
logger.warning(f"Failed to parse {filename} at commit {commit_hash[:8]}: {e}")
return None
def create_token_dataframe(filename: str = "descriptive_stats.json") -> pd.DataFrame:
"""Create DataFrame with token history from git commits"""
logger.info("Building token history dataframe from git commits")
commits = get_file_history(filename)
if not commits:
logger.warning("No commits found")
return pd.DataFrame()
data = []
for commit_hash, date_str, commit_message in commits:
file_data = get_file_at_commit(commit_hash, filename)
if file_data and "number_of_tokens" in file_data:
try:
date = datetime.fromisoformat(date_str.split(" ")[0])
data.append(
{
"date": date,
"tokens": file_data["number_of_tokens"],
"samples": file_data.get("number_of_samples", 0),
"avg_length": file_data.get("average_document_length", 0),
"commit": commit_hash,
"commit_short": commit_hash[:8],
"commit_message": commit_message,
}
)
except ValueError as e:
logger.warning(f"Failed to parse date {date_str}: {e}")
# Convert to DataFrame and sort by date
df = pd.DataFrame(data)
if df.empty:
logger.warning("No valid data found in commits")
return df
df = df.sort_values("date").reset_index(drop=True)
# Calculate token changes
if len(df) > 1:
df["token_change"] = df["tokens"].diff()
logger.info(
f"Created dataframe with {len(df)} data points spanning {df['date'].min().date()} to {df['date'].max().date()}"
)
return df
def _format_tokens(value: float) -> str:
"""Format tokens with human-readable suffixes"""
if value >= 1e12:
return f"{value/1e12:.2f}T"
elif value >= 1e9:
return f"{value/1e9:.2f}G"
elif value >= 1e6:
return f"{value/1e6:.2f}M"
elif value >= 1e3:
return f"{value/1e3:.2f}k"
else:
return f"{value:.0f}"
def _create_hover_text(df: pd.DataFrame) -> List[str]:
"""Create hover text for each data point"""
hover_text = []
for _, row in df.iterrows():
hover_info = (
f"Date: {row['date'].strftime('%Y-%m-%d')}<br>"
f"Tokens: {_format_tokens(row['tokens'])}<br>"
)
if pd.notna(row.get("token_change")):
change_sign = "+" if row["token_change"] >= 0 else ""
hover_info += (
f"Change: {change_sign}{_format_tokens(abs(row['token_change']))}<br>"
)
hover_info += (
f"Samples: {row['samples']:,}<br>"
f"Commit: {row['commit_short']}<br>"
f"Message: {row['commit_message']}"
)
hover_text.append(hover_info)
return hover_text
def _add_reference_lines(fig: go.Figure) -> None:
"""Add reference lines for other Danish corpora"""
references = [
(300_000_000, "Common Corpus (dan) (Langlais et al., 2025)"),
(1_000_000_000, "Danish Gigaword (Derczynski et al., 2021)"),
]
for y_value, annotation in references:
fig.add_hline(
y=y_value,
line_dash="dash",
line_color="gray",
line_width=1,
annotation_text=annotation,
annotation_position="top left",
annotation_font_size=12,
annotation_font_color="gray",
)
def plot_tokens_over_time(
df: pd.DataFrame, width: int = 600, height: int = 400
) -> go.Figure:
"""Plot tokens over time using Plotly with interactive hover info"""
hover_text = _create_hover_text(df)
# Create the plot
fig = go.Figure()
# Add main data line
fig.add_trace(
go.Scatter(
x=df["date"],
y=df["tokens"],
mode="lines+markers",
name="Tokens",
line=dict(width=3, color="#DC2626"), # Saturated red
marker=dict(size=5, color="#DC2626"),
hovertemplate="%{text}<extra></extra>",
text=hover_text,
)
)
# Add reference lines
_add_reference_lines(fig)
# Update layout
fig.update_layout(
title="Number of Tokens Over Time in Danish Dynaword",
xaxis_title="Date",
yaxis_title="Number of Tokens (Llama 3)",
hovermode="closest",
width=width,
height=height,
showlegend=False,
plot_bgcolor="rgba(0,0,0,0)", # Transparent plot background
paper_bgcolor="rgba(0,0,0,0)", # Transparent paper background
)
# Set x-axis and y-axis properties
# x_min = df["date"].min() - pd.Timedelta(days=)
# x_max = df["date"].max() + pd.Timedelta(days=1)
# Format y-axis
fig.update_yaxes(tickformat=".2s", ticksuffix="")
# fig.update_xaxes(range=[x_min, x_max]) # Explicitly set x-axis range
return fig
def create_tokens_over_time_plot() -> None:
"""Main function to create DataFrame and plot tokens over time"""
df = create_token_dataframe()
if not df.empty:
logger.info("Generating interactive plot")
fig = plot_tokens_over_time(df)
else:
logger.warning("No data available to plot")
save_path = repo_path / "images" / "tokens_over_time.html"
save_path_svg = repo_path / "images" / "tokens_over_time.svg"
save_path.parent.mkdir(parents=True, exist_ok=True)
fig.write_html(save_path, include_plotlyjs="cdn")
fig.write_image(save_path_svg)
if __name__ == "__main__":
create_tokens_over_time_plot()