import json import logging import subprocess from datetime import datetime from typing import Any, Dict, List, Optional, Tuple import pandas as pd import plotly.graph_objects as go from dynaword.paths import repo_path # Configure logging logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) logger = logging.getLogger(__name__) def get_file_history( filename: str = "descriptive_stats.json", ) -> List[Tuple[str, str, str]]: """Get commit history for a file with commit messages""" logger.info(f"Retrieving git history for {filename}") cmd = [ "git", "log", "--format=%H|%ci|%s", # commit hash | commit date | subject "--", filename, ] try: result = subprocess.run( cmd, capture_output=True, text=True, cwd=repo_path, check=True ) commits = [] for line in result.stdout.strip().split("\n"): if line: parts = line.split("|", 2) # Split on first 2 pipes only if len(parts) == 3: commit_hash, date_str, message = parts commits.append((commit_hash, date_str, message)) logger.info(f"Found {len(commits)} commits for {filename}") return commits except subprocess.CalledProcessError as e: logger.error(f"Failed to get git history: {e}") return [] def get_file_at_commit(commit_hash: str, filename: str) -> Optional[Dict[str, Any]]: """Get file content at specific commit""" cmd = ["git", "show", f"{commit_hash}:{filename}"] try: result = subprocess.run( cmd, capture_output=True, text=True, cwd=repo_path, check=True ) return json.loads(result.stdout) except (subprocess.CalledProcessError, json.JSONDecodeError) as e: logger.warning(f"Failed to parse {filename} at commit {commit_hash[:8]}: {e}") return None def create_token_dataframe(filename: str = "descriptive_stats.json") -> pd.DataFrame: """Create DataFrame with token history from git commits""" logger.info("Building token history dataframe from git commits") commits = get_file_history(filename) if not commits: logger.warning("No commits found") return pd.DataFrame() data = [] for commit_hash, date_str, commit_message in commits: file_data = get_file_at_commit(commit_hash, filename) if file_data and "number_of_tokens" in file_data: try: date = datetime.fromisoformat(date_str.split(" ")[0]) data.append( { "date": date, "tokens": file_data["number_of_tokens"], "samples": file_data.get("number_of_samples", 0), "avg_length": file_data.get("average_document_length", 0), "commit": commit_hash, "commit_short": commit_hash[:8], "commit_message": commit_message, } ) except ValueError as e: logger.warning(f"Failed to parse date {date_str}: {e}") # Convert to DataFrame and sort by date df = pd.DataFrame(data) if df.empty: logger.warning("No valid data found in commits") return df df = df.sort_values("date").reset_index(drop=True) # Calculate token changes if len(df) > 1: df["token_change"] = df["tokens"].diff() logger.info( f"Created dataframe with {len(df)} data points spanning {df['date'].min().date()} to {df['date'].max().date()}" ) return df def _format_tokens(value: float) -> str: """Format tokens with human-readable suffixes""" if value >= 1e12: return f"{value/1e12:.2f}T" elif value >= 1e9: return f"{value/1e9:.2f}G" elif value >= 1e6: return f"{value/1e6:.2f}M" elif value >= 1e3: return f"{value/1e3:.2f}k" else: return f"{value:.0f}" def _create_hover_text(df: pd.DataFrame) -> List[str]: """Create hover text for each data point""" hover_text = [] for _, row in df.iterrows(): hover_info = ( f"Date: {row['date'].strftime('%Y-%m-%d')}
" f"Tokens: {_format_tokens(row['tokens'])}
" ) if pd.notna(row.get("token_change")): change_sign = "+" if row["token_change"] >= 0 else "" hover_info += ( f"Change: {change_sign}{_format_tokens(abs(row['token_change']))}
" ) hover_info += ( f"Samples: {row['samples']:,}
" f"Commit: {row['commit_short']}
" f"Message: {row['commit_message']}" ) hover_text.append(hover_info) return hover_text def _add_reference_lines(fig: go.Figure) -> None: """Add reference lines for other Danish corpora""" references = [ (300_000_000, "Common Corpus (dan) (Langlais et al., 2025)"), (1_000_000_000, "Danish Gigaword (Derczynski et al., 2021)"), ] for y_value, annotation in references: fig.add_hline( y=y_value, line_dash="dash", line_color="gray", line_width=1, annotation_text=annotation, annotation_position="top left", annotation_font_size=12, annotation_font_color="gray", ) def plot_tokens_over_time( df: pd.DataFrame, width: int = 600, height: int = 400 ) -> go.Figure: """Plot tokens over time using Plotly with interactive hover info""" hover_text = _create_hover_text(df) # Create the plot fig = go.Figure() # Add main data line fig.add_trace( go.Scatter( x=df["date"], y=df["tokens"], mode="lines+markers", name="Tokens", line=dict(width=3, color="#DC2626"), # Saturated red marker=dict(size=5, color="#DC2626"), hovertemplate="%{text}", text=hover_text, ) ) # Add reference lines _add_reference_lines(fig) # Update layout fig.update_layout( title="Number of Tokens Over Time in Danish Dynaword", xaxis_title="Date", yaxis_title="Number of Tokens (Llama 3)", hovermode="closest", width=width, height=height, showlegend=False, plot_bgcolor="rgba(0,0,0,0)", # Transparent plot background paper_bgcolor="rgba(0,0,0,0)", # Transparent paper background ) # Set x-axis and y-axis properties # x_min = df["date"].min() - pd.Timedelta(days=) # x_max = df["date"].max() + pd.Timedelta(days=1) # Format y-axis fig.update_yaxes(tickformat=".2s", ticksuffix="") # fig.update_xaxes(range=[x_min, x_max]) # Explicitly set x-axis range return fig def create_tokens_over_time_plot() -> None: """Main function to create DataFrame and plot tokens over time""" df = create_token_dataframe() if not df.empty: logger.info("Generating interactive plot") fig = plot_tokens_over_time(df) else: logger.warning("No data available to plot") save_path = repo_path / "images" / "tokens_over_time.html" save_path_svg = repo_path / "images" / "tokens_over_time.svg" save_path.parent.mkdir(parents=True, exist_ok=True) fig.write_html(save_path, include_plotlyjs="cdn") fig.write_image(save_path_svg) if __name__ == "__main__": create_tokens_over_time_plot()