import json
import logging
import subprocess
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
import pandas as pd
import plotly.graph_objects as go
from dynaword.paths import repo_path
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def get_file_history(
filename: str = "descriptive_stats.json",
) -> List[Tuple[str, str, str]]:
"""Get commit history for a file with commit messages"""
logger.info(f"Retrieving git history for {filename}")
cmd = [
"git",
"log",
"--format=%H|%ci|%s", # commit hash | commit date | subject
"--",
filename,
]
try:
result = subprocess.run(
cmd, capture_output=True, text=True, cwd=repo_path, check=True
)
commits = []
for line in result.stdout.strip().split("\n"):
if line:
parts = line.split("|", 2) # Split on first 2 pipes only
if len(parts) == 3:
commit_hash, date_str, message = parts
commits.append((commit_hash, date_str, message))
logger.info(f"Found {len(commits)} commits for {filename}")
return commits
except subprocess.CalledProcessError as e:
logger.error(f"Failed to get git history: {e}")
return []
def get_file_at_commit(commit_hash: str, filename: str) -> Optional[Dict[str, Any]]:
"""Get file content at specific commit"""
cmd = ["git", "show", f"{commit_hash}:{filename}"]
try:
result = subprocess.run(
cmd, capture_output=True, text=True, cwd=repo_path, check=True
)
return json.loads(result.stdout)
except (subprocess.CalledProcessError, json.JSONDecodeError) as e:
logger.warning(f"Failed to parse {filename} at commit {commit_hash[:8]}: {e}")
return None
def create_token_dataframe(filename: str = "descriptive_stats.json") -> pd.DataFrame:
"""Create DataFrame with token history from git commits"""
logger.info("Building token history dataframe from git commits")
commits = get_file_history(filename)
if not commits:
logger.warning("No commits found")
return pd.DataFrame()
data = []
for commit_hash, date_str, commit_message in commits:
file_data = get_file_at_commit(commit_hash, filename)
if file_data and "number_of_tokens" in file_data:
try:
date = datetime.fromisoformat(date_str.split(" ")[0])
data.append(
{
"date": date,
"tokens": file_data["number_of_tokens"],
"samples": file_data.get("number_of_samples", 0),
"avg_length": file_data.get("average_document_length", 0),
"commit": commit_hash,
"commit_short": commit_hash[:8],
"commit_message": commit_message,
}
)
except ValueError as e:
logger.warning(f"Failed to parse date {date_str}: {e}")
# Convert to DataFrame and sort by date
df = pd.DataFrame(data)
if df.empty:
logger.warning("No valid data found in commits")
return df
df = df.sort_values("date").reset_index(drop=True)
# Calculate token changes
if len(df) > 1:
df["token_change"] = df["tokens"].diff()
logger.info(
f"Created dataframe with {len(df)} data points spanning {df['date'].min().date()} to {df['date'].max().date()}"
)
return df
def _format_tokens(value: float) -> str:
"""Format tokens with human-readable suffixes"""
if value >= 1e12:
return f"{value/1e12:.2f}T"
elif value >= 1e9:
return f"{value/1e9:.2f}G"
elif value >= 1e6:
return f"{value/1e6:.2f}M"
elif value >= 1e3:
return f"{value/1e3:.2f}k"
else:
return f"{value:.0f}"
def _create_hover_text(df: pd.DataFrame) -> List[str]:
"""Create hover text for each data point"""
hover_text = []
for _, row in df.iterrows():
hover_info = (
f"Date: {row['date'].strftime('%Y-%m-%d')}
"
f"Tokens: {_format_tokens(row['tokens'])}
"
)
if pd.notna(row.get("token_change")):
change_sign = "+" if row["token_change"] >= 0 else ""
hover_info += (
f"Change: {change_sign}{_format_tokens(abs(row['token_change']))}
"
)
hover_info += (
f"Samples: {row['samples']:,}
"
f"Commit: {row['commit_short']}
"
f"Message: {row['commit_message']}"
)
hover_text.append(hover_info)
return hover_text
def _add_reference_lines(fig: go.Figure) -> None:
"""Add reference lines for other Danish corpora"""
references = [
(300_000_000, "Common Corpus (dan) (Langlais et al., 2025)"),
(1_000_000_000, "Danish Gigaword (Derczynski et al., 2021)"),
]
for y_value, annotation in references:
fig.add_hline(
y=y_value,
line_dash="dash",
line_color="gray",
line_width=1,
annotation_text=annotation,
annotation_position="top left",
annotation_font_size=12,
annotation_font_color="gray",
)
def plot_tokens_over_time(
df: pd.DataFrame, width: int = 600, height: int = 400
) -> go.Figure:
"""Plot tokens over time using Plotly with interactive hover info"""
hover_text = _create_hover_text(df)
# Create the plot
fig = go.Figure()
# Add main data line
fig.add_trace(
go.Scatter(
x=df["date"],
y=df["tokens"],
mode="lines+markers",
name="Tokens",
line=dict(width=3, color="#DC2626"), # Saturated red
marker=dict(size=5, color="#DC2626"),
hovertemplate="%{text}",
text=hover_text,
)
)
# Add reference lines
_add_reference_lines(fig)
# Update layout
fig.update_layout(
title="Number of Tokens Over Time in Danish Dynaword",
xaxis_title="Date",
yaxis_title="Number of Tokens (Llama 3)",
hovermode="closest",
width=width,
height=height,
showlegend=False,
plot_bgcolor="rgba(0,0,0,0)", # Transparent plot background
paper_bgcolor="rgba(0,0,0,0)", # Transparent paper background
)
# Set x-axis and y-axis properties
# x_min = df["date"].min() - pd.Timedelta(days=)
# x_max = df["date"].max() + pd.Timedelta(days=1)
# Format y-axis
fig.update_yaxes(tickformat=".2s", ticksuffix="")
# fig.update_xaxes(range=[x_min, x_max]) # Explicitly set x-axis range
return fig
def create_tokens_over_time_plot() -> None:
"""Main function to create DataFrame and plot tokens over time"""
df = create_token_dataframe()
if not df.empty:
logger.info("Generating interactive plot")
fig = plot_tokens_over_time(df)
else:
logger.warning("No data available to plot")
save_path = repo_path / "images" / "tokens_over_time.html"
save_path_svg = repo_path / "images" / "tokens_over_time.svg"
save_path.parent.mkdir(parents=True, exist_ok=True)
fig.write_html(save_path, include_plotlyjs="cdn")
fig.write_image(save_path_svg)
if __name__ == "__main__":
create_tokens_over_time_plot()