Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
10M - 100M
ArXiv:
DOI:
License:
File size: 7,596 Bytes
0cdc88c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import json
import logging
import subprocess
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
import pandas as pd
import plotly.graph_objects as go
from dynaword.paths import repo_path
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def get_file_history(
filename: str = "descriptive_stats.json",
) -> List[Tuple[str, str, str]]:
"""Get commit history for a file with commit messages"""
logger.info(f"Retrieving git history for {filename}")
cmd = [
"git",
"log",
"--format=%H|%ci|%s", # commit hash | commit date | subject
"--",
filename,
]
try:
result = subprocess.run(
cmd, capture_output=True, text=True, cwd=repo_path, check=True
)
commits = []
for line in result.stdout.strip().split("\n"):
if line:
parts = line.split("|", 2) # Split on first 2 pipes only
if len(parts) == 3:
commit_hash, date_str, message = parts
commits.append((commit_hash, date_str, message))
logger.info(f"Found {len(commits)} commits for {filename}")
return commits
except subprocess.CalledProcessError as e:
logger.error(f"Failed to get git history: {e}")
return []
def get_file_at_commit(commit_hash: str, filename: str) -> Optional[Dict[str, Any]]:
"""Get file content at specific commit"""
cmd = ["git", "show", f"{commit_hash}:{filename}"]
try:
result = subprocess.run(
cmd, capture_output=True, text=True, cwd=repo_path, check=True
)
return json.loads(result.stdout)
except (subprocess.CalledProcessError, json.JSONDecodeError) as e:
logger.warning(f"Failed to parse {filename} at commit {commit_hash[:8]}: {e}")
return None
def create_token_dataframe(filename: str = "descriptive_stats.json") -> pd.DataFrame:
"""Create DataFrame with token history from git commits"""
logger.info("Building token history dataframe from git commits")
commits = get_file_history(filename)
if not commits:
logger.warning("No commits found")
return pd.DataFrame()
data = []
for commit_hash, date_str, commit_message in commits:
file_data = get_file_at_commit(commit_hash, filename)
if file_data and "number_of_tokens" in file_data:
try:
date = datetime.fromisoformat(date_str.split(" ")[0])
data.append(
{
"date": date,
"tokens": file_data["number_of_tokens"],
"samples": file_data.get("number_of_samples", 0),
"avg_length": file_data.get("average_document_length", 0),
"commit": commit_hash,
"commit_short": commit_hash[:8],
"commit_message": commit_message,
}
)
except ValueError as e:
logger.warning(f"Failed to parse date {date_str}: {e}")
# Convert to DataFrame and sort by date
df = pd.DataFrame(data)
if df.empty:
logger.warning("No valid data found in commits")
return df
df = df.sort_values("date").reset_index(drop=True)
# Calculate token changes
if len(df) > 1:
df["token_change"] = df["tokens"].diff()
logger.info(
f"Created dataframe with {len(df)} data points spanning {df['date'].min().date()} to {df['date'].max().date()}"
)
return df
def _format_tokens(value: float) -> str:
"""Format tokens with human-readable suffixes"""
if value >= 1e12:
return f"{value/1e12:.2f}T"
elif value >= 1e9:
return f"{value/1e9:.2f}G"
elif value >= 1e6:
return f"{value/1e6:.2f}M"
elif value >= 1e3:
return f"{value/1e3:.2f}k"
else:
return f"{value:.0f}"
def _create_hover_text(df: pd.DataFrame) -> List[str]:
"""Create hover text for each data point"""
hover_text = []
for _, row in df.iterrows():
hover_info = (
f"Date: {row['date'].strftime('%Y-%m-%d')}<br>"
f"Tokens: {_format_tokens(row['tokens'])}<br>"
)
if pd.notna(row.get("token_change")):
change_sign = "+" if row["token_change"] >= 0 else ""
hover_info += (
f"Change: {change_sign}{_format_tokens(abs(row['token_change']))}<br>"
)
hover_info += (
f"Samples: {row['samples']:,}<br>"
f"Commit: {row['commit_short']}<br>"
f"Message: {row['commit_message']}"
)
hover_text.append(hover_info)
return hover_text
def _add_reference_lines(fig: go.Figure) -> None:
"""Add reference lines for other Danish corpora"""
references = [
(300_000_000, "Common Corpus (dan) (Langlais et al., 2025)"),
(1_000_000_000, "Danish Gigaword (Derczynski et al., 2021)"),
]
for y_value, annotation in references:
fig.add_hline(
y=y_value,
line_dash="dash",
line_color="gray",
line_width=1,
annotation_text=annotation,
annotation_position="top left",
annotation_font_size=12,
annotation_font_color="gray",
)
def plot_tokens_over_time(
df: pd.DataFrame, width: int = 600, height: int = 400
) -> go.Figure:
"""Plot tokens over time using Plotly with interactive hover info"""
hover_text = _create_hover_text(df)
# Create the plot
fig = go.Figure()
# Add main data line
fig.add_trace(
go.Scatter(
x=df["date"],
y=df["tokens"],
mode="lines+markers",
name="Tokens",
line=dict(width=3, color="#DC2626"), # Saturated red
marker=dict(size=5, color="#DC2626"),
hovertemplate="%{text}<extra></extra>",
text=hover_text,
)
)
# Add reference lines
_add_reference_lines(fig)
# Update layout
fig.update_layout(
title="Number of Tokens Over Time in Danish Dynaword",
xaxis_title="Date",
yaxis_title="Number of Tokens (Llama 3)",
hovermode="closest",
width=width,
height=height,
showlegend=False,
plot_bgcolor="rgba(0,0,0,0)", # Transparent plot background
paper_bgcolor="rgba(0,0,0,0)", # Transparent paper background
)
# Set x-axis and y-axis properties
# x_min = df["date"].min() - pd.Timedelta(days=)
# x_max = df["date"].max() + pd.Timedelta(days=1)
# Format y-axis
fig.update_yaxes(tickformat=".2s", ticksuffix="")
# fig.update_xaxes(range=[x_min, x_max]) # Explicitly set x-axis range
return fig
def create_tokens_over_time_plot() -> None:
"""Main function to create DataFrame and plot tokens over time"""
df = create_token_dataframe()
if not df.empty:
logger.info("Generating interactive plot")
fig = plot_tokens_over_time(df)
else:
logger.warning("No data available to plot")
save_path = repo_path / "images" / "tokens_over_time.html"
save_path_svg = repo_path / "images" / "tokens_over_time.svg"
save_path.parent.mkdir(parents=True, exist_ok=True)
fig.write_html(save_path, include_plotlyjs="cdn")
fig.write_image(save_path_svg)
if __name__ == "__main__":
create_tokens_over_time_plot()
|