File size: 18,396 Bytes
5ca1e2c
 
 
 
 
 
 
 
 
 
e6a38b2
5ca1e2c
e6a38b2
5ca1e2c
e6a38b2
5ca1e2c
 
 
 
 
 
 
e6a38b2
 
 
 
 
 
5ca1e2c
 
eaf726e
 
 
 
5ca1e2c
 
 
 
 
eda0d86
 
 
 
 
 
 
 
 
 
 
8159d87
 
 
 
 
 
 
 
 
 
eda0d86
 
 
5ca1e2c
 
 
 
 
33b6c5e
b6c6aa3
7ecb576
 
b6c6aa3
0e1ebcf
b6c6aa3
9468c37
d85817f
f65e504
 
2d31689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6c6aa3
 
 
 
 
 
 
0e1ebcf
2d31689
d3628c9
0e1ebcf
 
 
 
 
 
 
 
 
 
2d31689
d3628c9
b6c6aa3
 
 
f90b1c0
 
b6c6aa3
 
 
 
 
cb9e04f
b6c6aa3
 
 
 
 
 
 
 
 
 
7d1f8c6
b6c6aa3
 
 
 
 
 
 
 
 
 
 
 
 
cb9e04f
b6c6aa3
 
 
 
 
 
7d1f8c6
b6c6aa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d31689
d3628c9
 
f90b1c0
 
 
d4326a2
 
 
 
 
a030986
 
d3628c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e77afd0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
---
license: apache-2.0
dataset_info:
  features:
  - name: image
    dtype: image
  - name: prompt
    dtype: string
  - name: word_scores
    dtype: string
  - name: alignment_score_norm
    dtype: float32
  - name: coherence_score_norm
    dtype: float32
  - name: style_score_norm
    dtype: float32
  - name: alignment_heatmap
    sequence:
      sequence: float16
  - name: coherence_heatmap
    sequence:
      sequence: float16
  - name: alignment_score
    dtype: float32
  - name: coherence_score
    dtype: float32
  - name: style_score
    dtype: float32
  splits:
  - name: train
    num_bytes: 25257389633.104
    num_examples: 13024
  download_size: 17856619960
  dataset_size: 25257389633.104
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
task_categories:
- text-to-image
- text-classification
- image-classification
- image-to-text
- image-segmentation
language:
- en
tags:
- t2i
- preferences
- human
- flux
- midjourney
- imagen
- dalle
- heatmap
- coherence
- alignment
- style
- plausiblity
pretty_name: Rich Human Feedback for Text to Image Models
size_categories:
- 1M<n<10M
---
<a href="https://www.rapidata.ai">
<img src="https://cdn-uploads.huggingface.co/production/uploads/66f5624c42b853e73e0738eb/jfxR79bOztqaC6_yNNnGU.jpeg" width="250" alt="Rapidata Logo">
</a>

Building upon Google's research [Rich Human Feedback for Text-to-Image Generation](https://arxiv.org/abs/2312.10240) we have collected over 1.5 million responses from 152'684 individual humans using Rapidata via the [Python API](https://docs.rapidata.ai/). Collection took roughly 5 days. 

If you get value from this dataset and would like to see more in the future, please consider liking it.

# Overview
We asked humans to evaluate AI-generated images in style, coherence and prompt alignment. For images that contained flaws, participants were asked to identify specific problematic areas. Additionally, for all images, participants identified words from the prompts that were not accurately represented in the generated images.

If you want to replicate the annotation setup, the steps are outlined at the [bottom](#replicating-the-annotation-setup).

This dataset and the annotation process is described in further detail in our blog post [Beyond Image Preferences](https://huggingface.co/blog/RapidataAI/beyond-image-preferences).

# Usage Examples
Accessing this data is easy with the Huggingface `dataset` library. For quick demos or previews, we recommend setting `streaming=True` as downloading the whole dataset can take a while.

```python
  from datasets import load_dataset

  ds = load_dataset("Rapidata/text-2-image-Rich-Human-Feedback", split="train", streaming=True)
```

As an example, below we show how to replicate the figures below.

<details>
<summary>Click to expand Select Words example</summary>
The methods below can be used to produce figures similar to the ones shownn below. 
Note however that the figures below were created using `matplotlib`, however we opt to use `opencv` here as it makes calculating the text spacing much easier.
  
**Methods**
```python
from PIL import Image
from datasets import load_dataset
import cv2 
import numpy as np

def get_colors(words):
    colors = []
    for item in words:
        intensity = item / max(words)
        value = np.uint8((1 - intensity) * 255)
        color = tuple(map(int, cv2.applyColorMap(np.array([[value]]), cv2.COLORMAP_AUTUMN)[0][0]))
        colors.append(color)
    return colors

def get_wrapped_text(text_color_pairs, font, font_scale, thickness, word_spacing, max_width):
    wrapped_text_color_pairs, current_line, line_width = [], [], 0
    for text, color in text_color_pairs:
        text_size = cv2.getTextSize(text, font, font_scale, thickness)[0]
        if line_width + text_size[0] > max_width:
            wrapped_text_color_pairs.append(current_line)
            current_line, line_width = [], 0
        current_line.append((text, color, text_size))
        line_width += text_size[0] + word_spacing
    wrapped_text_color_pairs.append(current_line)
    return wrapped_text_color_pairs

def add_multicolor_text(input, text_color_pairs, font_scale=1, thickness=2, word_spacing=20):
    image = cv2.cvtColor(np.array(input), cv2.COLOR_RGB2BGR)
    image_height, image_width, _ = image.shape

    font = cv2.FONT_HERSHEY_SIMPLEX
    wrapped_text = get_wrapped_text(text_color_pairs, font, font_scale, thickness, word_spacing, int(image_width*0.95))

    position = (int(0.025*image_width), int(word_spacing*2))
    
    overlay = image.copy()
    cv2.rectangle(overlay, (0, 0), (image_width, int((len(wrapped_text)+1)*word_spacing*2)), (100,100,100), -1)
    out_img = cv2.addWeighted(overlay, 0.75, image, 0.25, 0)

    for idx, text_line in enumerate(wrapped_text):
        current_x, current_y = position[0], position[1] + int(idx*word_spacing*2)
        for text, color, text_size in text_line:
            cv2.putText(out_img, text, (current_x, current_y), font, font_scale, color, thickness)
            current_x += text_size[0] + word_spacing

    return Image.fromarray(cv2.cvtColor(out_img, cv2.COLOR_BGR2RGB))
```
**Create figures**
```python
ds_words = ds.select_columns(["image","prompt", "word_scores"])

for example in ds_words.take(5):
    image = example["image"]
    prompt = example["prompt"]
    word_scores = [s[1] for s in eval(example["word_scores"])]
    words = [s[0] for s in eval(example["word_scores"])]
    colors = get_colors(word_scores)
    display(add_multicolor_text(image, list(zip(words, colors)), font_scale=1, thickness=2, word_spacing=20))
```
</details>

<details>
  <summary>Click to expand Heatmap example</summary>
  
  **Methods**
  ```python
  import cv2
  import numpy as np
  from PIL import Image
  
  def overlay_heatmap(image, heatmap, alpha=0.3):
      cv2_image =  cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)   
      heatmap_normalized = ((heatmap - heatmap.min()) / (heatmap.max() - heatmap.min()))
      heatmap_normalized = np.uint8(255 * (heatmap_normalized))
      heatmap_colored = cv2.applyColorMap(heatmap_normalized, cv2.COLORMAP_HOT)
      overlaid_image = cv2.addWeighted(cv2_image, 1 - alpha, heatmap_colored, alpha, 0)
      
      return Image.fromarray(cv2.cvtColor(overlaid_image, cv2.COLOR_BGR2RGB))
```
**Create figures**
```python
  ds_heatmap = ds.select_columns(["image","prompt", "alignment_heatmap"])
  
  for example in ds_heatmap.take(5):
      image = example["image"]
      heatmap = example["alignment_heatmap"]
      if heatmap:
          display(overlay_heatmap(image, np.asarray(heatmap)))
  ```
  
</details>

</br>

# Data Summary

## Word Scores
Users identified words from the prompts that were NOT accurately depicted in the generated images. Higher word scores indicate poorer representation in the image. Participants also had the option to select "[No_mistakes]" for prompts where all elements were accurately depicted.

### Examples Results:
| <img src="https://cdn-uploads.huggingface.co/production/uploads/672b7d79fd1e92e3c3567435/lzlWHmLKBvBJhjGWP8xZZ.png" width="500"> | <img src="https://cdn-uploads.huggingface.co/production/uploads/672b7d79fd1e92e3c3567435/b38uskYWaGEgfeJQtKiaO.png" width="500"> |
|---|---|
| <img src="https://cdn-uploads.huggingface.co/production/uploads/672b7d79fd1e92e3c3567435/4uWKVjZBA5aX2YDUYNpdV.png" width="500"> | <img src="https://cdn-uploads.huggingface.co/production/uploads/672b7d79fd1e92e3c3567435/f9JIuwDoNohy7EkDYILFm.png" width="500"> |


## Coherence
The coherence score measures whether the generated image is logically consistent and free from artifacts or visual glitches. Without seeing the original prompt, users were asked: "Look closely, does this image have weird errors, like senseless or malformed objects, incomprehensible details, or visual glitches?" Each image received at least 21 responses indicating the level of coherence on a scale of 1-5, which were then averaged to produce the final scores where 5 indicates the highest coherence.

Images scoring below 3.8 in coherence were further evaluated, with participants marking specific errors in the image.

### Example Results:

| <img src="https://cdn-uploads.huggingface.co/production/uploads/672b7d79fd1e92e3c3567435/sc-4ls9X0yO-hGN0VCDSX.png" width="500"> | <img src="https://cdn-uploads.huggingface.co/production/uploads/672b7d79fd1e92e3c3567435/J77EmYp4oyRRakkcRnaF9.png" width="500"> |
|---|---|
| <img src="https://cdn-uploads.huggingface.co/production/uploads/672b7d79fd1e92e3c3567435/mRDdoQdc4_iy2JcLhdI7J.png" width="500"> | <img src="https://cdn-uploads.huggingface.co/production/uploads/672b7d79fd1e92e3c3567435/2N2KJyz4YOGT6N6tuUX8M.png" width="500"> |


## Alignment
The alignment score quantifies how well an image matches its prompt. Users were asked: "How well does the image match the description?". Again, each image received at least 21 responses indicating the level of alignment on a scale of 1-5 (5 being the highest), which were then averaged.

For images with an alignment score below 3.2, additional users were asked to highlight areas where the image did not align with the prompt. These responses were then compiled into a heatmap.

As mentioned in the google paper, aligment is harder to annotate consistently, if e.g. an object is missing, it is unclear to the annotators what they need to highlight. 

### Example Results:

<style>
.example-results-grid {
    display: grid;
    grid-template-columns: repeat(2, 450px);
    gap: 20px;
    margin: 20px 0;
    justify-content: left;
}

.result-card {
    background-color: #fff;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    padding: 15px;
    width: 450px;
}

.prompt {
    margin-bottom: 10px;
    font-size: 18px;
    line-height: 1.4;
    color: #333;
    background-color: #f8f8f8;
    padding: 10px;
    border-radius: 5px;
}

.image-container img {
    width: 450px;
    height: auto;
    border-radius: 4px;
}

@media (max-width: 1050px) {
    .example-results-grid {
        grid-template-columns: 450px;
    }
}
</style>

<div class="example-results-grid">
    <div class="result-card">
        <div class="prompt">
            <strong>Prompt:</strong> Three cats and one dog sitting on the grass.
        </div>
        <div class="image-container">
            <img src="https://cdn-uploads.huggingface.co/production/uploads/672b7d79fd1e92e3c3567435/qCNWVSNjPsp8XQ3zliLcp.png" alt="Three cats and one dog">
        </div>
    </div>
    <div class="result-card">
        <div class="prompt">
            <strong>Prompt:</strong> A brown toilet with a white wooden seat.
        </div>
        <div class="image-container">
            <img src="https://cdn-uploads.huggingface.co/production/uploads/672b7d79fd1e92e3c3567435/M3buzP-5k4pRCxOi_ijxM.png" alt="Brown toilet">
        </div>
    </div>
    <div class="result-card">
        <div class="prompt">
            <strong>Prompt:</strong> Photograph of a pale Asian woman, wearing an oriental costume, sitting in a luxurious white chair. Her head is floating off the chair, with the chin on the table and chin on her knees, her chin on her knees. Closeup
        </div>
        <div class="image-container">
            <img src="https://cdn-uploads.huggingface.co/production/uploads/672b7d79fd1e92e3c3567435/ggYXUEbGppiTeL84pG-DP.png" alt="Asian woman in costume">
        </div>
    </div>
    <div class="result-card">
        <div class="prompt">
            <strong>Prompt:</strong> A tennis racket underneath a traffic light.
        </div>
        <div class="image-container">
            <img src="https://cdn-uploads.huggingface.co/production/uploads/672b7d79fd1e92e3c3567435/mT7sAbnO-w6ySXaeEqEki.png" alt="Racket under traffic light">
        </div>
    </div>
</div>

## Style
The style score reflects how visually appealing participants found each image, independent of the prompt. Users were asked: "How much do you like the way this image looks?" Each image received 21 responses grading on a scale of 1-5, which were then averaged. 
In contrast to other prefrence collection methods, such as the huggingface image arena, the preferences were collected from humans from around the world (156 different countries) from all walks of life, creating a more representative score. 

# About Rapidata
Rapidata's technology makes collecting human feedback at scale faster and more accessible than ever before. Visit [rapidata.ai](https://www.rapidata.ai/) to learn more about how we're revolutionizing human feedback collection for AI development.

# Other Datasets
We run a benchmark of the major image generation models, the results can be found on our [website](https://www.rapidata.ai/leaderboard/image-models). We rank the models according to their coherence/plausiblity, their aligment with the given prompt and style prefernce. The underlying 2M+ annotations can be found here:
- Link to the [Coherence dataset](https://huggingface.co/datasets/Rapidata/Flux_SD3_MJ_Dalle_Human_Coherence_Dataset)
- Link to the [Text-2-Image Alignment dataset](https://huggingface.co/datasets/Rapidata/Flux_SD3_MJ_Dalle_Human_Alignment_Dataset)
- Link to the [Preference dataset](https://huggingface.co/datasets/Rapidata/700k_Human_Preference_Dataset_FLUX_SD3_MJ_DALLE3)

We have also started to run a [video generation benchmark](https://www.rapidata.ai/leaderboard/video-models), it is still a work in progress and currently only covers 2 models. They are also analysed in coherence/plausiblity, alignment and style preference. 

# Replicating the Annotation Setup
For researchers interested in producing their own rich preference dataset, you can directly use the Rapidata API through python. The code snippets below show how to replicate the modalities used in the dataset. Additional information is available through the [documentation](https://docs.rapidata.ai/)

<details>
  <summary>Creating the Rapidata Client and Downloading the Dataset</summary>
  First install the rapidata package, then create the RapidataClient() this will be used create and launch the annotation setup
  
  ```bash
    pip install rapidata
  ```
  
  ```python
  from rapidata import RapidataClient, LabelingSelection, ValidationSelection
  
  client = RapidataClient()
  ```

  As example data we will just use images from the dataset. Make sure to set `streaming=True` as downloading the whole dataset might take a significant amount of time.
  
  ```python
  from datasets import load_dataset
  
  ds = load_dataset("Rapidata/text-2-image-Rich-Human-Feedback", split="train", streaming=True)
  ds = ds.select_columns(["image","prompt"])
  ```
  
  Since we use streaming, we can extract the prompts and download the images we need like this:
  
  ```python
  import os
  tmp_folder = "demo_images"
  
  
  # make folder if it doesn't exist
  if not os.path.exists(tmp_folder):
     os.makedirs(tmp_folder)
  
  
  prompts = []
  image_paths = []
  for i, row in enumerate(ds.take(10)):
     prompts.append(row["prompt"])
     # save image to disk
     save_path = os.path.join(tmp_folder, f"{i}.jpg")
     row["image"].save(save_path)
     image_paths.append(save_path)
  ```
</details>

<details>
<summary>Likert Scale Alignment Score</summary>
  To launch a likert scale annotation order, we make use of the classification annotation modality. Below we show the setup for the alignment criteria. 
  The structure is the same for style and coherence, however arguments have to be adjusted of course. I.e. different instructions, options and validation set.

  ```python
  # Alignment Example 
  instruction = "How well does the image match the description?"
  answer_options = [
          "1: Not at all",
          "2: A little",
          "3: Moderately",
          "4: Very well",
          "5: Perfectly"
      ]
  
  order = client.order.create_classification_order(
      name="Alignment Example",
      instruction=instruction,
      answer_options=answer_options,
      datapoints=image_paths,
      contexts=prompts, # for alignment, prompts are required as context for the annotators.
      responses_per_datapoint=10,
      selections=[ValidationSelection("676199a5ef7af86285630ea6"), LabelingSelection(1)] # here we use a pre-defined validation set. See https://docs.rapidata.ai/improve_order_quality/ for details
  )
  
  order.run() # This starts the order. Follow the printed link to see progress.
```
</details>

<details>
<summary>Alignment Heatmap</summary>
  To produce heatmaps, we use the locate annotation modality. Below is the setup used for creating the alignment heatmaps.
    
  ```python
  # alignment heatmap
  # Note that the selected images may not actually have severely misaligned elements, but this is just for demonstration purposes.
  
  order = client.order.create_locate_order(
      name="Alignment Heatmap Example",
      instruction="What part of the image does not match with the description? Tap to select.",
      datapoints=image_paths,
      contexts=prompts, # for alignment, prompts are required as context for the annotators.
      responses_per_datapoint=10,
      selections=[ValidationSelection("67689e58026456ec851f51f8"), LabelingSelection(1)] # here we use a pre-defined validation set for alignment. See https://docs.rapidata.ai/improve_order_quality/ for details
  )
  
  order.run() # This starts the order. Follow the printed link to see progress.
  ```
</details>

<details>
<summary>Select Misaligned Words</summary>
  To launch the annotation setup for selection of misaligned words, we used the following setup
    
  ```python
  # Select words example
  
  from rapidata import LanguageFilter
  
  select_words_prompts = [p + " [No_Mistake]" for p in prompts]
  order = client.order.create_select_words_order(
      name="Select Words Example",
      instruction = "The image is based on the text below. Select mistakes, i.e., words that are not aligned with the image.",
      datapoints=image_paths,
      sentences=select_words_prompts, 
      responses_per_datapoint=10,
      filters=[LanguageFilter(["en"])], # here we add a filter to ensure only english speaking annotators are selected
      selections=[ValidationSelection("6761a86eef7af86285630ea8"), LabelingSelection(1)] # here we use a pre-defined validation set. See https://docs.rapidata.ai/improve_order_quality/ for details
  )
  
  order.run()
  ```
</details>