Datasets:
jasoncorkill
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -66,7 +66,7 @@ size_categories:
|
|
66 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/66f5624c42b853e73e0738eb/jfxR79bOztqaC6_yNNnGU.jpeg" width="250" alt="Rapidata Logo">
|
67 |
</a>
|
68 |
|
69 |
-
Building upon Google's research [Rich Human Feedback for Text-to-Image Generation](https://arxiv.org/abs/2312.10240) we have collected over 1.5 million responses from 152'684 individual humans using Rapidata via the [Python API](https://docs.rapidata.ai/)
|
70 |
|
71 |
# Overview
|
72 |
We asked humans to evaluate AI-generated images in style, coherence and prompt alignment. For images that contained flaws, participants were asked to identify specific problematic areas. Additionally, for all images, participants identified words from the prompts that were not accurately represented in the generated images.
|
@@ -179,7 +179,7 @@ As mentioned in the google paper, aligment is harder to annotate consistently, i
|
|
179 |
|
180 |
|
181 |
# Style
|
182 |
-
The style score reflects how visually appealing participants found each image, independent of the prompt. Users were asked: "How much do you like the way this image looks?" Each image received 21 responses, which were aggregated on a scale of 1-5.
|
183 |
|
184 |
# About Rapidata
|
185 |
Rapidata's technology makes collecting human feedback at scale faster and more accessible than ever before. Visit [rapidata.ai](https://www.rapidata.ai/) to learn more about how we're revolutionizing human feedback collection for AI development.
|
|
|
66 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/66f5624c42b853e73e0738eb/jfxR79bOztqaC6_yNNnGU.jpeg" width="250" alt="Rapidata Logo">
|
67 |
</a>
|
68 |
|
69 |
+
Building upon Google's research [Rich Human Feedback for Text-to-Image Generation](https://arxiv.org/abs/2312.10240) we have collected over 1.5 million responses from 152'684 individual humans using Rapidata via the [Python API](https://docs.rapidata.ai/). Collection took roughly 5 days.
|
70 |
|
71 |
# Overview
|
72 |
We asked humans to evaluate AI-generated images in style, coherence and prompt alignment. For images that contained flaws, participants were asked to identify specific problematic areas. Additionally, for all images, participants identified words from the prompts that were not accurately represented in the generated images.
|
|
|
179 |
|
180 |
|
181 |
# Style
|
182 |
+
The style score reflects how visually appealing participants found each image, independent of the prompt. Users were asked: "How much do you like the way this image looks?" Each image received 21 responses, which were aggregated on a scale of 1-5. In contrast to other prefrence collection methods, such as the huggingface image arena, the preferences were collected from humans from around the world (156 different countries) from all walks of life, creating a more representative score.
|
183 |
|
184 |
# About Rapidata
|
185 |
Rapidata's technology makes collecting human feedback at scale faster and more accessible than ever before. Visit [rapidata.ai](https://www.rapidata.ai/) to learn more about how we're revolutionizing human feedback collection for AI development.
|