prompt
stringlengths
4
181
completion
stringlengths
2
232
emove duplicate rows from dataframe `df1` and calculate their frequency
df1.groupby(['key', 'year']).size().reset_index()
dictionary `dictionary` in ascending order by its value
sorted(list(dictionary.items()), key=operator.itemgetter(1))
erate over dictionary `d` in ascending order of value
sorted(iter(d.items()), key=lambda x: x[1])
erate over a python dictionary, ordered by value
sorted(list(dictionary.items()), key=lambda x: x[1])
plit 1d array `a` into 2d array at the last eleme
np.split(a, [-1])
vert dataframe `df` into a pivot table using column 'order' as index and values of column 'sample' as colum
df.pivot(index='order', columns='sample')
elect all rows from pandas DataFrame 'df' where the value in column 'A' is greater than 1 or less than 1 in column 'B'.
df[(df['A'] > 1) | (df['B'] < -1)]
Get the zip output as list from the lists `[1, 2, 3]`, `[4, 5, 6]`, `[7, 8, 9]`
[list(a) for a in zip([1, 2, 3], [4, 5, 6], [7, 8, 9])]
elect rows of dataframe `df` whose value for column `A` is `foo`
print(df.loc[df['A'] == 'foo'])
elect rows whose column value in column `column_name` does not equal `some_value` in pandas data frame
df.loc[df['column_name'] != some_value]
elect rows from a dataframe `df` whose value for column `column_name` is not in `some_values`
df.loc[~df['column_name'].isin(some_values)]
elect all rows whose values in a column `column_name` equals a scalar `some_value` in pandas data frame object `df`
df.loc[df['column_name'] == some_value]
Select rows whose value of the B column is one or three in the DataFrame `df`
print(df.loc[df['B'].isin(['one', 'three'])])
epeat every character for 7 times in string 'map'
"""""".join(map(lambda x: x * 7, 'map'))
delete an empty directory
os.rmdir()
ecursively delete all contents in directory `path`
shutil.rmtree(path, ignore_errors=False, onerror=None)
ecursively remove folder `name`
os.removedirs(name)
Add row `['8/19/2014', 'Jun', 'Fly', '98765']` to dataframe `df`
df.loc[len(df)] = ['8/19/2014', 'Jun', 'Fly', '98765']
list all files in a current directory
glob.glob('*')
List all the files that doesn't contain the name `hello`
glob.glob('[!hello]*.txt')
List all the files that matches the pattern `hello*.txt`
glob.glob('hello*.txt')
evaluate the expression '20<30'
eval('20<30')
Copy list `old_list` and name it `new_list`
new_list = [x[:] for x in old_list]
vert scientific notation of variable `a` to decimal
"""{:.50f}""".format(float(a[0] / a[1]))
vert dataframe `df` to integertype sparse objec
df.to_sparse(0)
display attribute `attr` for each object `obj` in list `my_list_of_objs`
print([obj.attr for obj in my_list_of_objs])
he number of True values associated with key 'success' in dictionary `d`
sum(1 if d['success'] else 0 for d in s)
get the sum of values associated with the key ‘success’ for a list of dictionaries `s`
sum(d['success'] for d in s)
get complete path of a module named `os`
imp.find_module('os')[1]
get logical xor of `a` and `b`
(bool(a) != bool(b))
get logical xor of `a` and `b`
((a and (not b)) or ((not a) and b))
get logical xor of `a` and `b`
(bool(a) ^ bool(b))
get logical xor of `a` and `b`
xor(bool(a), bool(b))
get the logical xor of two variables `str1` and `str2`
return (bool(str1) ^ bool(str2))
Sort list `my_list` in alphabetical order based on the values associated with key 'name' of each dictionary in the l
my_list.sort(key=operator.itemgetter('name'))
plit a string `a , b; cdf` using both commas and semicolons as delimeter
re.split('\\s*,\\s*|\\s*;\\s*', 'a , b; cdf')
Split a string `string` by multiple separators `,` and `;`
[t.strip() for s in string.split(',') for t in s.split(';')]
ke a function `f` that calculates the sum of two integer variables `x` and `y`
f = lambda x, y: x + y
Create list `instancelist` containing 29 objects of type MyCl
instancelist = [MyClass() for i in range(29)]
Make a dictionary from list `f` which is in the format of four sets of val, key, val
{f[i + 1]: [f[i], f[i + 2]] for i in range(0, len(f), 3)}
vert bytes string `s` to an unsigned integer
struct.unpack('>q', s)[0]
atenate a series `students` onto a dataframe `marks` with pand
pd.concat([students, pd.DataFrame(marks)], axis=1)
Sort list `alist` in ascending order based on each of its elements' attribute `foo`
alist.sort(key=lambda x: x.foo)
BeautifulSoup select 'div' elements with an id attribute value ending with substring '_answer' in HTML parsed string `soup`
soup.select('div[id$=_answer]')
ympy solve matrix of linear equations `(([1, 1, 1, 1], [1, 1, 2, 3]))` with variables `(x, y, z)`
linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))
best way to extract subset of keyvalue pairs with keys matching 'l', 'm', or 'n' from python dictionary objec
{k: bigdict[k] for k in list(bigdict.keys()) & {'l', 'm', 'n'}}
extract subset of keyvalue pairs with keys as `('l', 'm', 'n')` from dictionary object `bigdict`
dict((k, bigdict[k]) for k in ('l', 'm', 'n'))
Get items from a dictionary `bigdict` where the keys are present in `('l', 'm', 'n')`
{k: bigdict.get(k, None) for k in ('l', 'm', 'n')}
Extract subset of key value pair for keys 'l', 'm', 'n' from `bigdict` in python 3
{k: bigdict[k] for k in ('l', 'm', 'n')}
Selenium get the entire `driver` page tex
driver.page_source
extracting column `1` and `9` from array `data`
data[:, ([1, 9])]
emove all square brackets from string 'abcd[e]yth[ac]ytwec'
re.sub('\\[.*?\\]', '', 'abcd[e]yth[ac]ytwec')
w can I resize the root window in Tkinter?
root.geometry('500x500')
find all substrings in string `mystring` composed only of letters `a` and `b` where each `a` is directly preceded and succeeded by `b`
re.findall('\\b(?:b+a)+b+\\b', mystring)
vert list `lst` of tuples of floats to list `str_list` of tuples of strings of floats in scientific notation with eight decimal point precisio
str_list = [tuple('{0:.8e}'.format(flt) for flt in sublist) for sublist in lst]
vert list of sublists `lst` of floats to a list of sublists `str_list` of strings of integers in scientific notation with 8 decimal po
str_list = [['{0:.8e}'.format(flt) for flt in sublist] for sublist in lst]
Create a tuple `t` containing first element of each tuple in tuple `s`
t = tuple(x[0] for x in s)
btain the current day of the week in a 3 letter format from a datetime objec
datetime.datetime.now().strftime('%a')
get the ASCII value of a character 'a' as an
ord('a')
get the ASCII value of a character u'あ' as an
ord('\u3042')
get the ASCII value of a character as an
ord()
decode JSON string `u` to a dictionary
json.load(u)
Delete mulitple columns `columnheading1`, `columnheading2` in pandas data frame `yourdf`
yourdf.drop(['columnheading1', 'columnheading2'], axis=1, inplace=True)
get a list of of elements resulting from splitting user input by commas and stripping white space from each resulting string `s`
[s.strip() for s in input().split(',')]
eate a list containing the digits values from binary string `x` as eleme
[int(d) for d in str(bin(x))[2:]]
get the max string length in list `i`
max(len(word) for word in i)
get the maximum string length in nested list `i`
len(max(i, key=len))
execute os command `my_cmd`
os.system(my_cmd)
list `mylist` alphabetically
mylist.sort(key=lambda x: x.lower())
list `mylist` in alphabetical order
mylist.sort(key=str.lower)
a list of strings 'mylist'.
mylist.sort()
a list of strings `list`
list.sort()
Set multi index on columns 'Company' and 'date' of data frame `df` in pandas.
df.set_index(['Company', 'date'], inplace=True)
get the attribute `x` from object `your_obj`
getattr(your_obj, x)
emove first word in string `s`
s.split(' ', 1)[1]
ave xlsxwriter file in 'app/smth1/smth2/Expenses01.xlsx' path and assign to variable `workbook`
workbook = xlsxwriter.Workbook('app/smth1/smth2/Expenses01.xlsx')
ave xlsxwriter file to 'C:/Users/Steven/Documents/demo.xlsx' path
workbook = xlsxwriter.Workbook('C:/Users/Steven/Documents/demo.xlsx')
hange legend size to 'xsmall' in upperleft locatio
pyplot.legend(loc=2, fontsize='x-small')
hange legend font size with matplotlib.pyplot to 6
plot.legend(loc=2, prop={'size': 6})
plit list `l` into `n` sized l
[l[i:i + n] for i in range(0, len(l), n)]
plit a list `l` into evenly sized chunks `n`
[l[i:i + n] for i in range(0, len(l), n)]
heck if character '' exists in a dataframe `df` cell 'a'
df['a'].str.contains('-')
emove all non word, whitespace, or apostrophe characters from string `doesn't this mean it technically works?`
re.sub("[^\\w' ]", '', "doesn't this mean it -technically- works?")
find all digits between two characters `\xab` and `\xbb`in a string `text`
print(re.findall('\\d+', '\n'.join(re.findall('\xab([\\s\\S]*?)\xbb', text))))
plot data of column 'index' versus column 'A' of dataframe `monthly_mean` after resetting its index
monthly_mean.reset_index().plot(x='index', y='A')
get the output of a subprocess command `echo foo` in command line
subprocess.check_output('echo "foo"', shell=True)
Encode each value to 'UTF8' in the list `EmployeeList`
[x.encode('UTF8') for x in EmployeeList]
mbine two columns `foo` and `bar` in a pandas data frame
pandas.concat([df['foo'].dropna(), df['bar'].dropna()]).reindex_like(df)
generate a list of consecutive integers from 0 to 8
list(range(9))
vert list `myintegers` into a unicode string
"""""".join(chr(i) for i in myintegers)
herit from class `Executive`
super(Executive, self).__init__(*args)
Remove the string value `item` from a list of strings `my_sequence`
[item for item in my_sequence if item != 'item']
andomly select an item from list `foo`
random.choice(foo)
heck if all of the following items in list `['a', 'b']` are in a list `['a', 'b', 'c']`
set(['a', 'b']).issubset(['a', 'b', 'c'])
Check if all the items in a list `['a', 'b']` exists in another list `l`
set(['a', 'b']).issubset(set(l))
et the stdin of the process 'grep f' to be b'one\ntwo\nthree\nfour\nfive\nsix\n'
p = Popen(['grep', 'f'], stdout=PIPE, stdin=PIPE, stderr=STDOUT) grep_stdout = p.communicate(input='one\ntwo\nthree\nfour\nfive\nsix\n')[0]
et the stdin of the process 'grep f' to be 'one\ntwo\nthree\nfour\nfive\nsix\n'
p = subprocess.Popen(['grep', 'f'], stdout=subprocess.PIPE, stdin=subprocess.PIPE) p.stdin.write('one\ntwo\nthree\nfour\nfive\nsix\n') p.communicate()[0] p.stdin.close()
vert a list of tuples `list_of_tuples` into list of l
[list(t) for t in zip(*list_of_tuples)]
group a list `list_of_tuples` of tuples by value
zip(*list_of_tuples)
erge pandas dataframe `x` with columns 'a' and 'b' and dataframe `y` with column 'y'
pd.merge(y, x, on='k')[['a', 'b', 'y']]