title
stringlengths 1
32
| url
stringlengths 30
299
| content
stringlengths 30
50.4k
| categories
sequencelengths 0
21
| content_length
int64 30
50.4k
⌀ | language
stringclasses 1
value |
---|---|---|---|---|---|
基因诊断与性病/DNA及RNA的化学组成 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E8%AF%8A%E6%96%AD%E4%B8%8E%E6%80%A7%E7%97%85/DNA%E5%8F%8ARNA%E7%9A%84%E5%8C%96%E5%AD%A6%E7%BB%84%E6%88%90 | DNA和RNA统称为核酸,早在1868年就被瑞士年轻医生米歇尔发现,在真核细胞中,98%以上的DNA存在于细胞核,少量的DNA分布在线粒体中。RNA主要存在于细胞质中,占其总量的90%左右。细胞外液则无核酸存在。对于非细胞形态的病毒来说,或含有DNA,或只含有RNA,因此可按所含核酸类型的不同,将病毒分为DNA病毒与RNA病毒。 组成核酸的基本单位是单核苷酸,所以核酸又称为多核苷酸。单核苷酸是由磷酸、戊糖及碱基组成。如果戊糖是脱过氧的,则形成的单核苷酸为脱氧单核苷酸。单核苷酸相互缩合形成RNA,脱氧单核苷酸相互缩合形成DNA。下表列举常见的核苷酸及缩写符号。 表1-1 常见核苷酸及其缩写符号 由于核酸的合成是一个耗能的过程,故参与DNA或RNA合成的脱氧或未脱氧的单核苷酸是三磷酸核苷酸,合成时磷酸键水解释放出能量,以供核酸的合成。 表1-2 三磷酸核苷酸的种类及符号 | [
"2个分类",
"基因诊断与性传播疾病正文",
"图书正文"
] | 388 | zh-CN |
基因诊断与性病/DNA分子结构 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E8%AF%8A%E6%96%AD%E4%B8%8E%E6%80%A7%E7%97%85/DNA%E5%88%86%E5%AD%90%E7%BB%93%E6%9E%84 | (一)DNA的碱基组成规律 组成DNA分子的脱氧核苷酸主要有四种,即dAMP,dGMP、dCMP和dTMP(d代表“脱氧”的意思),此外还含有少量的稀有碱基(主要是甲基化碱基)。50年代初,E.Chargaff等人对来自不同生物的DNA进行完全水解,对碱基进行了定量测定,总结出如下规律,一般称它为Chargaff规则。 1.所有DNA分子中,嘌呤碱总摩尔数等于嘧啶碱总摩尔数,即A+G=T+C,并且以摩尔为单位,A=T、G=C。 2.DNA的碱基组成具有种属的特异性,即不同生物种属的DNA具有各自独特的碱基组成。 3.DNA的碱基组成没有组织、器官的特性,即同种生物中不同组织及器官的DNA在碱基组成上是一致的。 4.生物体内DNA的碱基组成不受年龄、营养状态和环境的改变之影响。在所有DNA分子中A=T、G=C这一规律的发现,为DNA双螺旋结构模型的建立提供了重要的依据。 (二)DNA的一级结构 与蛋白质结构相似,核酸的结构也可分级结构与空间结构进行讨论。核酸的一级结构是指其多核苷酸链中核苷酸的排列顺序。核酸的空间结构是指多核苷酸链内或链间通过氢键等折叠卷曲的构象。核酸的空间结构又有二级结构与三级结构之分。 DNA是由四种脱氧核糖核酸通过3′.5′——磷酸二酯键彼此连接而成的线形或环状大分子。DNA分子没有侧链。其骨架由脱氧核糖和磷酸组成DNA的一级结构即是DNA多核苷酸链中核苷酸的排列顺序。 由于生物遗传信息储存于DNA的核苷酸序列中,若能搞清各种生物DNA的脱氧核苷酸排列顺序,则对生命活动本质的认识将有重大意义。 (三)DNA的二级结构 目前公认的DNA二级结构是双螺旋结构,这种模型的建立,主要有两个方面的根据。一是前面提到的50年代初E.Chargaff等人对各种DNA碱基组成的定量分析结果。二是Wilkins小组用X光衍射法研究DNA的晶体,测得DNA分子呈螺旋结构。1953年j .Watson和F.Crick通过进一步研究,提出了DNA分子双螺旋结构模型。从而大大推动了分子生物学的发展。 DNA双螺旋结构模型的要点如下: 1.DNA分子由两条走向相反(一条5′→3′,另一条3′→5′)但互相平行的脱氧核糖核苷酸链组成,以一共同轴为中心,盘绕成双螺旋结构。 2.碱基在双螺旋内侧。一条链碱基上-NH的氢原子与另一条链碱基上的氧原子或氮原子形成氢键。氢键总是发生在A与T,G与C之间,前者有两个氢键,后者有三个氢键。这称为碱基配对或碱基互补规律。由此,两条多核苷酸链又可称为互补链。 3.各碱基对处于同一平面,且垂直于双螺旋的中心轴。相邻碱基对之间尚存在范德华(Vander Warls)引力,从而进一步稳定了双螺旋结构。 4.双螺旋的直径为2nm,每个螺距为3.4nm,内包含10个碱基对,因此每个碱基对距离为0.34 nm。 (四)DNA的三级结构 DNA三级结构是指双螺旋链作进一步的扭曲构象。超螺旋结构是DNA三级结构形式。目前发现许多病毒DNA,线粒体DNA,都是环型双链DNA,而具有超螺旋结构。当超螺旋型DNA的一条链上出现缺口时,超螺旋结构被松开,可解旋形成开环型结构。 DNA的三级结构与其结合的蛋白质有关。真核细胞染色质的基本结构单位是核小体。核小体是由组蛋白H2A,H2B,H3和H4各二个分子组成的八聚体,外绕DNA形成核心颗粒。连接各核心颗粒的区域称连接区,它是由组蛋白H1及大约60-100个碱基对DNA组成。一个完整的核小体由核心颗粒与连接区组成。各个核小体彼此相联沿染色质纤维的纵轴列成一种串珠状重复性结构。串珠状核小体长链可进一步卷曲,形成螺旋筒结构。在形成染色单体时,螺旋筒再进一步卷曲、折叠。人体每个细胞中长约1.7μm的DNA双螺旋链,最终被压缩8400多倍,分布于各染色单体中 | [
"2个分类",
"基因诊断与性传播疾病正文",
"图书正文"
] | 1,576 | zh-CN |
基因诊断与性传播疾病目录 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E8%AF%8A%E6%96%AD%E4%B8%8E%E6%80%A7%E4%BC%A0%E6%92%AD%E7%96%BE%E7%97%85%E7%9B%AE%E5%BD%95 | 基因诊断与性传播疾病 基因诊断的分子生物学基础 DNA及RNA的化学组成 DNA分子结构 RNA分子结构 核酸的理化性质 DNA的复制 核酸分子杂交法 核酸探针的种类 核酸探针的标记和检测 核酸分子杂交方法 基因扩增技术(PCR) PCR的基本原理和基本程序 PCR的特点 PCR方法 PCR反应的基本条件及其对PCR的影响 PCR标本的制备 PCR实验中常见问题对策 PCR扩增产物的分析法 性传播疾病概论 性病的传播方式 性病的流行及现状 综合治理防治性病 淋病 淋病病原学 淋球菌的遗传学 淋病流行病学 淋病发病机理 淋病临床表现 淋病无合并症淋病 淋病有合并症淋病 其他部位淋病 播散性淋球菌感染 淋病对妊娠及新生儿的影响 淋病实验室检查 淋病诊断与鉴别诊断 淋病治疗 淋病判愈标准 淋病预后 淋病预防 梅毒 梅毒病原学 梅毒传染方式 梅毒免疫学 梅毒发病机理 梅毒临床表现 后天梅毒临床表现 先天梅毒临床表现 梅毒组织病理 梅毒实验室检查 梅毒螺旋体检查 梅毒血清试验 基因诊断技术检测梅毒螺旋体 梅毒脑脊液检查 梅毒血清反应的假阳性 梅毒诊断 梅毒治疗 非淋菌性泌尿生殖道炎 衣原体感染症 支原体性感染症 艾滋病 艾滋病病因学 艾滋病基因结构 艾滋病流行病学 艾滋病发病机理 艾滋病临床表现 艾滋病无症状的潜伏期 艾滋病患者常见的机会感染 艾滋病患者与肿瘤 艾滋病诊断 艾滋病鉴别诊断 艾滋病病程与预后 艾滋病治疗 艾滋病预防 尖锐湿疣 生殖器疱疹 巨细胞病毒感染症 软下疳 性病性淋巴肉芽肿 腹股沟肉芽肿 生殖器念珠菌病 细菌性阴道病 阴道毛滴虫病 疥疮 阴虱病 | [
"1个分类",
"图书目录"
] | 688 | zh-CN |
基因诊断与性传播疾病 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E8%AF%8A%E6%96%AD%E4%B8%8E%E6%80%A7%E4%BC%A0%E6%92%AD%E7%96%BE%E7%97%85 | 以下是《基因诊断与性传播疾病》在线电子书的目录,请点击章节标题开始阅读: 基因诊断与性传播疾病 基因诊断的分子生物学基础 DNA及RNA的化学组成 DNA分子结构 RNA分子结构 核酸的理化性质 DNA的复制 核酸分子杂交法 核酸探针的种类 核酸探针的标记和检测 核酸分子杂交方法 基因扩增技术(PCR) PCR的基本原理和基本程序 PCR的特点 PCR方法 PCR反应的基本条件及其对PCR的影响 PCR标本的制备 PCR实验中常见问题对策 PCR扩增产物的分析法 性传播疾病概论 性病的传播方式 性病的流行及现状 综合治理防治性病 淋病 淋病病原学 淋球菌的遗传学 淋病流行病学 淋病发病机理 淋病临床表现 淋病无合并症淋病 淋病有合并症淋病 其他部位淋病 播散性淋球菌感染 淋病对妊娠及新生儿的影响 淋病实验室检查 淋病诊断与鉴别诊断 淋病治疗 淋病判愈标准 淋病预后 淋病预防 梅毒 梅毒病原学 梅毒传染方式 梅毒免疫学 梅毒发病机理 梅毒临床表现 后天梅毒临床表现 先天梅毒临床表现 梅毒组织病理 梅毒实验室检查 梅毒螺旋体检查 梅毒血清试验 基因诊断技术检测梅毒螺旋体 梅毒脑脊液检查 梅毒血清反应的假阳性 梅毒诊断 梅毒治疗 非淋菌性泌尿生殖道炎 衣原体感染症 支原体性感染症 艾滋病 艾滋病病因学 艾滋病基因结构 艾滋病流行病学 艾滋病发病机理 艾滋病临床表现 艾滋病无症状的潜伏期 艾滋病患者常见的机会感染 艾滋病患者与肿瘤 艾滋病诊断 艾滋病鉴别诊断 艾滋病病程与预后 艾滋病治疗 艾滋病预防 尖锐湿疣 生殖器疱疹 巨细胞病毒感染症 软下疳 性病性淋巴肉芽肿 腹股沟肉芽肿 生殖器念珠菌病 细菌性阴道病 阴道毛滴虫病 疥疮 阴虱病 参看 《基因诊断与性传播疾病》- 基因诊断与性传播疾病 医学电子书 -- 700多本医学电子书阅读和下载 | [
"2个分类",
"图书目录",
"医学书籍"
] | 778 | zh-CN |
基因诊断 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E8%AF%8A%E6%96%AD | 基因诊断指通过使用基因芯片分析人类基因组,可找出致病的遗传基因。癌症、糖尿病等,都是遗传基因缺陷引起的疾病。医学和生物学研究人员将能在数秒钟内鉴定出最终会导致癌症等的突变基因。借助一小滴测试液,医生们能预测药物对病人的功效,可诊断出药物在治疗过程中的不良反应,还能当场鉴别出病人受到了何种细菌、病毒或其他微生物的感染。利用基因芯片分析遗传基因,将使10年后对糖尿病的确诊率达到50%以上。 未来人们在体检时,由搭载基因芯片的诊断机器人对受检者取血,转瞬间体检结果便可以显示在计算机屏幕上。利用基因诊断,医疗将从千篇一律的“大众医疗”的时代,进步到依据个人遗传基因而异的“定制医疗”的时代。 参看 《医学遗传学基础》- 基因诊断 《临床生物化学》- 基因诊断 | [
"2个分类",
"诊断方法",
"遗传学"
] | 328 | zh-CN |
基因识别 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E8%AF%86%E5%88%AB | 基因识别,是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别DNA序列上的具有生物学特征的片段。基因识别的对象主要是蛋白质编码基因,也包括其他具有一定生物学功能的因子,如RNA基因和调控因子。基因识别是基因组研究的基础。 在早期,基因识别的主要手段是基于活的细胞或生物的实验。通过对若干种不同基因的同源重组的速率的统计分析,我们能够获知它们在染色体上的顺序。若进行大量类似的分析,我们可以确定各个基因的大致位置。现在,由于人类已经获得了巨大数量的基因组信息,依靠较慢的实验分析已不能满足基因识别的需要,而基于计算机算法的基因识别得到了长足的发展,成为了基因识别的主要手段。 识别具有生物学功能的片段与判定该片段(或其对应的产品)的功能是两个不同的概念,后者通常需要通过基因敲除等的实验手段来决定。不过,生物信息学的前沿研究正在使得由基因序列预测基因功能变得愈发可能。 间接识别法 在基因的间接识别法(Extrinsic Approach)中,人们利用已知的mRNA或蛋白质序列为线索在DNA序列中搜寻所对应的片段。由给定的mRNA序列确定唯一的作为转录源的DNA序列;而由给定的蛋白质序列,也可以由密码子反转确定一族可能的DNA序列。因此,在线索的提示下搜寻工作相对较为容易,搜寻算法的关键在于提高效率,并能够容忍由于测序不完整或者不精确所带来的误差。BLAST是目前以此为目的最广泛使用的软件之一。 若DNA序列的某一片段与mRNA或蛋白质序列具有高度相似性,这说明该DNA片段极有可能是蛋白编码基因。但是,测定mRNA或蛋白质序列的成本高昂,而且在复杂的生物体中,任意确定的时刻往往只有一部分基因得到了表达。这意味着从任何单个细胞的mRNA和蛋白质上都只能获得一小部分基因的信息;要想得到更为完整的信息,不得不对成百上千个不同状态的细胞中的mRNA和蛋白质测序。这是相当困难的。比如,某些人类基因只在胚胎或胎儿时期才得到表达,对它们的研究就会受到道德因素的制约。 尽管有以上困难,对人类自身和一些常见的实验生物如老鼠和酵母菌,人们已经建立了大量转录和蛋白质序列的数据库。如RefSeq数据库,Ensembl数据库等等。但这些数据库既不完整,也含有相当数量的错误。 从头计算法 鉴于间接识别法的种种缺陷,仅仅由DNA序列信息预测蛋白质编码基因的从头计算法(Ab Initio Approach)就显得十分重要了。一般意义上基因具有两种类型的特征,一类特征是“信号”,由一些特殊的序列构成,通常预示着其周围存在着一个基因;另一类特征是“内容”,即蛋白质编码基因所具有的某些统计学特征。使用Ab Initio方法识别基因又称为基因预测。通常我们仍需借助实验证实预测的DNA片段是否具有生物学功能。 在原核生物中,基因往往具有特定且容易识别的启动子序列(信号),如Pribnow盒和转录因子。与此同时,构成蛋白质编码的序列构成一个连续的开放阅读框(内容),其长度约为数百个到数千个碱基对(依据该长度区间可以筛选合适的密码子)。除此之外,原核生物的蛋白质编码还具有其他一些容易判别的统计学的特征。这使得对原核生物的基因预测能达到相对较高的精度。 对真核生物(尤其是复杂的生物如人类)的基因预测则相当有挑战性。一方面,真核生物中的启动子和其他控制信号更为复杂,还未被很好的了解。两个被真核生物基因搜寻器识别到的讯号例子有CpG islands及poly(A) tail的结合点。 另一方面,由于真核生物所具有的splicing机制,基因中一个蛋白质编码序列被分为了若干段(外显子),中间由非编码序列连接(基因内区)。人类的一个普通蛋白质编码基因可能被分为了十几个外显子,其中每个外显子的长度少于200个碱基对,而某些外显子更可能只有二三十个碱基对长。因而蛋白质编码的一些统计学特征变得难于判别。 高级的基因识别算法常使用更加复杂的概率论模型,如隐马尔可夫模型。Glimmer是一个广泛应用的高级基因识别程序,它对原核生物基因的预测已非常精确,相比之下,对真核生物的预测则效果有限。GENSCAN计划是一个著名的例子。 比较基因组学的方法 由于多个物种的基因组序列已完全测出,使得比较基因组学得以发展,并产生了新的基因识别的方法。该方法基于如下原理:自然选择的力量使得基因和DNA序列上具有生物学功能的其他片段较其他部分有较慢的变异速率,在前者的变异更有可能对生物体的生存产生负面影响,因而难以得到保存。因此,通过比较相关的物种的DNA序列,我们能够取得预测基因的新线索。2003年,通过对若干种酵母基因组的比较,人类对原先的基因识别结果作了较大的修改;类似的方法也正在应用于人类的基因组研究,并可能在将来的若干年内取得成果 | [] | 1,962 | zh-CN |
基因表达 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E8%A1%A8%E8%BE%BE | 基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。差别基因表达(differentialgeneexpression)指细胞分化过程中,奢侈基因按一定顺序表达,表达的基因数约占基因总数的5%~10%。也就是说,某些特定奢侈基因表达的结果生成一种类型的分化细胞,另一组奢侈基因表达的结果导致出现另一类型的分化细胞,这就是基因的差别表达。其本质是开放某些基因,关闭某些基因,导致细胞的分化。 转录过程 在RNA聚合酶的催化下,以DNA为模板合成mRNA的过程称为转录(transcription).在双链DNA中,作为转录模板的链称为模板链(template strand),或反义链(antisensestrand);而不作为转录模板的链称为编码链(coding strand),或有义链(sense strand).在双链DNA中与转录模板互 补的一条DNA链即编码链,它与转录产物的差异仅在于DNA中T变为RNA中的U.在含许多基因的DNA双链中,每个基因的模板链并不总是在同一条链上,亦即一条链可作为某些基因的模板链的,也可是另外一些基因的编码链。 转录后要进行加工,转录后的加工包括: (1)剪接:一个基因的外显子和内含子都转录在一条原始转录物RNA分子中,称为前mRNA(pre-mRNA),又称核内异质RNA(heterogenuous nuclear RNA,huRNA)。因此前mRNA分子既有外显子顺序又有内含子顺序,另外还包括编码区前面及后面非翻译顺序。这些内含子顺序必须除支而把外显子顺序连接起来,才能产生成熟的有功能的mRNA分子,这个过程称为RNA剪接(RNa splicing)。剪切发生在外显子的3’末端的GT和内含子3’末端与下一个外显子交界的AG处。 (2)加帽:几乎全部的真核 mRNa 端都具“帽子”结构。虽然真核生物的mRNA的转录以嘌呤核苷酸三磷酸(pppAG或pppG)领头,但在5’端的一个核苷酸总是7-甲基鸟核苷三磷酸(m7GpppAGpNp)。mNRA5’端的这种结构称为帽子(cap)。不同真核生物的mRNA具有不同的帽子。 mRNA的帽结构功能:①能被核糖体小亚基识别,促使mRNA和核糖体的结合;②m7Gppp结构能有效地封闭RNa 5’末端,以保护mRNA免疫5’核酸外切酶的降解,增强mRNA的稳定 (3)加尾:大多数真核生物的mRNA 3’末端都有由100~200个A组成的Poly(A)尾巴。Poly(A)尾不是由DNA编码的,而是转录后的前mRNA以ATP为前体,由RNA末端腺苷酸转移酶,即Ploy(A)聚合酶催化聚合到3’末端。加尾并非加在转录终止的3’末端,而是在转录产物的3’末端,由一个特异性酶识别切点上游方向13~20碱基的加尾识别信号AAUAAA以及切点下游的保守顺序GUGUGUG,把切点下游的一段切除,然后再由Poly(A)聚合酶催化,加上Poly(A)尾巴,如果这一识别信号发生突变,则切除作用和多聚腺苷酸化作用均显著降低。mRNAPoly(A)尾的功能是:①可能有助mRNA从核到细胞质转运;②避免在细胞中受到核酶降解,增强mRNA的稳定性。 翻译过程 以mRNA作为模板,tRNA作为运载工具,在有关酶、辅助因子和能量的作用下将活化的氨基酸在核糖体(亦称核蛋白体)上装配为蛋白质多肽链的过程,称为翻译(translation),这一过程大致可分为3个阶段: 基因表达调控 (1)肽链的起始:在许多起始因子的作用下,首先是核糖体的小亚基和mRNA上的起始密码子结合,然后甲酰甲硫氨酰tRNA(tRNA fMet)结合上去,构成起始复合物。通过tRNA的反密码子UAC,识别mRNA上的起始密码子AUG,并相互配对,随后核糖体大亚基结合到小亚基上去,形成稳定的复合体,从而完成了起始的作用。 (2)肽链的延和长:核糖体上有两个结合点——P位和A位,可以同时结合两个氨酰tRNA。当核糖体沿着mRNA从5’→3’移动时,便依次读出密码子。首先是tRNAfMet结合在P位,随后第二个氨酰tRNA进入A位。此时,在肽基转移酶的催化下,P位和A位上的2个氨基酸之间形成肽键。第一个tRNA失去了所携带的氨基酸而从P位脱落,P位空载。A位上的氨酰tRNA在移位酶和GTP的作用下,移到P位,A位则空载。核糖体沿mRNA 5’端向3’端移动一个密码子的距离。第三个氨酰tRNA进入A位,与P位上氨基酸再形成肽键,并接受P位上的肽链,P位上tRNA释放,A位上肽链又移到P位,如此反复进行,肽链不断延长,直到mRNA的终止密码出现时,没有一个氨酰tRNA 真核基因表达 可与它结合,于是肽链延长终止。 (3)肽链的终止:终止信号是mRNA上的终止密码子(UAA、UAG或UGA)。当核糖体沿着mRNA移动时,多肽链不断延长,到A位上出现终止信号后,就不再有任何氨酰tRNA接上去,多肽链的合成就进入终止阶段。在释放因子的作用下,肽酰tRNA的的酯键分开,于是完整的多肽链和核糖体的大亚基便释放出来,然后小亚基也脱离mRNA。 (4)翻译后加工(postranslational processing):从核糖体上释放出来的多肽需要进一步加工修饰才能形成具有生物活性的蛋白质。翻译后的肽链加工包括肽链切断,某些氨基酸的羟基化、磷酸化、乙酰化、糖基化等。真核生物在新生手肽链翻译后将甲硫氨酸裂解掉。有一类基因的翻译产物前体含有多种氨基酸顺序,可以切断为不同的蛋白质或肽,称为多蛋白质(polyprotein)。例如胰岛素(insulin)是先合成86个氨基酸的初级翻译产物,称为胰岛素原(proinsulin),胰岛素原包括A、B、C三段,经过加工,切去其中无活性的C肽段,并在A肽和B肽之间形成二硫键,这样才得到由51个氨基酸组成的有活性的胰岛素。 外显子 外显子与内含子表达过程中的相对性 从内含子与外显子的定义来看,两者是不能混淆的,但是真核生物的外显子也并非都“显”(编码氨基酸),除了tRNA基因和rRNA基因的外显子完全“不显”之外,几乎全部的结构基因的首尾两外显子都只有部分核苷酸顺序编码氨基酸,还有完全不编码基酸的外显子,如人类G6PD基因的第一外显子核苷酸顺序。 基因表达调控 现在已发现一个基因的外显子可以是另一基因的内含子,所这亦然。以小鼠的淀粉酶基因为例,来源于肝的与来源于唾液腺的是同一基因。淀粉酶基因包括4个外显子,肝生成的淀粉酶不保留外显子1,而唾液腺中的淀粉酶则保留了外显子1的50bp顺序,但把外显子2与前后两段内含子一起剪切掉,经过这样剪接,外显子2就变成唾液淀粉酶基因中的内含子。 同一基因在不同组织能生成不同的基因产物来源于不同组织的类似蛋白,可以由同一基因编码产生,这种现象首先是由于基因中的增强子等有组织特异性,它能与不同组织中的组织特异因子结合,故在不同组织中同一基因会产生不同的转录物与转录后加工作用。此外真核生物基因可有一个以一的poly(A)位点,因此能在不同的细胞中产生具有不同3’末端的前mRNA,从而会有不同的剪接方式。由于大多数真核生物基因的转录物是先加poly(A)尾巴,然后再行剪接,因此不同组织、细胞中会有不同的因子干预多聚腺苷酸化作用,最后影响剪接模式。 实验应用 利用基因芯片研究干旱胁迫下玉米基因表达 玉米是全球第一大作物、中国第二大作物,而干旱是影响其产量的重要限制因素。山东大学生命科学院张举仁教授的课题组利用基因芯片技术研究了开花期玉米顶叶干旱胁迫下基因的表达。开花期是玉米需水临界期,对干旱胁迫反应最敏感,此时逢干旱会使产量下降幅度最大。张教授的课题组以开花期玉米为材料,分别对其进行短期和长期的干旱胁迫,采用全基因组芯片研究了顶叶中基因的表达情况。 原核基因表达调控 分析的结果表明,有197个基因在短期胁迫下差异表达(53%上调),而在长期胁迫下,则有1009个基因差异表达(32%上调)。分离得到的差异表达基因中约有一半的基因功能未知,其他基因按功能则可分为:代谢相关;细胞信号转导;转录相关;蛋白质合成;细胞防御;细胞运输;亚细胞定位等几大类。分析实验表明,在短期胁迫下上调表达的基因中,约有1/3的已知功能基因属于信号转导功能的分类范畴,参与细胞内不同的信号转导途径,这表明信号转导相关基因在玉米对干旱的早期反应中起重要作用。而在长期干旱条件下,顶叶中大量的代谢相关基因差异表达。 吸烟者肺细胞的基因表达模式有助于肺癌的早期诊断 在全世界癌症患者的死亡率中,肺癌的死亡率位居前列。肺癌高死亡率的主要原因之一是缺乏早期诊断工具。研究人员在3月出版的《自然—医学》中报道:吸烟者肺细胞的基因表达模式也许有助于肺癌的早期诊断。 众所周知,吸烟是肺癌的风险因子,因此吸烟者被认为是肺癌的高风险人群。吸烟者的正常上皮细胞的基因表达模型是否可用于肺癌存在状态的一种生物标志呢?AvrumSpira和同事进行了这一研究。在预测患者是否会向癌症发展时,他们研究的生物标志的准确率达到90%。当与其他历史数据结合在一起,准确率可增加到95%。 研究进展 水生所在银鲫胚胎发育基因表达研究最新进展 Mdk是一种分泌型蛋白,在神经发育中有重要作用,并参与人类肿瘤的形成。但是,在不同种类的脊椎动物中,Mdk基因的表达模式却大相径庭。该文报道了从银鲫10体节胚胎的SMARTcDNA文库中克隆的银鲫Mdkb基因的特征、表达图式及功能。在银鲫胚胎发育过程中,CagMdkb基 四膜虫基因表达 因在原肠期开始表达,在10体节期时表达量上升到最高,此后表达量保持稳定。Western印迹显示胚胎早期有一条19kDa的母源CagMdkb蛋白带,合子CagMdkb蛋白从原肠期开始产生。大约在10体节时,19kDa的CagMdkb蛋白剪掉了信号肽,变成17kDa的成熟蛋白。在胚胎发育早期,母源的CagMdkb蛋白在所有卵裂球的细胞质中被检测到。 当胚胎发育到18体节期时,新合成蛋白的信号出现在后脑的一对巨大神经元中。此后,新合成的CagMdkb蛋白延伸到前脑、中脑、后脑的神经元和脊髓的神经纤维中。3A10抗体共定位表明这对巨大的神经元是Mauthner神经元。在银鲫和斑马鱼受精卵中进行的基因转移实验发现,野生型CagMdkbRNAs的过量表达造成了胚胎前脑组织和眼睛发育受到抑制等严重缺陷,并发现其功能的发挥还依赖于它的分泌特性。上述结果表明,CagMdkb在鱼类神经系统的早期发育中起着重要作用。 DNA个体差异能导致基因表达蛋白大不同 研究人员证明DNA水平上个体之间的微小差异能导致基因表达蛋白的巨大不同,这导致了个体之间的自然特征的许多变化。在人类由30亿个碱基对、大约数万个基因组成的基因组中,哪些基因或者基因的突变可能导致疾病?这种寻找致病基因的工作通常如同大海捞针。人类基因组计划(HGP)和人类基因组单体型图计划(HapMap)这两个超级研究项目的设立兴起了一场致病基因淘金热,其中科学家使用了一种称为“全基因组关联研究”的方法,寻找可能的致病因素。 这种新的方法把注意力集中在人类基因组的一种微小突变上。这种突变是指DNA上的某个“字母”被另外一个字母取代(例如AAG变成了ATG),它被称作“单核苷酸多态性”(SNP)。科学家估计,在人类基因组中可能存在约1500万个单字母突变,或者说,在人类这个遗传结构相当统一的群体内,还有1500万个可能的SNP。借助于基因芯片等新技术,科学家可以同时分析一个人的基因组中的数十万个SNP。把许多健康人和疾病患者(这些人不一定必须属于同一个家族)的SNP结果放在一起,SNP的分布状况就可以显示出致病基因的一些蛛丝马迹 | [
"5个分类",
"生物化学",
"生物",
"化学",
"分子生物学",
"基因"
] | 4,878 | zh-CN |
基因表达 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E8%A1%A8%E7%8E%B0 | (重定向自基因表现) 基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子。生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。差别基因表达(differentialgeneexpression)指细胞分化过程中,奢侈基因按一定顺序表达,表达的基因数约占基因总数的5%~10%。也就是说,某些特定奢侈基因表达的结果生成一种类型的分化细胞,另一组奢侈基因表达的结果导致出现另一类型的分化细胞,这就是基因的差别表达。其本质是开放某些基因,关闭某些基因,导致细胞的分化。 转录过程 在RNA聚合酶的催化下,以DNA为模板合成mRNA的过程称为转录(transcription).在双链DNA中,作为转录模板的链称为模板链(template strand),或反义链(antisensestrand);而不作为转录模板的链称为编码链(coding strand),或有义链(sense strand).在双链DNA中与转录模板互 补的一条DNA链即编码链,它与转录产物的差异仅在于DNA中T变为RNA中的U.在含许多基因的DNA双链中,每个基因的模板链并不总是在同一条链上,亦即一条链可作为某些基因的模板链的,也可是另外一些基因的编码链。 转录后要进行加工,转录后的加工包括: (1)剪接:一个基因的外显子和内含子都转录在一条原始转录物RNA分子中,称为前mRNA(pre-mRNA),又称核内异质RNA(heterogenuous nuclear RNA,huRNA)。因此前mRNA分子既有外显子顺序又有内含子顺序,另外还包括编码区前面及后面非翻译顺序。这些内含子顺序必须除支而把外显子顺序连接起来,才能产生成熟的有功能的mRNA分子,这个过程称为RNA剪接(RNa splicing)。剪切发生在外显子的3’末端的GT和内含子3’末端与下一个外显子交界的AG处。 (2)加帽:几乎全部的真核 mRNa 端都具“帽子”结构。虽然真核生物的mRNA的转录以嘌呤核苷酸三磷酸(pppAG或pppG)领头,但在5’端的一个核苷酸总是7-甲基鸟核苷三磷酸(m7GpppAGpNp)。mNRA5’端的这种结构称为帽子(cap)。不同真核生物的mRNA具有不同的帽子。 mRNA的帽结构功能:①能被核糖体小亚基识别,促使mRNA和核糖体的结合;②m7Gppp结构能有效地封闭RNa 5’末端,以保护mRNA免疫5’核酸外切酶的降解,增强mRNA的稳定 (3)加尾:大多数真核生物的mRNA 3’末端都有由100~200个A组成的Poly(A)尾巴。Poly(A)尾不是由DNA编码的,而是转录后的前mRNA以ATP为前体,由RNA末端腺苷酸转移酶,即Ploy(A)聚合酶催化聚合到3’末端。加尾并非加在转录终止的3’末端,而是在转录产物的3’末端,由一个特异性酶识别切点上游方向13~20碱基的加尾识别信号AAUAAA以及切点下游的保守顺序GUGUGUG,把切点下游的一段切除,然后再由Poly(A)聚合酶催化,加上Poly(A)尾巴,如果这一识别信号发生突变,则切除作用和多聚腺苷酸化作用均显著降低。mRNAPoly(A)尾的功能是:①可能有助mRNA从核到细胞质转运;②避免在细胞中受到核酶降解,增强mRNA的稳定性。 翻译过程 以mRNA作为模板,tRNA作为运载工具,在有关酶、辅助因子和能量的作用下将活化的氨基酸在核糖体(亦称核蛋白体)上装配为蛋白质多肽链的过程,称为翻译(translation),这一过程大致可分为3个阶段: 基因表达调控 (1)肽链的起始:在许多起始因子的作用下,首先是核糖体的小亚基和mRNA上的起始密码子结合,然后甲酰甲硫氨酰tRNA(tRNA fMet)结合上去,构成起始复合物。通过tRNA的反密码子UAC,识别mRNA上的起始密码子AUG,并相互配对,随后核糖体大亚基结合到小亚基上去,形成稳定的复合体,从而完成了起始的作用。 (2)肽链的延和长:核糖体上有两个结合点——P位和A位,可以同时结合两个氨酰tRNA。当核糖体沿着mRNA从5’→3’移动时,便依次读出密码子。首先是tRNAfMet结合在P位,随后第二个氨酰tRNA进入A位。此时,在肽基转移酶的催化下,P位和A位上的2个氨基酸之间形成肽键。第一个tRNA失去了所携带的氨基酸而从P位脱落,P位空载。A位上的氨酰tRNA在移位酶和GTP的作用下,移到P位,A位则空载。核糖体沿mRNA 5’端向3’端移动一个密码子的距离。第三个氨酰tRNA进入A位,与P位上氨基酸再形成肽键,并接受P位上的肽链,P位上tRNA释放,A位上肽链又移到P位,如此反复进行,肽链不断延长,直到mRNA的终止密码出现时,没有一个氨酰tRNA 真核基因表达 可与它结合,于是肽链延长终止。 (3)肽链的终止:终止信号是mRNA上的终止密码子(UAA、UAG或UGA)。当核糖体沿着mRNA移动时,多肽链不断延长,到A位上出现终止信号后,就不再有任何氨酰tRNA接上去,多肽链的合成就进入终止阶段。在释放因子的作用下,肽酰tRNA的的酯键分开,于是完整的多肽链和核糖体的大亚基便释放出来,然后小亚基也脱离mRNA。 (4)翻译后加工(postranslational processing):从核糖体上释放出来的多肽需要进一步加工修饰才能形成具有生物活性的蛋白质。翻译后的肽链加工包括肽链切断,某些氨基酸的羟基化、磷酸化、乙酰化、糖基化等。真核生物在新生手肽链翻译后将甲硫氨酸裂解掉。有一类基因的翻译产物前体含有多种氨基酸顺序,可以切断为不同的蛋白质或肽,称为多蛋白质(polyprotein)。例如胰岛素(insulin)是先合成86个氨基酸的初级翻译产物,称为胰岛素原(proinsulin),胰岛素原包括A、B、C三段,经过加工,切去其中无活性的C肽段,并在A肽和B肽之间形成二硫键,这样才得到由51个氨基酸组成的有活性的胰岛素。 外显子 外显子与内含子表达过程中的相对性 从内含子与外显子的定义来看,两者是不能混淆的,但是真核生物的外显子也并非都“显”(编码氨基酸),除了tRNA基因和rRNA基因的外显子完全“不显”之外,几乎全部的结构基因的首尾两外显子都只有部分核苷酸顺序编码氨基酸,还有完全不编码基酸的外显子,如人类G6PD基因的第一外显子核苷酸顺序。 基因表达调控 现在已发现一个基因的外显子可以是另一基因的内含子,所这亦然。以小鼠的淀粉酶基因为例,来源于肝的与来源于唾液腺的是同一基因。淀粉酶基因包括4个外显子,肝生成的淀粉酶不保留外显子1,而唾液腺中的淀粉酶则保留了外显子1的50bp顺序,但把外显子2与前后两段内含子一起剪切掉,经过这样剪接,外显子2就变成唾液淀粉酶基因中的内含子。 同一基因在不同组织能生成不同的基因产物来源于不同组织的类似蛋白,可以由同一基因编码产生,这种现象首先是由于基因中的增强子等有组织特异性,它能与不同组织中的组织特异因子结合,故在不同组织中同一基因会产生不同的转录物与转录后加工作用。此外真核生物基因可有一个以一的poly(A)位点,因此能在不同的细胞中产生具有不同3’末端的前mRNA,从而会有不同的剪接方式。由于大多数真核生物基因的转录物是先加poly(A)尾巴,然后再行剪接,因此不同组织、细胞中会有不同的因子干预多聚腺苷酸化作用,最后影响剪接模式。 实验应用 利用基因芯片研究干旱胁迫下玉米基因表达 玉米是全球第一大作物、中国第二大作物,而干旱是影响其产量的重要限制因素。山东大学生命科学院张举仁教授的课题组利用基因芯片技术研究了开花期玉米顶叶干旱胁迫下基因的表达。开花期是玉米需水临界期,对干旱胁迫反应最敏感,此时逢干旱会使产量下降幅度最大。张教授的课题组以开花期玉米为材料,分别对其进行短期和长期的干旱胁迫,采用全基因组芯片研究了顶叶中基因的表达情况。 原核基因表达调控 分析的结果表明,有197个基因在短期胁迫下差异表达(53%上调),而在长期胁迫下,则有1009个基因差异表达(32%上调)。分离得到的差异表达基因中约有一半的基因功能未知,其他基因按功能则可分为:代谢相关;细胞信号转导;转录相关;蛋白质合成;细胞防御;细胞运输;亚细胞定位等几大类。分析实验表明,在短期胁迫下上调表达的基因中,约有1/3的已知功能基因属于信号转导功能的分类范畴,参与细胞内不同的信号转导途径,这表明信号转导相关基因在玉米对干旱的早期反应中起重要作用。而在长期干旱条件下,顶叶中大量的代谢相关基因差异表达。 吸烟者肺细胞的基因表达模式有助于肺癌的早期诊断 在全世界癌症患者的死亡率中,肺癌的死亡率位居前列。肺癌高死亡率的主要原因之一是缺乏早期诊断工具。研究人员在3月出版的《自然—医学》中报道:吸烟者肺细胞的基因表达模式也许有助于肺癌的早期诊断。 众所周知,吸烟是肺癌的风险因子,因此吸烟者被认为是肺癌的高风险人群。吸烟者的正常上皮细胞的基因表达模型是否可用于肺癌存在状态的一种生物标志呢?AvrumSpira和同事进行了这一研究。在预测患者是否会向癌症发展时,他们研究的生物标志的准确率达到90%。当与其他历史数据结合在一起,准确率可增加到95%。 研究进展 水生所在银鲫胚胎发育基因表达研究最新进展 Mdk是一种分泌型蛋白,在神经发育中有重要作用,并参与人类肿瘤的形成。但是,在不同种类的脊椎动物中,Mdk基因的表达模式却大相径庭。该文报道了从银鲫10体节胚胎的SMARTcDNA文库中克隆的银鲫Mdkb基因的特征、表达图式及功能。在银鲫胚胎发育过程中,CagMdkb基 四膜虫基因表达 因在原肠期开始表达,在10体节期时表达量上升到最高,此后表达量保持稳定。Western印迹显示胚胎早期有一条19kDa的母源CagMdkb蛋白带,合子CagMdkb蛋白从原肠期开始产生。大约在10体节时,19kDa的CagMdkb蛋白剪掉了信号肽,变成17kDa的成熟蛋白。在胚胎发育早期,母源的CagMdkb蛋白在所有卵裂球的细胞质中被检测到。 当胚胎发育到18体节期时,新合成蛋白的信号出现在后脑的一对巨大神经元中。此后,新合成的CagMdkb蛋白延伸到前脑、中脑、后脑的神经元和脊髓的神经纤维中。3A10抗体共定位表明这对巨大的神经元是Mauthner神经元。在银鲫和斑马鱼受精卵中进行的基因转移实验发现,野生型CagMdkbRNAs的过量表达造成了胚胎前脑组织和眼睛发育受到抑制等严重缺陷,并发现其功能的发挥还依赖于它的分泌特性。上述结果表明,CagMdkb在鱼类神经系统的早期发育中起着重要作用。 DNA个体差异能导致基因表达蛋白大不同 研究人员证明DNA水平上个体之间的微小差异能导致基因表达蛋白的巨大不同,这导致了个体之间的自然特征的许多变化。在人类由30亿个碱基对、大约数万个基因组成的基因组中,哪些基因或者基因的突变可能导致疾病?这种寻找致病基因的工作通常如同大海捞针。人类基因组计划(HGP)和人类基因组单体型图计划(HapMap)这两个超级研究项目的设立兴起了一场致病基因淘金热,其中科学家使用了一种称为“全基因组关联研究”的方法,寻找可能的致病因素。 这种新的方法把注意力集中在人类基因组的一种微小突变上。这种突变是指DNA上的某个“字母”被另外一个字母取代(例如AAG变成了ATG),它被称作“单核苷酸多态性”(SNP)。科学家估计,在人类基因组中可能存在约1500万个单字母突变,或者说,在人类这个遗传结构相当统一的群体内,还有1500万个可能的SNP。借助于基因芯片等新技术,科学家可以同时分析一个人的基因组中的数十万个SNP。把许多健康人和疾病患者(这些人不一定必须属于同一个家族)的SNP结果放在一起,SNP的分布状况就可以显示出致病基因的一些蛛丝马迹 | [
"5个分类",
"生物化学",
"生物",
"化学",
"分子生物学",
"基因"
] | 4,889 | zh-CN |
基因融合 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E8%9E%8D%E5%90%88 | 所谓融合基因,是指将两个或多个基因的编码区首尾相连,置于同一套调控序列(包括启动子、增强子、核糖体结合序列、终止子等)控制之下,构成的嵌合基因.融合基因的表达产物为融合蛋白。 基因融合的原因 一些病因不明,但有报道说与遗传和病毒癌细胞等有关。但当前更多的是人工基因融合。 基因融合的诊断 机体出现了由两个或多个基因的编码区首尾相连置于同一套调控序列(包括启动子、增强子、核糖体结合序列、终止子等)控制之下,构成的嵌合基因并成功表达了融合蛋白。 基因融合的鉴别诊断 基因突变 :由于DNA分子中发生碱基对的增添、缺失或改变,而引起的基因结构的改变,就叫做基因突变。 机体出现了由两个或多个基因的编码区首尾相连置于同一套调控序列(包括启动子、增强子、核糖体结合序列、终止子等)控制之下,构成的嵌合基因并成功表达了融合蛋白。 基因融合的治疗和预防方法 需到正规医院检查并根据病因进行相关治疗。 参看 先天性白血病 老年人前列腺癌 肺癌 其它症状 | [
"1个分类",
"其它症状"
] | 419 | zh-CN |
基因置换 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%BD%AE%E6%8D%A2 | 基因置换就是用正常基因通过体内基因同源重组,原位替换病变细胞内的致病基因,使细胞内的DNA完全恢复正常状态。 属于基因治疗的一种方法 | [
"2个分类",
"生物",
"基因"
] | 66 | zh-CN |
遗传印记 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%BB%84%E9%93%AD%E5%8D%B0 | (重定向自基因组铭印) 遗传印记一般发生在哺乳动物的配子形成期,并且是可逆的,它不是一种突变,也不是永久性的变化;它是特异性的对源于父亲或母亲的等位基因做一个印记,时期只表达父源或母源的等位基因,使之在子代中产生不同表型。印记持续在一个个体的一生中,在下一代配子形成时,旧的印记可以消除并发生新的印记。 遗传印记:越来越多的研究显示一个个体的同源染色体(或相应的一对等位基因)因分别来自其父方或母方,而变现出功能上的差异,因此当它们其一发生改变时,所形成的表型也有不同,这种现象称为遗传印记或基因组印记、亲代印记 | [
"2个分类",
"生物学",
"遗传学"
] | 256 | zh-CN |
人类基因组计划 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%BB%84%E8%AE%A1%E5%88%92 | (重定向自基因组计划) 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本国和中国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗登月计划并称为三大科学计划。 2000年6月26日,参加人类基因组工程项目的美国、英国、法兰西共和国、德意志联邦共和国、日本国和中国的 6国科学家共同宣布,人类基因组草图的绘制工作已经完成。最终完成图要求测序所用的克隆能忠实地代表常染色体的基因组结构,序列错误率低于万分之一。 95%常染色质区域被测序,每个Gap小于150kb。完成图将于2003年完成,比预计提前2年。 美国和英国科学家2006年5月18日在英国《自然》杂志网络版上发表了人类最后一个染色体——1号染色体的基因测序。 在人体全部22对常染色体中,1号染色体包含基因数量最多,达3141个,是平均水平的两倍,共有超过2.23亿个碱基对,破译难度也最大。一个由150名英国和美国科学家组成的团队历时10年,才完成了1号染色体的测序工作。 科学家不止一次宣布人类基因组计划完工,但推出的均不是全本,这一次杀青的“生命之书”更为精确,覆盖了人类基因组的99.99%。解读人体基因密码的“生命之书”宣告完成,历时16年的人类基因组计划书写完了最后一个章节。 参看 《医学遗传学基础》- 人类基因组计划 | [
"1个分类",
"遗传学"
] | 684 | zh-CN |
基因组文库 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%BB%84%E6%96%87%E5%BA%93 | 英文名:Genomic Library是指将某生物的全部基因组DNA切割成一定长度的DNA片段克隆到某种载体上形成的集合。可分为核基因组文库、叶绿体基因组文库及线粒体基因组文库。 用限制性内切酶切割细胞的整个基因组DNA,可以得到大量的基因组DNA片段,然后将这些DNA片段与载体连接,再转化到细菌中去,让宿主菌长成克隆。这样,一个克隆内的每个细胞的载体上都包含有特定的基因组DNA片段,整个克隆群体就包含基因组的全部基因片段总和称为基因组文库。 Genomic library: a storable collection of cellular clones that contains copies of every sequence in the whole genome inserted into a suitable vector. 将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞进行克隆。这些存在于所有重组体内的基因组DNA片段的集合,即基因组文库,它包含了该生物的所有基因。 基因组文库是指含有某种生物全部基因随机片段的重组DNA克隆群体.构建文库时,先提纯染色体DNA,通过机械剪切或酶切使之成为一定大小的片段,然后与适当的载体(如λ噬菌体)DNA连接,经体外包装后转染宿主菌,得到一组含有不同DNA片段的重组噬菌体颗粒,含有目的基因片段的重组子可经带标记的探针与基因组文库杂交而筛选出来,用于进一步的研究. A collection of clonesrepresenting the entire chromosomal DNA sequence. These clones include the entire gene,including introns(eukaryotes) and regulatory regions | [
"3个分类",
"生物",
"克隆",
"基因"
] | 792 | zh-CN |
基因组学 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%BB%84%E5%AD%A6 | 排序基因的专用电脑 基因组学,或基因体学,是研究生物基因组和如何利用基因的一门学问。该学科提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题。 基因组学能为一些疾病提供新的诊断,治疗方法。例如,对刚诊断为乳腺癌的女性,一个名为“Oncotype DX”的基因组测试,能用来评估病人乳腺癌复发的个体危险率以及化疗效果,这有助于医生获得更多的治疗信息并进行个性化医疗。基因组学还被用于食品与农业部门。 基因组学的主要工具和方法包括: 生物信息学,遗传分析,基因表达测量和基因功能鉴定。 发展史 基因组学出现于1980年代,1990年代随着几个物种基因组计划的启动,基因组学取得长足发展。 相关领域是遗传学,其研究基因以及在遗传中的功能。 1980年,噬菌体 Φ-X174;(5,368 碱基对)完全测序,成为第一个测定的基因组。 1995年,嗜血流感菌(Haemophilus influenzae,1.8Mb)测序完成,是第一个测定的自由生活物种。从这时起,基因组测序工作迅速展开。 2001年,人类基因组计划公布了人类基因组草图,为基因组学研究揭开新的一页。 “组学”的增长 “组”在基因组一词中,意指一个物种的“全部”遗传组成。由于诸如基因组测序这样的大规模定量生物项目的成功,“组”的这个意义的使用已经扩展到其他相关领域。例如,蛋白质组指的是一个物种,组织或细胞内的全部蛋白质(表达的基因这里指被翻译成蛋白质)。蛋白质组学现在已经作为研究蛋白质组的专业术语。 请参见: 组学主题列表(生物学) 比较基因组学 基因组间的相互比较已经导致一些惊人的生物学发现。如果某特定的DNA序列或DNA基序在某进化树分支上所有的物种都出现,则称该序列在这些物种间是保守的。某DNA序列的进化保守性提示拥有这些序列的物种具有相应的自然选择优势。同时也提示,其具有重要功能。这可能是蛋白编码序列或调控区域。对这些序列的实验研究表明,其中一部分被转录成小RNA,而这些小RNA的功能尚未研究清楚. 在两个进化树上距离较远,相关而又不处于同一进化分支中的物种间鉴定出相似序列(包括许多基因),促成了新理论的产生,该理论认为这些序列是通过水平基因转移而获得的。尽管这些基因看起来是从古细菌向真细菌进行转移,而这种现象在细菌间尤其显著。同时还注意到,细菌基因在真核生物核基因组中出现,而这些基因通常用来编码线粒体和叶绿体蛋白,这种现象也支持细胞器起源的内共生学说。该理论认为动物和植物基因组中发现的线粒体和叶绿体最初是自由生活的细菌,由祖先真核细胞吸收而来,后来逐步变成真核细胞的有机组成部分。 结构基因组学 结构基因组学( St ructural Genomics) 是基因组学的一个重要组成部分和研究领域, 它是一门通过基因作图、核苷酸序列分析确定基因组成、基因定位的科学。 功能基因组学 功能基因组学( Funct ional genomics) 的研究又往往被称为后基因组学( Postgenomics) 研究, 它是利用结构基因组学提供的信息和产物,通过在基因组或系统水平上全面分析基因的功能, 营养基因组学 营养基因组学的研究方面是检测和操纵植物中的微量营养代谢途径, 遗传相似性 学界常用某特定物种的DNA序列共享人类序列的百分比来表示相似性。该数字显示了两物种之间碱基对相同的百分比。这里所列的是相对于人类的遗传相似性,并列出了数据来源。 这些数据来源于不同的二级数据源,并用不同的方法获得(例如杂交|DNA-DNA杂交或序列比对),这可能导致相同物种间的比较得到不同的结果。因此,这些数据应该仅仅用作大致相似性。 参考 DNA基序 基因治疗 基因工程 化学基因组学 结构基因组学 组学列表(生物学) 网络资源与外部链接 PLoS引物: 比较基因组学 "人类基因组专刊" 自然, 2001年2月15日, no. 6822 搜索人类基因信息数据库 - http://www.medicalcomputing.net/cgi-bin/query_human_gene_info, 医学计算,网络 基因组学在线数据库 - http://wit.integratedgenomics.com/GOLD 基因研究最新进展 联会基因组学会 基因组研究中心(TIGR) - http://www.tigr.org 桑格中心 - http://www.sanger.ac.uk 美国国家生物技术信息中心(NCBI) - http://www.ncbi.nlm.nih.gov http://www.dbbm.fiocruz.br/genomics/genomics.html http://www.dbbm.fiocruz.br/genome/tcruzi/tcruzi.html (Chagas' Disease and Trypanosoma cruzi genome project) Translational Genomics Research Institute International Genomics Consortium Functional Annotation of the Mouse database Dengueinfo.org - Dengue Virus full genome database - http://www.dengueinfo.org/ 参考来源 维基百科-基因組學 | [
"1个分类",
"基因组学"
] | 2,261 | zh-CN |
遗传印记 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%BB%84%E5%8D%B0%E8%BF%B9 | (重定向自基因组印迹) 遗传印记一般发生在哺乳动物的配子形成期,并且是可逆的,它不是一种突变,也不是永久性的变化;它是特异性的对源于父亲或母亲的等位基因做一个印记,时期只表达父源或母源的等位基因,使之在子代中产生不同表型。印记持续在一个个体的一生中,在下一代配子形成时,旧的印记可以消除并发生新的印记。 遗传印记:越来越多的研究显示一个个体的同源染色体(或相应的一对等位基因)因分别来自其父方或母方,而变现出功能上的差异,因此当它们其一发生改变时,所形成的表型也有不同,这种现象称为遗传印记或基因组印记、亲代印记 | [
"2个分类",
"生物学",
"遗传学"
] | 256 | zh-CN |
遗传印记 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%BB%84%E5%8D%B0%E8%AE%B0 | (重定向自基因组印记) 遗传印记一般发生在哺乳动物的配子形成期,并且是可逆的,它不是一种突变,也不是永久性的变化;它是特异性的对源于父亲或母亲的等位基因做一个印记,时期只表达父源或母源的等位基因,使之在子代中产生不同表型。印记持续在一个个体的一生中,在下一代配子形成时,旧的印记可以消除并发生新的印记。 遗传印记:越来越多的研究显示一个个体的同源染色体(或相应的一对等位基因)因分别来自其父方或母方,而变现出功能上的差异,因此当它们其一发生改变时,所形成的表型也有不同,这种现象称为遗传印记或基因组印记、亲代印记 | [
"2个分类",
"生物学",
"遗传学"
] | 256 | zh-CN |
人类基因组计划 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%BB%84%E4%BD%9C%E5%9B%BE | (重定向自基因组作图) 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本国和中国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗登月计划并称为三大科学计划。 2000年6月26日,参加人类基因组工程项目的美国、英国、法兰西共和国、德意志联邦共和国、日本国和中国的 6国科学家共同宣布,人类基因组草图的绘制工作已经完成。最终完成图要求测序所用的克隆能忠实地代表常染色体的基因组结构,序列错误率低于万分之一。 95%常染色质区域被测序,每个Gap小于150kb。完成图将于2003年完成,比预计提前2年。 美国和英国科学家2006年5月18日在英国《自然》杂志网络版上发表了人类最后一个染色体——1号染色体的基因测序。 在人体全部22对常染色体中,1号染色体包含基因数量最多,达3141个,是平均水平的两倍,共有超过2.23亿个碱基对,破译难度也最大。一个由150名英国和美国科学家组成的团队历时10年,才完成了1号染色体的测序工作。 科学家不止一次宣布人类基因组计划完工,但推出的均不是全本,这一次杀青的“生命之书”更为精确,覆盖了人类基因组的99.99%。解读人体基因密码的“生命之书”宣告完成,历时16年的人类基因组计划书写完了最后一个章节。 参看 《医学遗传学基础》- 人类基因组计划 | [
"1个分类",
"遗传学"
] | 684 | zh-CN |
基因组 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%BB%84 | 基因组,Genome,一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说的更确切些,核基因组是单倍体细胞核内的全部 DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。 详细内容 《遗传学名词》第二版对“基因组”的释义: 单倍体细胞核、细胞器或病毒粒子所含的全部DNA分子或RNA分子。 现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。 基因是生命遗传的基本单位,由30亿个碱基对组成的人类基因组,蕴藏着生命的奥秘。始于1990年的国际人类基因组计划,被誉为生命科学的“登月”计划,原计划于2005年完成。各国所承担工作比例约为美国54%,英国33%,日本7%,法国2.8%,德国2.2%,中国1%。此前,人类基因组“工作框架图”已于2000年6月完成,科学家发现人类基因数目约为2.5万个,远少于原先10万个基因的估计。 人类基因组是全人类的共同财富。国内外专家普遍认为,基因组序列图首次在分子层面上为人类提供了一份生命“说明书”,不仅奠定了人类认识自我的基石,推动了生命与医学科学的革命性进展,而且为全人类的健康带来了福音。 理论发展 人类只有一个基因组,大约有2.5万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。计划于1990年正式启动,这一价值30亿美元的计划的目标是,为30亿个碱基对构成的人类基因组精确测序,从而最终弄清楚每种基因制造的蛋白质及其作用。打个比方,这一过程就好像以步行的方式画出从北京到上海的路线图,并标明沿途的每一座山峰与山谷。虽然很慢,但非常精确。 应用实例 随着人类基因组逐渐被破译,一张生命之图将被绘就,人们的生活也将发生巨大变化。基因药物已经走进人们的生活,利用基因治疗更多的疾病不再是一个奢望。因为随着我们对人类 本身的了解迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好些,治疗方案就能“对因下药”,生活起居、饮食习惯有可能根据基因情况进行调整,人类的整体健康状 况将会提高,二十一世纪的医学基础将由此奠定。 利用基因,人们可以改良果蔬品种,提高农作物的品质,更多的转基因植物和动物、食品将问世,人类可能在新世纪里培育出超级物作。通过控制人体的生化特性,人类将能够恢复或修复人体细胞和器官的功能,甚至改变人类的进化过程 | [
"3个分类",
"生物",
"分子生物学",
"基因"
] | 1,262 | zh-CN |
基因簇 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%B0%87 | gene cluster 指基因家族中的各成员紧密成簇排列成大串的重复单位,定于染色体的的特殊区域。基因簇少则可以是由重复产生的两个相邻相关基因所组成,多则可以是几百个相同基因串联排列而成。他们属于同一个祖先的基因扩增产物。也有一些基因家族的成员在染色体上排列并不紧密,中间还含有一些无关序列。但总体是分布在染色体上相对集中的区域。 基因簇中也常常包括一些没有生物功能的假基因。 一组紧密连锁的且功能上密切相关的结构基因,多见于脉孢菌(Neurospora)等真菌中。这些基因各自编码的酶常能组成多酶复合物,能催化代谢中的特定反应。细菌同一操纵子中的几个结构基因也可称基因簇,但这些基因编码的酶并不组成复合体 | [
"4个分类",
"生物",
"分子生物学",
"基因",
"生物学"
] | 304 | zh-CN |
突变 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%AA%81%E5%8F%98 | (重定向自基因突变) 从达尔文的自然选择学说可以看出,生物在繁衍后代的过程中,会产生各种各样的可遗传的变异,这些可遗传的变异为生物进化提供了原材料。现代遗传学的研究表明,可遗传的变异来源于基因突变、基因变异和染色体变异。其中,基因突变和染色体变异常称为突变。 我们知道,生物自发突变的频数很低,而且一般对生物体是有害的,那么。它为什么还能够作为生物进化的材料呢?这是因为虽然对于每一个基因来说,突变率是很低的,但始种群是有许多个体组成的,每个个体的每一个细胞中都有成千上万个基因,这样,每一代就会产生大量的突变。 突变,在生物学上的含义是指细胞中的遗传基因(一般指DNA或RNA,对动物而言包括细胞核与线粒体中的,植物则还包括叶绿体中的)发生永久的改变。 原因可以是细胞分裂时遗传基因的复制发生错误、或受化学物质、射线、或病毒的影响。 突变通常会导致细胞运作不正常、或细胞死亡,甚至可以在较高等生物中引发癌症。但同时,突变也被视为物种进化的推动力:不理想的突变会经天择过程被淘汰,而对物种有利的突变则会被累积下去。中性的突变对物种没有影响而逐渐累积,导致间断平衡 | [
"2个分类",
"遗传学",
"生态学"
] | 481 | zh-CN |
基因工程 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%A7%91%E6%8A%80 | (重定向自基因科技) 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 学科概况 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。 这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。 随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基本操作步骤 1.获取目的基因是实施基因工程的第一步。如植物的抗病(抗病毒 抗细菌)基因,种子的贮藏蛋白的基因,以及人的胰岛素基因干扰素基因等,都是目的基因。 要从浩瀚的“基因海洋”中获得特定的目的基因,是十分不易的。科学家们经过不懈地探索,想出了许多办法,其中主要有两条途径:一条是从供体细胞的DNA中直接分离基因;另一条是人工合成基因。 直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。鸟枪法的具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞提供的DNA(即外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。如许多抗虫抗病毒的基因都可以用上述方法获得。 用鸟枪法获得目的基因的优点是操作简便,缺点是工作量大,具有一定的盲目性。又由于真核细胞的基因含有不表达的DNA片段,一般使用人工合成的方法。 目前人工合成基因的方法主要有两条。一条途径是以目的基因转录成的信使RNA为模版,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需要的基因。另一条途径是根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对的原则,推测出它的基因的核苷酸序列,再通过化学方法,以单核苷酸为原料合成目的基因。如人的血红蛋白基因胰岛素基因等就可以通过人工合成基因的方法获得。 2.基因表达载体的构建(即目的基因与运载体结合)是实施基因工程的第二步,也是基因工程的核心。 将目的基因与运载体结合的过程,实际上是不同来源的DNA重新组合的过程。如果以质粒作为运载体,首先要用一定的限制酶切割质粒,使质粒出现一个缺口,露出黏性末端。然后用同一种限制酶切断目的基因,使其产生相同的黏性末端。将切下的目的基因的片段插入质粒的切口处,再加入适量DNA连接酶,质粒的黏性末端与目的基因DNA片段的黏性末端就会因碱基互补配对而结合,形成一个重组DNA分子。如人的胰岛素基因就是通过这种方法与大肠杆菌中的质粒DNA分子结合,形成重组DNA分子(也叫重组质粒)的。 3.将目的基因导入受体细胞是实施基因工程的第三步。目的基因的片段与运载体在生物体外连接形成重组DNA分子后,下一步是将重组DNA分子引入受体细胞中进行扩增。 基因工程中常用的受体细胞有大肠杆菌,枯草杆菌,土壤农杆菌,酵母菌和动植物细胞等。 用人工方法使体外重组的DNA分子转移到受体细胞,主要是借鉴细菌或病毒侵染细胞的途径。例如,如果运载体是质粒,受体细胞是细菌,一般是将细菌用氯化钙处理,以增大细菌细胞壁的通透性,使含有目的基因的重组质粒进入受体细胞。目的基因导入受体细胞后,就可以随着受体细胞的繁殖而复制,由于细菌的繁殖速度非常快,在很短的时间内就能够获得大量的目的基因。 4.目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。 以上步骤完成后,在全部的受体细胞中,真正能够摄入重组DNA分子的受体细胞是很少的。因此,必须通过一定的手段对受体细胞中是否导入了目的基因进行检测。检测的方法有很多种,例如,大肠杆菌的某种质粒具有青霉素抗性基因,当这种质粒与外源DNA组合在一起形成重组质粒,并被转入受体细胞后,就可以根据受体细胞是否具有青霉素抗性来判断受体细胞是否获得了目的基因。重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程。 前景 科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。 生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。 生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。 历史 人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。 人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。 科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。 人类基因工程 信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。有科学家预言,随着癌症、心脑血管疾病等顽症的有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。到2050年,人类的平均寿命将达到90至95岁。 人类将挑战生命科学的极限。1953年2月的一天,英国科学家弗朗西斯.克里克宣布:我们已经发现了生命的秘密。他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具体位置,查清每个基因核苷酸的顺序,建立人类基因库。1999年,人的第22对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。可以预见,在今后的四分世纪里,科学家们就可能揭示人类大约5000种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。 继2000年6月26日科学家公布人类基因组"工作框架图"之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司2001年2月12日联合公布人类基因组图谱及初步分析结果。这次公布的人类基因组图谱是在原"工作框架图"的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。随着人类基因组研究工作的进一步深入,生命科学和生物技术将随着新的世纪进入新的纪元。 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 基因工程大事记 1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。 1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。 1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。 1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。 1969年 科学家成功分离出第一个基因。 1980年 科学家首次培育出世界第一个转基因动物转基因小鼠。 1983年 科学家首次培育出世界第一个转基因植物转基因烟草。 1988年 K.Mullis发明了PCR技术。 1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。 1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。 1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。 1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。 1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。 2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。 2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。 2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。 2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。 2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。 2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。 科学家首次公布人类基因组草图“基因信息”。 各国研究状况 英国:早在20世纪80年代中期,英国就有了第一家生物科技企业,是欧洲国家中发展最早的。如今它已拥有560家生物技术公司,欧洲70家上市的生物技术公司中,英国占了一半。 德国:德国政府认识到,生物科技将是保持德国未来经济竞争力的关键,于是在1993年通过立法,简化生物技术企业的审批手续,并且拨款1.5亿马克,成立了3个生物技术研究中心。此外,政府还计划在未来5年中斥资12亿马克,用于人类基因组计划的研究。1999年德国研究人员申请的生物技术专利已经占到了欧洲的14%。 法国:法国政府在过去10年中用于生物技术的资金已经增加了10倍,其中最典型的项目就是1998年在巴黎附近成立的号称“基因谷”的科技园区,这里聚集着法国最有潜力的新兴生物技术公司。另外20个法国城市也准备仿照“基因谷”建立自己的生物科技园区。 西班牙:马尔制药公司是该国生物科技企业的代表,该公司专门从海洋生物中寻找抗癌物质。其中最具开发价值的是ET-743,这是一种从加勒比海和地中海的海底喷出物中提取的红色抗癌药物。ET-743计划于2002年在欧洲注册生产,将用于治疗骨癌、皮肤癌、卵巢癌、乳腺癌等多种常见癌症。 印度:印度政府资助全国50多家研究中心来收集人类基因组数据。由于独特的“种姓制度”和一些偏僻部落的内部通婚习俗,印度人口的基因库是全世界保存得最完整的,这对于科学家寻找遗传疾病的病理和治疗方法来说是个非常宝贵的资料库。但印度的私营生物技术企业还处于起步阶段。 日本:日本政府已经计划将明年用于生物技术研究的经费增加23%。一家私营企业还成立了“龙基因中心”,它将是亚洲最大的基因组研究机构。 新加坡:新加坡宣布了一项耗资6000万美元的基因技术研究项目,研究疾病如何对亚洲人和白种人产生不同影响。该计划重点分析基因差异以及什么样的治疗方法对亚洲人管用,以最终获得用于确定和治疗疾病的新知识;并设立高技术公司来制造这一研究所衍生出的药物和医疗产品。 中国:参与了人类基因组计划,测定了1%的序列,这为21世纪的中国生物产业带来了光明。这“1%项目”使中国走进生物产业的国际先进行列,也使中国理所当然地分享人类基因组计划的全部成果、资源与技术。 基因工程的应用 农牧业、食品工业 运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。 1.转基因鱼 生长快、耐不良环境、肉质好的转基因鱼(中国)。 2.转基因牛 乳汁中含有人生长激素的转基因牛(阿根廷)。 3.转黄瓜抗青枯病基因的甜椒 4.转鱼抗寒基因的番茄 5.转黄瓜抗青枯病基因的马铃薯 6.不会引起过敏的转基因大豆 7.超级动物 导入贮藏蛋白基因的超级羊和超级小鼠 8.特殊动物 导入人基因具特殊用途的猪和小鼠 9.抗虫棉 苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫棉。 环境保护 基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。 利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。 基因工程与环境污染治理 基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。 (通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。) 医学 基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。 用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。 我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。 无论哪一种基因治疗,目前都处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。 可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。 医药卫生 1.基因工程药品的生产: 许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。 微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。 ⑴基因工程胰岛素 胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。 将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%! ⑵基因工程干扰素 干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。 基因工程人干扰素α-2b(安达芬) 是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。 ⑶其它基因工程药物 人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。 2.基因诊断与基因治疗: 运用基因工程设计制造的“DNA探针”检测肝炎病毒等病毒感染及遗传缺陷,不但准确而且迅速。通过基因工程给患有遗传病的人体内导入正常基因可“一次性”解除病人的疾苦。 ◆SCID的基因工程治疗 重症联合免疫缺陷(SCID)患者缺乏正常的人体免疫功能,只要稍被细菌或者病毒感染,就会发病死亡。这个病的机理是细胞的一个常染色体上编码腺苷酸脱氨酶(简称ADA)的基因(ada)发生了突变。可以通过基因工程的方法治疗。 我国基因工程制药业发展 80年代中期以来,我国生物技术蓬勃发展、成绩喜人。由于国家高技术研究计划(即“八六三”计划)、攻关计划和国家自然科学基金会都将生物技术作为优先发展领域予以重点支持,我国生物技术整体研究水平迅速提高,取得了一批高水平的研究成果,为我国新兴生物技术产业的建立和发展提供了技术源泉。目前,我国基因工程制药产业进入快速发展时期。 一、产业现状 1989年,我国批准了第一个在我国生产的基因工程药物——重组人干扰素αlb,标志着我国生产的基因工程药物实现了零的突破。重组人干扰素αlb是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个我国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,我国基因工程制药产业从无到有,不断发展壮大。1998年,我国基因工程制药产业销售额已达到了7.2亿元人民币。截止1998年底,我国已批准上市的基因工程药物和疫苗产品共计15种。目前,国内已有30余家生物制药企业取得了基因工程药物或疫苗试生产或正式生产批准文号。 根据1997年对全国452从个事生物技术研究、开发和生产的单位进行的通讯调查结果,截止1996年底,我国已有8种基因工程药物和疫苗商品化(包括试生产),1996年基因工程药物和疫苗销售额约为2.2亿元人民币,仅占同期全国医药生物技术产品年销售额21.16亿元人民的10.4%。然而可喜的是,近年来我国基因工程制药产业发展迅猛,年销售额已从1996年的2.2亿元人民币增长到1998年的7.2亿元人民币,年均增长率高达80%。预计2000年我国基因工程药物销售额将达到22.8亿元人民币。 二、国内外对比 我国生物技术产业,特别是生物制药产业规模与美国相比差距很大。1996年,我国生物技术销售额为114亿元人民币,美国为100亿美元,相差7倍。1996年,我国基因工程和疫苗销售额为2.3亿元人民币,同期美国75亿美元。1998年,我国基因工程药物和疫苗销售额为7.2亿元人民币,还不到1亿美元,而1996年国Amgen公司的两个主要产品Neupgen(G-CSF)和Epogen(红细胞生成素)销售额均达到10亿美元。 从上市品种看,1998年,我国有15种基因工程药物和疫苗获准上市,美国上市的生物药物(主要是基因工程药物)共53种。我国基国工程药物市时间较美国同品种上市时间晚5年-10年。 三、存在的主要问题 1、同种产品生产厂家过多,造成市场恶性竞争,严重影响产业的健康发展: 我国已批准上市的基因工程药物和疫苗绝大多数是多家生产。例如:干扰素α2a生产厂家有5家,干扰素α2b有5家,白细胞介素-2有10家,G-CSF有7家,GM-CSF有6家。基因工程药物临床应用剂量一般都很小(微克级),通常2-3个厂家满负荷生产就能满足全国市场需要。因此,过多厂家生产同一种基因工程药物势必造成市场过度竞争,使各生产企业的利润下降,同时还导致现有生产能力开工不足,成本增加,使企业不能获得合理利润,无法步入良性发展的轨道,甚至迫使有些企业严重亏损和破产。 这种重复生产的现象与我国新药研究开发的指导思想不无关系。以往我国新药的研究开发是以引进开发为主,我国研制上市的和在研的新药绝大部分是仿制国外的,创新药物很少。已批准的15种基因工程药物和疫苗中,只有干扰素αlb拥有我自主知识产权。在研究的生物新药中,绝大多数是国外进入二、三期临床后我国开始跟踪研制的。由此不难看出,我国新药研究开发缺乏创新和低水平重复是导致医药产业重复生产的源头。大力加强创新药物的研究是从源头解决基因工程药物重复生产问题的根本出路。同时,我国还必须进一步完善新药审批制度和专利制度,从制度上鼓励创新,切实保护创新者的知识产权,避免重复生产。 2、融资渠道单一、产业发展资金不足: 基因工程制药产业是典型的技术产业,具有高投入、高风险、高收益的特点。目前,我国基因工程制药企业投资大多在2000万元-1亿元人民币。资金来源除股东投入的股本金外,主要是靠银行贷款,融资渠道狭窄。由于银行十分注意资金的的安全性和流动性,高技术投资的风险使银行对之贷款慎之又慎。同时,我国基因工程制药使得这些企业融资能力明显不足,很难从一般融资渠道获得企业发展所需的资金。发展资金严重不足已成为基因工程制药产业发展的巨大障碍因素。因此,我国应借鉴国外利用风险投资发展高技术产业的成功经验,制定有关法规政策,积极稳妥地启动风险投资。 3、医药市场竞争无序,行业不正之风盛行: 随着我国从计划经济向市场经济转轨,医药市场出现了新的变化,药品购销各个环节利润分配极不合理。按国家现行价格规定,药品批发价是出厂价的115%,零售价为批发价的120%。但是,基因工程药物实际营销中,医院一般以国家批发价的70%-85%进药,从而获得零售价的30%-50%的利润,而生产企业的利润只有5%-15%。这种利润不合理分配导致众多制药企业亏损。更加上同种基因工程药品由多家生产,迫使生产企业纷纷采取高定价、高让利的促销手段,使药品市场竞争进一步恶化。企业迫于市场压力,主要精力都用在市场竞争上,无力顾及技术创新。过多的市场投入和让利,使正常生产经营都十分困难,更谈不上如何发展了。医药市场恶性竞争非但未能使消费者受益,却使得国家、制药企业和广大消费者的利益受到极大的损害。 另据调查,绝大多数进口基因工程药品的销售价格都大大高于同种国产药品销售价格,而且更为不合理的是,一半以上的进口基因工程药品在我国的售价高于原产国售价。 4、企业管理相对滞后,技术兼经营型人才匮乏: 我国基因工程制药产业起步较晚,但是起点相对较高。许多企业的关键性生产设备都是从国外进口。然而,在经营管理上与国外相比还有很大的差距。现代企业制度的特点之一是所有权与经营权分离,企业的所有者对经营者进行监督,经营者通过自主经营使企业的资产保值增值。我国大多数基因工程制药企业,虽然在形式上是有限责任公司或股份有限,但是企业的所有经营者一般由企业出任或委派。企业这种所有权与经营以不分的状况,既不利于企业长远发展,也不利于企业经营阶层即企业家阶层的形成。 基因工程制药企业是典型的技术密集型高技术企业,企业要在激烈的竞争中求得生存和发展就必须拥有一批高素质的复合型人才。如何培养和造就一批这种复合型人才已成为我国生物制药闰为亟持解决的问题。 四、对策及政策建议 根据国家内外工程制药产业现状及发展趋势,为促进我国基因工程制药产业的快速健康发展,我们提出以下建议: 1、制定产业发展战略规划,强化财政税收优惠政策 目前,我国基因工程制药产业存在的盲目性和严重的重复现象与缺乏明确的产业发展战略和规划不无关系。因此,我国应该尽早制定出台生物技术产业发展战略和指导性发展规划,在引进、消化、吸收、创新及对传统产业的改造方面,集中有限财力、物力,重点支持一批具自主知识产权和国际竞争优势,对国民经济发展和人民生活具有重大影响的关键性基因工程产业化项目。只有这样,我国基本工程制药产业才能避免盲目性和无政府状态,从而走上良性发展的道路。 基因工程制药业与其它高技术产业一样,具有高投入、高风险和高产出等特点,起步阶段必须依靠国家优惠政策扶持才能不断发展壮大。我国各级政府为支持高科技产为发展虽制定了许多优惠政策,但优惠的力度不够,而且在具体实施过程中因涉及部门较多,落无实处的情况时有发生。因此,建议国家进一步强化并规范对基因工程制药产业的财政、税收优惠政策。 2、大力加强基因工程创新药物的研制和生产 由于我国上市销售和在研的基因工程药物绝大多数是仿制国外的,这使得我国基因工程药物很难讲入国际市场。特别是我国加入WTO后,一些基因工程制药企业将处于十分被动的境地,有可能会面临专利纠纷。为了从根本上改变我国基因工程制药业重复生产和缺乏国际竞争力的局面,我国的新药研制开发思想必须做战略调整,从以仿制为主向创新与仿制相结合转变。为此,我国必须大力加强创新药物研究,进一步完善知识产权保护制度和新药审批制度,特别是要加大对侵犯知识产权的打击力度,切实保护创新者权益。同时,新药研制单位和个人应该注意学会用专利保护自己的利益。近来国外一些公司采取的“专利加发表”的策略具有一定的启发性。为了使自己的技术专利化,并防止别人申请同样的专利,美国公司在申请专利后便迅速将专利内容公开发表。这种做法既确立了自己的领先地位,又有效一阻止了他人申请相同的专利。 在加强创新药物研究的同时,可以有选择地合法仿制一些专利即将过期、疗效明确、应用前景广阔基因工程药物。对仿制药物有关的专利要进行认真的研究,采取有效的专利回避策略,避免简单的、盲目的仿制。要在仿制的基础上创新。创造出专利方法不同的生产工艺和方法,避免引起专利纠纷。 3、积极引导培育风险投资市场 融资困难、资金不足已严重制约了我国基因工程制药产业的迅速发展。欧美发达国家的成功经验表明,风险投资是解决高技术商品化、产业化过程中资金困难的有效途径。因此,我国政府应积极稳妥地引导和培育风险投资,尽制定风险投资运行的法规和政策,为风险投资创造宽松的环境和条件,适时允许投资银行、信托投资公司、保险公司等机构发起设立风险投资基金。积极吸引国外风险投资历基金流入。同时,还应该放宽高技术企业股票发行条件,为高技术企业股票上市提供更多机会。积极准备开辟高技术企业股票市场即第二股票市场,为风险投资进入和退了资本市场创造条件。 基因工程危害及其具体实例 关于转基因生物的安全性,目前仍没有科学性共识。尽管如此,基因工程农作物已被大规模投放,生物医学应用也日益增加。转基因生物还被投入工业使用和环境恢复,而公众对此却知之甚少。最近几年,越来越多的证据证明存在生态、健康危害和风险,对农民也有不利影响. 基因工程细菌影响土壤生物,导致植物死亡 1999出版的研究资料例举了基因工程微生物释放到环境中将如何导致广泛的生态破环。 当把克氏杆菌的基因工程菌株与砂土和小麦作物加入微观体中时,喂食线虫类生物的细菌和真菌数量明显增加,导致植物死亡。而加入亲本非基因工程菌株时,仅有喂食线虫类生物的细菌数量增加,而植物不会死亡。没有植物而将任何一种菌株引入土壤都不会改变线虫类群落。 克氏杆菌是一种能使乳糖发酵的常见土壤细菌。基因工程细菌被制造用来在发酵桶中产生使农业废物转换为乙醇的增强乙醇浓缩物。发酵残留物,包括基因工程细菌亦可于土壤改良。 研究证明,一些土壤生态系统中的基因工程细菌在某些条件下可长期存活,时间之长足以刺激土壤生物产生变化,影响植物生长和营养循环进程。虽然目前仍不清楚此类就地观测的程度,但是基因工程细菌引起植物死亡的发现也说明如果使用此种土壤改良有杀伤农作物的可能。 致命基因工程鼠痘病毒偶然产生 澳大利亚研究员在研发对相对无害的鼠痘病毒基因工程时竟意外制创造出可彻底消灭老鼠的杀手病毒。 研究员们将白细胞间介素4的基因(在身体中自然产生)插入到一种鼠痘病毒中以促进抗体的产生,并创造出用于控制鼠害的鼠类避妊疫苗。非常意外的是,插入的基因完全抑制了老鼠的免疫系统。鼠痘病毒通常仅导致轻微的症状,但加入IL-4基因后,该病毒9天内使所有动物致死。更糟的是,此种基因工程病毒对接种疫苗有着异乎寻常的抵抗力。 经改良的鼠痘病毒虽然对人类无影响,但却与天花关系十分密切,让人担心基因工程将会被用于生物战。一名研究员在谈及他们决定出版研究成果的原因时曾说:" 我们想警告普通民众,现在有了这种有潜在危险的技术","我们还想让科学界明白,必须小心行事,制造高危致命生物并不是太困难。" 杀虫剂使用的增加大部分是由于HT作物,尤其是HT大豆使用的杀虫剂增加,这一点可追溯到对HT作物的严重依赖性以及杂草管理的单一除草剂(草甘磷)使用。这已导致转移到更加难以控制的杂草,而某些杂草中还出现了遗传抗性,迫使许多农民在基因工程作物上喷洒更多的除草剂以对杂草适当进行控制。HT大豆中的抗草甘膦杉叶藻(marestail)于2000年在美国首次出现,在HT棉花中也已鉴别出此种物质[27]。 其它研究显示,基因工程农作物本身也会对其使用的除草剂产生抗性,引发严重的自身自长作物问题(同一块地里早先种植的作物种子发芽的植物后来变成杂草)并迫使进一步使用除草剂。加拿大科学家证实了抗多种除草剂之基因工程油菜的迅速演化,此种作物因花粉长距离传播而融合了不同公司研制的单价抗除草剂特性 。 此外,科学家还在2002年确认了转基因可从Bt向日葵移动到附近的野生向日葵,使杂化物更强、对化学药品更具抗性,因为较之无基因控制的情况,杂化物多了50%的种子,且种子健康,甚至在干旱条件下也如此。 北卡罗莱那州大学的研究显示,Bt油菜与相关杂草、鸟食草之间的交叉物可产生抗虫性杂合物,使杂草控制更困难。 所有这些事件使预防方法和严格的生物安全管理变得突出。预防原则在《卡塔赫纳生物安全协议》这一主要管理转基因微生物的国际法律中已得到重申。尤其是第 10(6)条声称,如果缺乏科学定论,缔约方可限制或禁止转基因生物的进口,以避免或使生物多样性及人类健康的不利影响降到最低 | [
"4个分类",
"药品",
"克隆",
"基因",
"生物学"
] | 15,154 | zh-CN |
野生型 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%9A%84%E9%87%8E%E7%94%9F%E5%9E%8B | (重定向自基因的野生型) 野生型 wild type (1)指在野生群体中观察到的最高频率的表型,或具有这种表型的系统、生物和基因。在找不到野生型的时候,从栽培型、饲养型中选择认为是基本型的作为野生型(又称为正常型)。例如在果蝇中,白眼和伊红眼是突变型,而红眼则认为是野生型。在很多情况下,野生型相对于突变型是显性的。 (2)与上述的概念有关,这个术语另外也作为生态的概念来使用。在看作是同一个种的个体之间也存在有相当大的个体变异,要确切地表示种的特征是困难的,但是另一方面,某一个种的野生型(正常型),显示一定的平衡状态而且广泛地分布着,这样有关野生型的生态意义要进行种种考察。 (3)生物进化初期,野生型都为显性基因,如AA。由于基因突变,变成aa,即为突变型.突变性都为隐形性状 | [
"1个分类",
"生物"
] | 342 | zh-CN |
基因治疗 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E7%96%97%E6%B3%95 | (重定向自基因疗法) 基因治疗是用正常的基因整合入细胞,以校正和置换致病基因的一种治疗方法。从广义上来讲,将某种遗传物质转移到患者细胞内,使其体内发挥作用,以达到治疗疾病目的方法,也谓之基因治疗。 基因治疗所采用的方法基本上可分为以下几种: DNA矫正。DNA矫正指将致病DNA链的异常碱基进行纠正,而正常部分予以保留。 DNA置换。DNA置换就是用正常DNA通过体内DNA同源重组,原位替换病变细胞内的致病DNA,使细胞内的DNA完全恢复正常状态。 DNA增补。DNA增补指将目的DNA导入病变细胞或其他细胞,不去除异常DNA,而是通过目的DNA的非定点整合,使其表达产物补偿缺陷DNA的功能或使原有的功能得到加强。DNA治疗多采用此种方式。这种方法增补的是显性DNA多用于治疗隐性病。 DNA失活。早期一般是指反义核酸技术。它是将特定的反义核酸,包括反义RNA,反义DNA和核酶导入细胞,在翻译和转录水平阻断某些基因的异常表达。近年来又有反基因策略、肽核酸、DNA去除和RNA干扰技术。 参看 《医学遗传学基础》- 基因治疗 《临床生物化学》- 基因治疗 | [
"1个分类",
"治疗方法"
] | 479 | zh-CN |
遗传漂变 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%BC%82%E5%8F%98 | (重定向自基因漂变) 由于某种随机因素,某一等位基因的频率在群体(尤其是在小群体)中出现世代传递的波动现象称为遗传漂变(genetic drift),也称为随机遗传漂变(random genetics drift)。 由于中性突变对生物的生存和繁殖没有影响。自然选择对他们不起作用,它们在种群众的保存,扩散,消失完全随机,这种现象即为随机漂变 原因 这种波动变化导致某些等位基因的消失,另一些等位基因的固定,从而改变了群体的遗传结构。在大群体中,不同基因型个体所生子女数的波动,对基因频率不会有明显影响。小群体的人数少,并与总人群相隔离,这种社会和地理因素形成的小群体,A基因固定(A=1),而a基因人很少,a基因的人如无子女,则a基因就会较快在人群中消失,造成此小群体中基因频率的随机波动。这种漂变与群体大小有关,群体越小,漂变速度越快,甚至1-2代就造成某个基因的固定和另一基因的消失而改变其遗传结构,而大群体漂变则慢,可随机达到遗传平衡。 现实中的例子 例如:在一个种群中,某种基因的频率为1%,如果这个种群有100万个个体,含这种基因的个体就有成千上万个。如果这个种群只有50个个体,那么就只有1个个体具有这种基因。在这种情况下,可能会由于这个个体的偶然死亡或没有交配,而使这种基因在种群中消失。这种现象就是遗传漂变。 一些异常基因频率在小隔离群体中特别高,可能是由于该群体中中少数始祖所具有的基因,由于遗传漂变而逐渐达到较高水平,这种现象称为建立者效应(founder effect)。例如,太平洋的东卡罗林岛中有5%的人患先天性色盲。据调查,在18世纪末,因台风侵袭,岛上只剩30人,由他们繁殖成今天1600余人的小群体,这5%的色盲,可能只是最初30人建立者的某一个人是携带者,其基因频率q=1/60=0.016,经若干世代的隔离繁殖,q很快上升至0.22,这就是建立者效应。 参看 《医学遗传学基础》- 遗传漂变 | [
"3个分类",
"生物学",
"分子生物学",
"遗传学"
] | 814 | zh-CN |
基因流动 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%B5%81%E5%8A%A8 | GeneFlow(基因流,也写作基因流动),是指由于迁移和杂交等原因导致一个种群的基因进人到另一个种群(同种或不同种)的基因库,使接受者的基因频率发生改变。其他种群基因的流人可以直接改变种群原有的基因频率,影响遗传结构,并使基因交流频繁的种群间在遗传上趋于一致 | [
"3个分类",
"生物学",
"分子生物学",
"遗传学"
] | 130 | zh-CN |
基因流动 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%B5%81 | (重定向自基因流) GeneFlow(基因流,也写作基因流动),是指由于迁移和杂交等原因导致一个种群的基因进人到另一个种群(同种或不同种)的基因库,使接受者的基因频率发生改变。其他种群基因的流人可以直接改变种群原有的基因频率,影响遗传结构,并使基因交流频繁的种群间在遗传上趋于一致 | [
"3个分类",
"生物学",
"分子生物学",
"遗传学"
] | 140 | zh-CN |
突变 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%B4%97%E7%89%8C | (重定向自基因洗牌) 从达尔文的自然选择学说可以看出,生物在繁衍后代的过程中,会产生各种各样的可遗传的变异,这些可遗传的变异为生物进化提供了原材料。现代遗传学的研究表明,可遗传的变异来源于基因突变、基因变异和染色体变异。其中,基因突变和染色体变异常称为突变。 我们知道,生物自发突变的频数很低,而且一般对生物体是有害的,那么。它为什么还能够作为生物进化的材料呢?这是因为虽然对于每一个基因来说,突变率是很低的,但始种群是有许多个体组成的,每个个体的每一个细胞中都有成千上万个基因,这样,每一代就会产生大量的突变。 突变,在生物学上的含义是指细胞中的遗传基因(一般指DNA或RNA,对动物而言包括细胞核与线粒体中的,植物则还包括叶绿体中的)发生永久的改变。 原因可以是细胞分裂时遗传基因的复制发生错误、或受化学物质、射线、或病毒的影响。 突变通常会导致细胞运作不正常、或细胞死亡,甚至可以在较高等生物中引发癌症。但同时,突变也被视为物种进化的推动力:不理想的突变会经天择过程被淘汰,而对物种有利的突变则会被累积下去。中性的突变对物种没有影响而逐渐累积,导致间断平衡 | [
"2个分类",
"遗传学",
"生态学"
] | 481 | zh-CN |
基因治疗 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%B2%BB%E7%96%97 | 基因治疗是用正常的基因整合入细胞,以校正和置换致病基因的一种治疗方法。从广义上来讲,将某种遗传物质转移到患者细胞内,使其体内发挥作用,以达到治疗疾病目的方法,也谓之基因治疗。 基因治疗所采用的方法基本上可分为以下几种: DNA矫正。DNA矫正指将致病DNA链的异常碱基进行纠正,而正常部分予以保留。 DNA置换。DNA置换就是用正常DNA通过体内DNA同源重组,原位替换病变细胞内的致病DNA,使细胞内的DNA完全恢复正常状态。 DNA增补。DNA增补指将目的DNA导入病变细胞或其他细胞,不去除异常DNA,而是通过目的DNA的非定点整合,使其表达产物补偿缺陷DNA的功能或使原有的功能得到加强。DNA治疗多采用此种方式。这种方法增补的是显性DNA多用于治疗隐性病。 DNA失活。早期一般是指反义核酸技术。它是将特定的反义核酸,包括反义RNA,反义DNA和核酶导入细胞,在翻译和转录水平阻断某些基因的异常表达。近年来又有反基因策略、肽核酸、DNA去除和RNA干扰技术。 参看 《医学遗传学基础》- 基因治疗 《临床生物化学》- 基因治疗 | [
"1个分类",
"治疗方法"
] | 468 | zh-CN |
基因库 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%B1%A0 | (重定向自基因池) gene library;gene bank;gene pool (1)细胞培养物、种子、冷冻精子或卵子等的收集物,作为保持有任何一种生物的代表性基因组的手段来加以保存。 (2)目的基因(包括DNA片段)或一基因的供体的DNA片段经体外与载体重组转到宿主细胞中扩增后以细菌或噬菌体形式保存。 (3)在一定的地域中,一个物种的全体成员构成一个种群。一个主要特征是种群内的雌雄个体能通过有性生殖而实现基因的交流。一个种群全部个体所带有的全部基因的总和就是一个基因库。 一个种群或一个物种基因频率的变化称为微进化,一个种群以上水平的进化称为大进化。 具体举例 基因库(gene pool)是一个群体中所有个体的基因型的集合。对二倍体生物来说,有n个个体的一个群体的基因库由2n个单倍体基因组所组成。因此,在一个有n个个体的群体基因库中,对每个基因座来说,各有2n个基因,共有n对同源染色体。例外的是性染色体和性连锁基因,它们在异型配子的个体中只有单份剂量存在。生物的表型是可以直接观察的,但基因型和基因无法直接观察,基因库中的变异可用基因型的频率或基因频率来研究。如果我们知道特定基因型及其相应的表型之间的关系,就能将表型的频率转换成基因型的频率。现在以红细胞血型——MN血型为例。MN血型有三种:M、N和MN,这是由一个基因座上的两个等位基因LM和LN所决定的。从一个群体中采集730人的血样研究他们的血型,22人为M型,216人为MN型,492人为N血型。将每种血型的人数除以总人数得到的是血型及其相应的基因型的频率,由此可以用来描述血型M—N基因座上的变异。由于这730人是随机采集的样本,一个随机样本是一个群体的、有代表性的、无偏向的样本,所以可将观察到的频率看作这个群体的特性 | [
"3个分类",
"生物",
"生物学",
"基因"
] | 750 | zh-CN |
基因水平转移 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%B0%B4%E5%B9%B3%E8%BD%AC%E7%A7%BB | 水平基因转移(horizontal gene transfer, HGT),又称侧向基因转移(lateral gene transfer, LGT),是指在差异生物个体之间,或单个细胞内部细胞器之间所进行的遗传物质的交流。差异生物个体可以是同种但含有不同的遗传信息的生物个体,也可以是远缘的,甚至没有亲缘关系的生物个体。单个细胞内部细胞器主要指的是叶绿体、线粒体及细胞核。水平基因转移是相对于垂直基因转移(亲代传递给子代)而提出的,它打破了亲缘关系的界限,使基因流动的可能变得更为复杂。 1959年,一系列的文章报道了大肠杆菌(Escherichia coli)的高频转导(Hfr)菌株可以将遗传信息传递给特定的鼠伤寒沙门氏菌(Salmonella typhimurium)突变菌株。同年,Tomochiro Akiba和Kunitaro Ochiai发现病原菌中的抗性质粒,而这一发现直接导致了携带抗性的质粒可以在不同菌种间转移现象的发现,这实际上就宣告了野生型菌株间存在着水平基因转移。然而,水平基因转移作为一种概念,并不是一开始就伴随着其现象的发现而出现的。直到20世纪90年代,由于下列原因,人们才逐步使用水平基因转移的概念来解释所遇到的水平基因转移现象,并形成研究热点。 基因工程生物,特别是基因工程微生物(gene engineered organisms, GEOs, or gene engineered microorganisms, GEMs)的应用,及被释放到环境中后的安全性问题。抗药性病原菌的大量出现,许多药物,特别是抗生素已经不能抑制或杀死原来敏感的病原菌,这已不仅仅是基因突变可解释的,可能与抗药性基因的水平转移有关。已发现基因的转移不仅仅是发生在细菌之间,而且也发生在细菌与高等生物之间,甚至是高等生物之间。 1 由质粒或病毒等介导的水平基因转移 质粒和病毒是在各生物间进行遗传物质传递的重要媒介。细菌中以F质粒为媒介的接合作用和以病毒(噬菌体)为媒介的转导作用是最普通的水平基因转移,而且这种转移还不只是发生在细菌之间,还发生在细菌与高等生物之间,例如在土壤微生物中,存在于根癌土壤杆菌(Agrobacterium tumefaciens)中的200kb Ti质粒上的T-DNA基因片段可整合进植物细胞的基因组中。即:根癌土壤杆菌中的T-DNA可转移到植物细胞核内。T-DNA还可以携带一定的外源基因,在植物基因工程中被广泛地用做基因转移载体[8]。此外,Ri质粒也可以协助遗传物质在细菌与植物间进行水平基因转移。 有关细菌与动物细胞间的水平基因转移,在1991年,Falkow综合论述了有些特定的细菌属可以入侵哺乳动物细胞的详细情况。Patrice Courvalin研究表明,弗氏志贺菌(Shigella flexneri)及E. coli的入侵型菌株以携带质粒进入哺乳动物细胞,质粒并可以整合进基因组中稳定地在子代细胞中表达。 2 基因的“直接”水平转移 水平基因转移除了通过质粒和病毒为媒介以外,目前大量发现的是不需要媒介的“直接”转移。1996年,Baur发现在从自然环境中采集的含一定离子的天然水样中,大肠杆菌可通过其内在调节机制建立自然感受态[12]。能够在自然环境中“直接”摄取外源DNA,这对原本认为大肠杆菌是不能建立自然感受态的传统概念是一种挑战。此外,枯草芽孢杆菌建立自然感受态的能力也早已得到人们的肯定,其基因组上有10多个基因与感受态的建立有关。随着环境中具有转化活性的DNA分子及感受态细胞的发现,自然转化在水平基因转移中的作用成为人们关注的焦点。所谓自然遗传转化是不需要任何媒介的“裸露”DNA分子与自然感受态细胞间相互作用的一种基因转移方式,可以发生在细菌之间,也可以发生在细菌与其它真核生物之间。因为自然遗传转化不需要致育质粒和噬菌体作为媒介,甚至不受时空的限制,可以发生在不同的生物之间,所以被认为很可能是水平基因转移的重要途径。在这一途径中,一种新的现象已引起人们的极大兴趣,即细菌细胞能主动分泌DNA到环境中,并具有转化活性,这不仅对传统的不涉及供体的自然转化概念提出了新的挑战,而且也为水平基因转移的深入研究提供了新的内容。特别近来有报道表明,细菌在逆境条件下形成生物膜(biofilm)的机制与细菌分泌到胞外的DNA密切相关,更引起人们广泛的关注。 由前可知,无论是在正常条件下,还是在逆境条件下,尤其是后者,细菌主动分泌DNA到环境中和从环境中摄取DNA都得到了有力的证明。如果能够在逆境条件下,找到细菌主动分泌及摄取DNA的结合点,有利于进一步揭示水平基因转移的机理。 3 基因组序列分析和水平基因转移 随着基因工程的深入开展,人类及其它生物基因组测序工作相继完成,人们发现不同物种之间,甚至亲缘关系很远的生物之间基因组上有大量同源基因存在。 在三域系统的基因组相互比对中,发现大量存在水平基因转移现象。海栖热袍菌MSB8(Thermotoga maritima MSB8)是一种属于细菌域的嗜热细菌,在其基因组中含有1872个预测的编码区,其中有1014个(54%)功能已知。在与古生菌的比对中,发现有24%的基因与古生菌基因相近,即有近1/4的基因来源于古生菌,成为古菌与细菌之间进行侧向基因转移的有力证据。 细菌基因组上含有来自高等生物的基因也有不少报道。如耐放射异常球菌(Deinococcus radiodurans)含有几个只有在植物中才有的基因;结核分枝杆菌(Mycobacterium tuberculosis)的基因组上至少含有8个来自人类的基因,而且这些基因编码的蛋白质能帮助细菌逃避宿主的防御系统,显然这是结核分枝杆菌通过某种方式从宿主那儿获得了这些基因为自己的生存服务。 人类基因组测序工作的完成也进一步证实了水平基因转移的普遍性和远缘性。在人类基因组上已发现了223个来源于细菌的基因,这些基因无疑是通过水平基因转移机制获得的[21]。但在基因转移的时间上,目前还存在争议。 除了基因组比对外,人们还对部分蛋白质序列做了比对分析,发现有许多水平基因转移存在的证据。在细胞色素c的序列比对中认为长须银柴胡(Stellaria longipes)和鼠耳芥(Arabidopsis thaliana)很有可能与噬菌体之间发生过水平基因转移[23]。铜绿假单胞菌(Pseudomonas aeruginosa)中类似真核的磷酸脂酶D(PLDS)的遗传学和生化分析指出,编码该酶的基因pldA是通过来自真核的水平基因转移获得的。 4 水平基因转移与进化 由前可知,水平基因转移实际上已被引入了分子进化及宏观进化领域,被认为是推动进化的重要动力。在这个意义上,水平基因转移不仅仅是一个基因转移的过程,实际上它是一个复杂的多步骤过程。Jonathan将此大致分为6个步骤。首先要被转移的遗传物质在供体中进化。当达到某一点时,遗传物质通过载体(如病毒)或者直接(如接合)或者间接(如转化)地进行转移。这些遗传物质必须获取能够在受体中长期存在的形式。不同的转移和存留方式决定了不同的水平基因转移类型。被受体接受的遗传物质在受体群落中广泛传播,即使这些遗传物质的传播是符合中性法则的,但是自然选择的压力会有可能促进这一传播过程(如抗生素抗性的选择)。而这一过程对供体和受体的进化都具有影响,最终有可能会产生一个的品系,这被称之为“改良(amelioration)”过程。 这一过程实际上是漫长而复杂的。这种基因转移到底发生在什么时候,目前有两种观点。一种认为水平基因转移发生在远古时候的早期生命,即单一的共同细胞祖先产生了所有的现代生物;另一种观点则认为,除了早期生命在进化过程中进行了大量水平基因转移外,现在的生命,即在物种形成清晰的谱系之后仍能毫无困难地交换基因。水平基因转移在历史上的大量证据,使人们有必要对生物进化理论进行重新审视。Doolittle认为许多原本在生物进化理论中基础的概念都需要经过重新审视。传统的简单分支的系统发育树不能成为表现众多生物亲缘关系的最佳方式,而网络性的或类网状的系统发育模式才能给予它们恰当的描述。同时,水平基因转移在微生物进化中还是被认为是一种重要的推动力量。 随着转基因生物的商业化过程,转基因工程的生物安全性逐步受到人们的重视。有研究认为距今20亿年至10亿年间,发生了大量水平基因转移的事实。假设这是正确的话,在人为介入水平基因转移之后,大量穿梭载体及特异人工遗传物质的出现并释放到实验室之外后,是否会出现水平基因转移的第二次大爆发呢? 在距今20亿年至10亿年间,三域生物之间发生了大量的水平基因转移事件。认为现代真核生物的核(nu)来自于古细菌,线粒体(mi)和叶绿体(ch)来自真细菌。同时还发生了许多其它对现代生物影响深远的水平基因转移事件(源自Michael Syvanen, 2002)。 近年来,发现自然环境中存在大量具有转化活性的DNA分子以及能主动摄取外源DNA的感受态细胞,使得人们对环境中发生的水平基因转移有了新的认识,也必然引起人们对GEMs使用安全性的更深层次的思考。如果说自然环境微生物之间遗传物质的交流是一种正常的生态平衡系统,或者说是一种极其缓慢的优胜劣汰的进化过程,那么为了提高农业生产,甚至革新整个农业生产面貌,或治理环境污染,或其它方面的应用,人为地向环境中加入大量的人工构建的GEMs或其它的GEOs,也许是一种加速进化的“人工进化”过程,这个过程的结果是喜是忧?还是二者兼有?目前仍是未解决的问题,也是颇具争议的问题。水平基因转移及其产生的生态效应的深入研究,将有助于对GEOs做出新的评价,使得基因工程技术及转基因生物的应用发挥更辉煌的作用 | [] | 4,010 | zh-CN |
基因检测 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%A3%80%E6%B5%8B | 基因检测是通过血液、其他体液、或细胞对DNA进行检测的技术。 基因检测可以诊断疾病,也可以用于疾病风险的预测。疾病诊断是用基因检测技术检测引起遗传性疾病的突变基因。目前应用最广泛的基因检测是新生儿遗传性疾病的检测、遗传疾病的诊断和某些常见病的辅助诊断。目前有1000多种遗传性疾病可以通过基因检测技术做出诊断 | [
"1个分类",
"检查"
] | 154 | zh-CN |
基因枪 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%9E%AA | 基因枪:生化武器克星 Gene gun:(基因枪)The most extraordinary system of transferring DNA into plant cells involves minute metal beads being shot into plant cells. 用火药爆炸或者高压气体加速将包裹了DNA的球状金粉或者钨粉颗粒直接送入完整的植物组织或者细胞中,这一加速设备称为基因枪。 假如你今后在新闻中看到这样的镜头:美国空军的医务人员拔枪开火,将金色“子弹”射向他们自己人的身躯,而士兵们却一副“求之不得”的架势,请不要惊讶———因为这是横空出世的基因枪。它射出的决非夺命的金属颗粒,而是救命的DNA疫苗。 原理如同“接种疫苗” 自去年炭疽恐慌席卷美国连夺人命后,位于马里兰州弗雷德里克地区的美国空军德瑞克堡基地生化武器防治中心就如临大敌,加紧研究如何压制炭疽菌扩散的威胁。 以生物学家詹妮‧瑞蒙斯切内德为首的军事科研人员成功将基因疫苗制成类似子弹的胶囊,利用可在常温下急剧升温膨胀的高压氦气为推动剂发射,创造出基因枪,为在战场上救治承受生化武器袭击的己方及友军人员提供了极大的便利。 基因枪的工作原理很简单。小的时候,我们都打过预防麻疹、小儿麻痹等病毒的疫苗,这其实是一种预防接种疗法。但是,注射的疫苗属于活生生的病原体微生物,其生产成本高昂,注射方式复杂,尤其不适用于危险系数极大的致命病毒。后来,科学家们又开创了通过摘除特定DNA片断抑制或根治疾病的基因疗法。从理论上说,切除某个DNA片断,等于从生物学上抹煞了相应致病因素发作的可能。但临床实验证实,人体免疫系统对于基因疗法呈现出排斥反应。 而基因枪的工作原理就来源于这两种疗法,取其所长,避其所短。 这种生物辐射式基因枪可填充12发金色“子弹”。每粒“子弹”实际上是一个胶囊,内部包含数百万个携带某种病毒遗传信息的DNA分子。当然,这些DNA分子的毒性已经被人为降低。詹妮已完成炭疽基因疫苗对兔子的活体实验。她将10只兔子麻醉,向它们的腹部发射了包含适量炭疽菌DNA的疫苗“子弹” 。半年后,她再对兔子注射了足以致命的炭疽菌剂量,其中9只兔子安然无恙,显示炭疽疫苗已成功生效。 “子弹”唾手可得 詹妮声称,根据她对致命病毒埃博拉等长达7年的研究,她相信,自己的研究中心研发出的基因枪是成功的。她指出:“基因枪发射的DNA片断足以迷惑患者固有的免疫系统,令其根本不会发动针对‘外来入侵者’的战斗。相反,‘子弹’中的DNA将侵入患者的表皮细胞核与肌肉细胞,激活免疫系统,制造抗体。基因疗法的弊端在于试图用外来强加的基因片断取代人体免疫系统,而基因疫苗却是免疫系统的‘战友’或‘加速器’。” 詹妮信心百倍地说:“我简直不敢相信,DNA疫苗是如此唾手可得。我们可以在几天或几周内生产出足够的疫苗,而常规疫苗的培育提取要耗费几年时间。 ” 基因枪的应用: 北京赛伯乐实验仪器有限公司 1.基因转殖于目标细胞, 组织, 器官或活体 2.基因功能短暂表现之研究 3.功能稳定性表现之研究 4.遗传或癌症相关之研究 5.DNA疫苗的研究与应用 6.基因治疗相关之研究 7.基因转殖植物之研究 8.基因工程或药物相关研究 | [] | 1,350 | zh-CN |
基因文库 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%96%87%E5%BA%93 | 中文名称: 基因文库 英文名称: gene library 学科分类: 遗传学 注 释: 一个生物体的基因组DNA用限制性内切酶部分酶切后,将酶切片段插入到载体DNA分子中,所有这些插入了基因组DNA片段的载体分子的集合体,将包含这个生物体的整个基因组,也就是构成了这个生物体的基因文库。 将这些载体导入到受体细菌或细胞中,这样每个细胞就包含了一个基因组DNA片段与载体重组DNA分子,经过繁殖扩增, 许多细胞一起包含了该生物全部基因组序列,我们将这一个集合体叫做基因文库。 用重组DNA技术将某种生物细胞的总DNA 或染色体DNA的所有片断随机地连接到基因载体上,然后转移到适当的宿主细胞中,通过细胞增殖而构成各个片段的无性繁殖系(克隆),在制备的克隆数目多到可以把某种生物的全部基因都包含在内的情况下,这一组克隆的总体就被称为某种生物的基因文库。同一定义也适用于某种生物的线粒体DNA或叶绿体DNA的基因文库。由于制备DNA片段的切点是随机的,所以每一克隆内所含的 DNA片段既可能是一个或几个基因,也可能是一个基因的一部分或除完整基因外还包含着两侧的邻近DNA顺序。 基因文库与基因库的区别 基因文库与基因库的概念不同。基因库是指某一生物群体中的全部基因。基因文库与基因克隆的概念也有区别,基因克隆是只包含某些特定基因或 DNA片段的克隆。基因文库中包含着为数众多的克隆,建成后可供随时选取其中任何一个基因克隆之用。 基因文库的建立和使用是70年代早期重组DNA技术的一个发展。人们为了分离基因,特别是分离真核生物的基因,从1974年起相继建立了大肠杆菌、酵母菌、果蝇、鸡、兔、小鼠、人、大豆等生物以及一些生物的线粒体和叶绿体 DNA的基因文库。基因文库的建立使分子遗传学和遗传工程的研究进入了一个新时期。 基因文库的建立 一个基因文库中应包含的克隆数目与该生物的基因组的大小和被克隆 DNA片段的长度有关。原核生物的基因组较小,需要的克隆数也较少;真核生物的基因组较大,克隆数需相应增加,才能包含所有的基因。此外,每一载体DNA中所允许插入的外源DNA片段的长度较大,则所需总克隆数越少;反之则所需数越多。如果一个基因文库的总克隆数较少,则从中筛选基因虽然比较容易,但给以后的分析造成困难,因为片段的长度增加了。如果要使每一克隆中的 DNA片段缩短,就须增加克隆数,所以在建立基因文库前应根据研究目的来确定 DNA片段的长度和克隆的数目。L.克拉克和J.卡邦在1975年提出一个统计学的公式来计算某一基因文库中所应包含的克隆数目。在建立基因文库时,任何一个DNA片段都是在随机的基础上被克隆的。在公式 中,P 是从建成的基因文库中可能选出某一基因的概率,这一数字由工作者根据需要选定。ƒ 是该基因文库中每一克隆所含外源 DNA片段的平均长度,可根据该生物基因组大小和所用载体可容纳的外源 DNA片段的长度决定。G是该生物基因组的大小,基因组大小和DNA片段长度的单位可用道尔顿或碱基对表示。N 是这一基因文库所应包含的克隆数目。在制备某一哺乳动物基因文库时,假若选出某一基因的概率定为99%,每一克隆内所含外源DNA片段的平均长度是2×104碱基对,基因组大小是3×109碱基对,则 基因组大小及片段等之间的关系 下表中表示基因组大小(G)、片段大小(ƒ)、出选某基因的概率(p)与总克隆数(N)四者之间的关系。 产生 DNA片段的方法要求切点随机性高,使任一基因都可能被完整地克隆,并且最好在两侧都留有粘性末端以利于 DNA片段间的连接。机械剪切方法的优点是随机性高,可是所得片段两端没有粘性末端,有时较为不便与载体连接。用限制性核酸内切酶酶解的随机性较差,但是两端有粘性末端,便于和载体相连接(见重组DNA技术)。 基因载体通常根据待克隆的 DNA片段长度来选择。在制作原核生物基因文库时,因基因组较小,可把 DNA片段切得短些,可选用质粒如pBR322等作载体。真核生物的基因内部常有称为内含子的非编码区,使一个天然基因的长度比实际编码的部分要长得多,基因文库中待克隆的 DNA片段便应长些,以保证得到完整的基因。通常采用的载体有经过改建的噬菌体如λCharon4A(长度462kb,可克隆外源DNA长度 8.2~22.2kb)和粘性质粒(例如pHC79,长度6.4kb,可容纳外源DNA长度37~50kb)等。 经剪切得到的 DNA片段可通过噬菌体T4连接酶或大肠杆菌连接酶与载体DNA共价连接,使成为杂种DNA分子。 用质粒作为载体的重组 DNA分子可以通过转化引进细胞。用λ噬菌体的 DNA作载体的重组分子直接经转染引入细胞的效率较低;一般需先行离体包装,即把重组DNA分子包在噬菌体外壳中,再通过噬菌体感染而把重组DNA 分子引入敏感细菌细胞中。它的效率比转染高出几十到几百倍。 基因文库的保存 为了有效地保存基因文库,可通过细菌的繁殖而使包含各个特定 DNA片段的细菌增多。液体培养不适用于这一目的,因为各个细菌的生存和繁殖能力不同,各个克隆被保存的机会也会因此而不相等。在固体培养基上每一个细菌单独形成一个菌落,各个细菌并不相互干扰和竞争,因而有利于全部克隆的保存。形成的每一个菌落中大约包含107个细菌,这样一个基因文库中的所有的克隆几乎都扩增了107倍。把培养皿上的细菌全部洗下加以保存,便可以在需要时从中取得任何一个克隆。 基因文库的利用 从基因文库中筛选某一克隆的常用办法是分子杂交。首先把属于一个文库的细菌或噬菌体以较低密度接种在培养皿上以取得相当分散的菌落或噬菌斑,然后用硝酸纤维滤膜吸印,使培养皿和滤膜的相对应的位置上具有相同的克隆。同时另行制备供分子杂交用的探针。为了筛选真核生物的某种基因,常从它的转录产物mRNA经反向转录(见中心法则)合成相应的互补 DNA(cDNA),再加入用32P标记的核苷三磷酸,用DNA多聚酶I切口移位方法制成有同位素标记的探针。把探针 DNA和硝酸纤维滤膜上的菌落或噬菌体分别进行变性处理,然后进行分子杂交。再将 X光底片覆盖在经过处理的滤膜上以进行放射自显影。在培养皿上找出和 X光底片上的黑点相对应的菌落或噬菌斑,这些菌落或噬菌体中便包含着所需要的基因。经过扩增便能得到大量的细菌或噬菌体,从中可以分离出所需基因的DNA片段。 基因文库的应用 建立和使用基因文库是分离基因,特别是分离高等真核生物基因的有效手段。如果一个哺乳动物的基因组是 3×109碱基对,直接从细胞中提取并分离出某一特定基因的 DNA片段在技术上是很困难的。但是在基因文库中,不同的 DNA片段都分别在不同的克隆中扩增了,只要有该基因的探针存在,则从许多克隆中筛选一个所需的克隆是一项比较简单的工作。此外基因文库中被克隆的 DNA都是基因组中各种随机的顺序片段,某些 DNA片段还包括基因外部的邻近的甚至互相跨叠的序列,所以基因文库特别有利于研究天然状态下基因的顺序组织。例如曾从人的基因文库中分离得到含有血红蛋白 β链基因的克隆,从中取得该基因的DNA并进行分析,发现人的δ和β链基因是连锁的,二者之间相隔几千个碱基对,而且在它们内部都有两个内含子。 基因文库还可以应用在个体发育的研究中。例如从芽孢杆菌的正在形成芽孢的菌体中分离mRNA,并用同位素标记做成探针,用这些探针可以从芽孢杆菌的基因文库中分离出只在芽孢形成过程中活动的基因,有助于对发育过程中基因调控进行研究。 基因文库也可以应用在高等生物,例如人的基因定位工作中。基因文库在生产实际中也是取得所需要的基因的一种重要方法。 基因文库的背景 基因文库有关技术的建立及应用虽然只有几年历史,但是它作为重组DNA技术应用的一个重要方面已经显示了它在解决分子遗传学中的理论问题和遗传工程中的实际问题上的巨大潜力 | [
"1个分类",
"遗传学"
] | 3,207 | zh-CN |
基因工程 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%94%B9%E9%80%A0%E5%B7%A5%E7%A8%8B | (重定向自基因改造工程) 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 学科概况 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。 这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。 随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基本操作步骤 1.获取目的基因是实施基因工程的第一步。如植物的抗病(抗病毒 抗细菌)基因,种子的贮藏蛋白的基因,以及人的胰岛素基因干扰素基因等,都是目的基因。 要从浩瀚的“基因海洋”中获得特定的目的基因,是十分不易的。科学家们经过不懈地探索,想出了许多办法,其中主要有两条途径:一条是从供体细胞的DNA中直接分离基因;另一条是人工合成基因。 直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。鸟枪法的具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞提供的DNA(即外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。如许多抗虫抗病毒的基因都可以用上述方法获得。 用鸟枪法获得目的基因的优点是操作简便,缺点是工作量大,具有一定的盲目性。又由于真核细胞的基因含有不表达的DNA片段,一般使用人工合成的方法。 目前人工合成基因的方法主要有两条。一条途径是以目的基因转录成的信使RNA为模版,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需要的基因。另一条途径是根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对的原则,推测出它的基因的核苷酸序列,再通过化学方法,以单核苷酸为原料合成目的基因。如人的血红蛋白基因胰岛素基因等就可以通过人工合成基因的方法获得。 2.基因表达载体的构建(即目的基因与运载体结合)是实施基因工程的第二步,也是基因工程的核心。 将目的基因与运载体结合的过程,实际上是不同来源的DNA重新组合的过程。如果以质粒作为运载体,首先要用一定的限制酶切割质粒,使质粒出现一个缺口,露出黏性末端。然后用同一种限制酶切断目的基因,使其产生相同的黏性末端。将切下的目的基因的片段插入质粒的切口处,再加入适量DNA连接酶,质粒的黏性末端与目的基因DNA片段的黏性末端就会因碱基互补配对而结合,形成一个重组DNA分子。如人的胰岛素基因就是通过这种方法与大肠杆菌中的质粒DNA分子结合,形成重组DNA分子(也叫重组质粒)的。 3.将目的基因导入受体细胞是实施基因工程的第三步。目的基因的片段与运载体在生物体外连接形成重组DNA分子后,下一步是将重组DNA分子引入受体细胞中进行扩增。 基因工程中常用的受体细胞有大肠杆菌,枯草杆菌,土壤农杆菌,酵母菌和动植物细胞等。 用人工方法使体外重组的DNA分子转移到受体细胞,主要是借鉴细菌或病毒侵染细胞的途径。例如,如果运载体是质粒,受体细胞是细菌,一般是将细菌用氯化钙处理,以增大细菌细胞壁的通透性,使含有目的基因的重组质粒进入受体细胞。目的基因导入受体细胞后,就可以随着受体细胞的繁殖而复制,由于细菌的繁殖速度非常快,在很短的时间内就能够获得大量的目的基因。 4.目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。 以上步骤完成后,在全部的受体细胞中,真正能够摄入重组DNA分子的受体细胞是很少的。因此,必须通过一定的手段对受体细胞中是否导入了目的基因进行检测。检测的方法有很多种,例如,大肠杆菌的某种质粒具有青霉素抗性基因,当这种质粒与外源DNA组合在一起形成重组质粒,并被转入受体细胞后,就可以根据受体细胞是否具有青霉素抗性来判断受体细胞是否获得了目的基因。重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程。 前景 科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。 生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。 生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。 历史 人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。 人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。 科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。 人类基因工程 信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。有科学家预言,随着癌症、心脑血管疾病等顽症的有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。到2050年,人类的平均寿命将达到90至95岁。 人类将挑战生命科学的极限。1953年2月的一天,英国科学家弗朗西斯.克里克宣布:我们已经发现了生命的秘密。他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具体位置,查清每个基因核苷酸的顺序,建立人类基因库。1999年,人的第22对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。可以预见,在今后的四分世纪里,科学家们就可能揭示人类大约5000种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。 继2000年6月26日科学家公布人类基因组"工作框架图"之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司2001年2月12日联合公布人类基因组图谱及初步分析结果。这次公布的人类基因组图谱是在原"工作框架图"的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。随着人类基因组研究工作的进一步深入,生命科学和生物技术将随着新的世纪进入新的纪元。 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 基因工程大事记 1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。 1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。 1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。 1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。 1969年 科学家成功分离出第一个基因。 1980年 科学家首次培育出世界第一个转基因动物转基因小鼠。 1983年 科学家首次培育出世界第一个转基因植物转基因烟草。 1988年 K.Mullis发明了PCR技术。 1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。 1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。 1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。 1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。 1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。 2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。 2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。 2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。 2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。 2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。 2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。 科学家首次公布人类基因组草图“基因信息”。 各国研究状况 英国:早在20世纪80年代中期,英国就有了第一家生物科技企业,是欧洲国家中发展最早的。如今它已拥有560家生物技术公司,欧洲70家上市的生物技术公司中,英国占了一半。 德国:德国政府认识到,生物科技将是保持德国未来经济竞争力的关键,于是在1993年通过立法,简化生物技术企业的审批手续,并且拨款1.5亿马克,成立了3个生物技术研究中心。此外,政府还计划在未来5年中斥资12亿马克,用于人类基因组计划的研究。1999年德国研究人员申请的生物技术专利已经占到了欧洲的14%。 法国:法国政府在过去10年中用于生物技术的资金已经增加了10倍,其中最典型的项目就是1998年在巴黎附近成立的号称“基因谷”的科技园区,这里聚集着法国最有潜力的新兴生物技术公司。另外20个法国城市也准备仿照“基因谷”建立自己的生物科技园区。 西班牙:马尔制药公司是该国生物科技企业的代表,该公司专门从海洋生物中寻找抗癌物质。其中最具开发价值的是ET-743,这是一种从加勒比海和地中海的海底喷出物中提取的红色抗癌药物。ET-743计划于2002年在欧洲注册生产,将用于治疗骨癌、皮肤癌、卵巢癌、乳腺癌等多种常见癌症。 印度:印度政府资助全国50多家研究中心来收集人类基因组数据。由于独特的“种姓制度”和一些偏僻部落的内部通婚习俗,印度人口的基因库是全世界保存得最完整的,这对于科学家寻找遗传疾病的病理和治疗方法来说是个非常宝贵的资料库。但印度的私营生物技术企业还处于起步阶段。 日本:日本政府已经计划将明年用于生物技术研究的经费增加23%。一家私营企业还成立了“龙基因中心”,它将是亚洲最大的基因组研究机构。 新加坡:新加坡宣布了一项耗资6000万美元的基因技术研究项目,研究疾病如何对亚洲人和白种人产生不同影响。该计划重点分析基因差异以及什么样的治疗方法对亚洲人管用,以最终获得用于确定和治疗疾病的新知识;并设立高技术公司来制造这一研究所衍生出的药物和医疗产品。 中国:参与了人类基因组计划,测定了1%的序列,这为21世纪的中国生物产业带来了光明。这“1%项目”使中国走进生物产业的国际先进行列,也使中国理所当然地分享人类基因组计划的全部成果、资源与技术。 基因工程的应用 农牧业、食品工业 运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。 1.转基因鱼 生长快、耐不良环境、肉质好的转基因鱼(中国)。 2.转基因牛 乳汁中含有人生长激素的转基因牛(阿根廷)。 3.转黄瓜抗青枯病基因的甜椒 4.转鱼抗寒基因的番茄 5.转黄瓜抗青枯病基因的马铃薯 6.不会引起过敏的转基因大豆 7.超级动物 导入贮藏蛋白基因的超级羊和超级小鼠 8.特殊动物 导入人基因具特殊用途的猪和小鼠 9.抗虫棉 苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫棉。 环境保护 基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。 利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。 基因工程与环境污染治理 基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。 (通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。) 医学 基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。 用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。 我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。 无论哪一种基因治疗,目前都处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。 可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。 医药卫生 1.基因工程药品的生产: 许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。 微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。 ⑴基因工程胰岛素 胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。 将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%! ⑵基因工程干扰素 干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。 基因工程人干扰素α-2b(安达芬) 是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。 ⑶其它基因工程药物 人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。 2.基因诊断与基因治疗: 运用基因工程设计制造的“DNA探针”检测肝炎病毒等病毒感染及遗传缺陷,不但准确而且迅速。通过基因工程给患有遗传病的人体内导入正常基因可“一次性”解除病人的疾苦。 ◆SCID的基因工程治疗 重症联合免疫缺陷(SCID)患者缺乏正常的人体免疫功能,只要稍被细菌或者病毒感染,就会发病死亡。这个病的机理是细胞的一个常染色体上编码腺苷酸脱氨酶(简称ADA)的基因(ada)发生了突变。可以通过基因工程的方法治疗。 我国基因工程制药业发展 80年代中期以来,我国生物技术蓬勃发展、成绩喜人。由于国家高技术研究计划(即“八六三”计划)、攻关计划和国家自然科学基金会都将生物技术作为优先发展领域予以重点支持,我国生物技术整体研究水平迅速提高,取得了一批高水平的研究成果,为我国新兴生物技术产业的建立和发展提供了技术源泉。目前,我国基因工程制药产业进入快速发展时期。 一、产业现状 1989年,我国批准了第一个在我国生产的基因工程药物——重组人干扰素αlb,标志着我国生产的基因工程药物实现了零的突破。重组人干扰素αlb是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个我国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,我国基因工程制药产业从无到有,不断发展壮大。1998年,我国基因工程制药产业销售额已达到了7.2亿元人民币。截止1998年底,我国已批准上市的基因工程药物和疫苗产品共计15种。目前,国内已有30余家生物制药企业取得了基因工程药物或疫苗试生产或正式生产批准文号。 根据1997年对全国452从个事生物技术研究、开发和生产的单位进行的通讯调查结果,截止1996年底,我国已有8种基因工程药物和疫苗商品化(包括试生产),1996年基因工程药物和疫苗销售额约为2.2亿元人民币,仅占同期全国医药生物技术产品年销售额21.16亿元人民的10.4%。然而可喜的是,近年来我国基因工程制药产业发展迅猛,年销售额已从1996年的2.2亿元人民币增长到1998年的7.2亿元人民币,年均增长率高达80%。预计2000年我国基因工程药物销售额将达到22.8亿元人民币。 二、国内外对比 我国生物技术产业,特别是生物制药产业规模与美国相比差距很大。1996年,我国生物技术销售额为114亿元人民币,美国为100亿美元,相差7倍。1996年,我国基因工程和疫苗销售额为2.3亿元人民币,同期美国75亿美元。1998年,我国基因工程药物和疫苗销售额为7.2亿元人民币,还不到1亿美元,而1996年国Amgen公司的两个主要产品Neupgen(G-CSF)和Epogen(红细胞生成素)销售额均达到10亿美元。 从上市品种看,1998年,我国有15种基因工程药物和疫苗获准上市,美国上市的生物药物(主要是基因工程药物)共53种。我国基国工程药物市时间较美国同品种上市时间晚5年-10年。 三、存在的主要问题 1、同种产品生产厂家过多,造成市场恶性竞争,严重影响产业的健康发展: 我国已批准上市的基因工程药物和疫苗绝大多数是多家生产。例如:干扰素α2a生产厂家有5家,干扰素α2b有5家,白细胞介素-2有10家,G-CSF有7家,GM-CSF有6家。基因工程药物临床应用剂量一般都很小(微克级),通常2-3个厂家满负荷生产就能满足全国市场需要。因此,过多厂家生产同一种基因工程药物势必造成市场过度竞争,使各生产企业的利润下降,同时还导致现有生产能力开工不足,成本增加,使企业不能获得合理利润,无法步入良性发展的轨道,甚至迫使有些企业严重亏损和破产。 这种重复生产的现象与我国新药研究开发的指导思想不无关系。以往我国新药的研究开发是以引进开发为主,我国研制上市的和在研的新药绝大部分是仿制国外的,创新药物很少。已批准的15种基因工程药物和疫苗中,只有干扰素αlb拥有我自主知识产权。在研究的生物新药中,绝大多数是国外进入二、三期临床后我国开始跟踪研制的。由此不难看出,我国新药研究开发缺乏创新和低水平重复是导致医药产业重复生产的源头。大力加强创新药物的研究是从源头解决基因工程药物重复生产问题的根本出路。同时,我国还必须进一步完善新药审批制度和专利制度,从制度上鼓励创新,切实保护创新者的知识产权,避免重复生产。 2、融资渠道单一、产业发展资金不足: 基因工程制药产业是典型的技术产业,具有高投入、高风险、高收益的特点。目前,我国基因工程制药企业投资大多在2000万元-1亿元人民币。资金来源除股东投入的股本金外,主要是靠银行贷款,融资渠道狭窄。由于银行十分注意资金的的安全性和流动性,高技术投资的风险使银行对之贷款慎之又慎。同时,我国基因工程制药使得这些企业融资能力明显不足,很难从一般融资渠道获得企业发展所需的资金。发展资金严重不足已成为基因工程制药产业发展的巨大障碍因素。因此,我国应借鉴国外利用风险投资发展高技术产业的成功经验,制定有关法规政策,积极稳妥地启动风险投资。 3、医药市场竞争无序,行业不正之风盛行: 随着我国从计划经济向市场经济转轨,医药市场出现了新的变化,药品购销各个环节利润分配极不合理。按国家现行价格规定,药品批发价是出厂价的115%,零售价为批发价的120%。但是,基因工程药物实际营销中,医院一般以国家批发价的70%-85%进药,从而获得零售价的30%-50%的利润,而生产企业的利润只有5%-15%。这种利润不合理分配导致众多制药企业亏损。更加上同种基因工程药品由多家生产,迫使生产企业纷纷采取高定价、高让利的促销手段,使药品市场竞争进一步恶化。企业迫于市场压力,主要精力都用在市场竞争上,无力顾及技术创新。过多的市场投入和让利,使正常生产经营都十分困难,更谈不上如何发展了。医药市场恶性竞争非但未能使消费者受益,却使得国家、制药企业和广大消费者的利益受到极大的损害。 另据调查,绝大多数进口基因工程药品的销售价格都大大高于同种国产药品销售价格,而且更为不合理的是,一半以上的进口基因工程药品在我国的售价高于原产国售价。 4、企业管理相对滞后,技术兼经营型人才匮乏: 我国基因工程制药产业起步较晚,但是起点相对较高。许多企业的关键性生产设备都是从国外进口。然而,在经营管理上与国外相比还有很大的差距。现代企业制度的特点之一是所有权与经营权分离,企业的所有者对经营者进行监督,经营者通过自主经营使企业的资产保值增值。我国大多数基因工程制药企业,虽然在形式上是有限责任公司或股份有限,但是企业的所有经营者一般由企业出任或委派。企业这种所有权与经营以不分的状况,既不利于企业长远发展,也不利于企业经营阶层即企业家阶层的形成。 基因工程制药企业是典型的技术密集型高技术企业,企业要在激烈的竞争中求得生存和发展就必须拥有一批高素质的复合型人才。如何培养和造就一批这种复合型人才已成为我国生物制药闰为亟持解决的问题。 四、对策及政策建议 根据国家内外工程制药产业现状及发展趋势,为促进我国基因工程制药产业的快速健康发展,我们提出以下建议: 1、制定产业发展战略规划,强化财政税收优惠政策 目前,我国基因工程制药产业存在的盲目性和严重的重复现象与缺乏明确的产业发展战略和规划不无关系。因此,我国应该尽早制定出台生物技术产业发展战略和指导性发展规划,在引进、消化、吸收、创新及对传统产业的改造方面,集中有限财力、物力,重点支持一批具自主知识产权和国际竞争优势,对国民经济发展和人民生活具有重大影响的关键性基因工程产业化项目。只有这样,我国基本工程制药产业才能避免盲目性和无政府状态,从而走上良性发展的道路。 基因工程制药业与其它高技术产业一样,具有高投入、高风险和高产出等特点,起步阶段必须依靠国家优惠政策扶持才能不断发展壮大。我国各级政府为支持高科技产为发展虽制定了许多优惠政策,但优惠的力度不够,而且在具体实施过程中因涉及部门较多,落无实处的情况时有发生。因此,建议国家进一步强化并规范对基因工程制药产业的财政、税收优惠政策。 2、大力加强基因工程创新药物的研制和生产 由于我国上市销售和在研的基因工程药物绝大多数是仿制国外的,这使得我国基因工程药物很难讲入国际市场。特别是我国加入WTO后,一些基因工程制药企业将处于十分被动的境地,有可能会面临专利纠纷。为了从根本上改变我国基因工程制药业重复生产和缺乏国际竞争力的局面,我国的新药研制开发思想必须做战略调整,从以仿制为主向创新与仿制相结合转变。为此,我国必须大力加强创新药物研究,进一步完善知识产权保护制度和新药审批制度,特别是要加大对侵犯知识产权的打击力度,切实保护创新者权益。同时,新药研制单位和个人应该注意学会用专利保护自己的利益。近来国外一些公司采取的“专利加发表”的策略具有一定的启发性。为了使自己的技术专利化,并防止别人申请同样的专利,美国公司在申请专利后便迅速将专利内容公开发表。这种做法既确立了自己的领先地位,又有效一阻止了他人申请相同的专利。 在加强创新药物研究的同时,可以有选择地合法仿制一些专利即将过期、疗效明确、应用前景广阔基因工程药物。对仿制药物有关的专利要进行认真的研究,采取有效的专利回避策略,避免简单的、盲目的仿制。要在仿制的基础上创新。创造出专利方法不同的生产工艺和方法,避免引起专利纠纷。 3、积极引导培育风险投资市场 融资困难、资金不足已严重制约了我国基因工程制药产业的迅速发展。欧美发达国家的成功经验表明,风险投资是解决高技术商品化、产业化过程中资金困难的有效途径。因此,我国政府应积极稳妥地引导和培育风险投资,尽制定风险投资运行的法规和政策,为风险投资创造宽松的环境和条件,适时允许投资银行、信托投资公司、保险公司等机构发起设立风险投资基金。积极吸引国外风险投资历基金流入。同时,还应该放宽高技术企业股票发行条件,为高技术企业股票上市提供更多机会。积极准备开辟高技术企业股票市场即第二股票市场,为风险投资进入和退了资本市场创造条件。 基因工程危害及其具体实例 关于转基因生物的安全性,目前仍没有科学性共识。尽管如此,基因工程农作物已被大规模投放,生物医学应用也日益增加。转基因生物还被投入工业使用和环境恢复,而公众对此却知之甚少。最近几年,越来越多的证据证明存在生态、健康危害和风险,对农民也有不利影响. 基因工程细菌影响土壤生物,导致植物死亡 1999出版的研究资料例举了基因工程微生物释放到环境中将如何导致广泛的生态破环。 当把克氏杆菌的基因工程菌株与砂土和小麦作物加入微观体中时,喂食线虫类生物的细菌和真菌数量明显增加,导致植物死亡。而加入亲本非基因工程菌株时,仅有喂食线虫类生物的细菌数量增加,而植物不会死亡。没有植物而将任何一种菌株引入土壤都不会改变线虫类群落。 克氏杆菌是一种能使乳糖发酵的常见土壤细菌。基因工程细菌被制造用来在发酵桶中产生使农业废物转换为乙醇的增强乙醇浓缩物。发酵残留物,包括基因工程细菌亦可于土壤改良。 研究证明,一些土壤生态系统中的基因工程细菌在某些条件下可长期存活,时间之长足以刺激土壤生物产生变化,影响植物生长和营养循环进程。虽然目前仍不清楚此类就地观测的程度,但是基因工程细菌引起植物死亡的发现也说明如果使用此种土壤改良有杀伤农作物的可能。 致命基因工程鼠痘病毒偶然产生 澳大利亚研究员在研发对相对无害的鼠痘病毒基因工程时竟意外制创造出可彻底消灭老鼠的杀手病毒。 研究员们将白细胞间介素4的基因(在身体中自然产生)插入到一种鼠痘病毒中以促进抗体的产生,并创造出用于控制鼠害的鼠类避妊疫苗。非常意外的是,插入的基因完全抑制了老鼠的免疫系统。鼠痘病毒通常仅导致轻微的症状,但加入IL-4基因后,该病毒9天内使所有动物致死。更糟的是,此种基因工程病毒对接种疫苗有着异乎寻常的抵抗力。 经改良的鼠痘病毒虽然对人类无影响,但却与天花关系十分密切,让人担心基因工程将会被用于生物战。一名研究员在谈及他们决定出版研究成果的原因时曾说:" 我们想警告普通民众,现在有了这种有潜在危险的技术","我们还想让科学界明白,必须小心行事,制造高危致命生物并不是太困难。" 杀虫剂使用的增加大部分是由于HT作物,尤其是HT大豆使用的杀虫剂增加,这一点可追溯到对HT作物的严重依赖性以及杂草管理的单一除草剂(草甘磷)使用。这已导致转移到更加难以控制的杂草,而某些杂草中还出现了遗传抗性,迫使许多农民在基因工程作物上喷洒更多的除草剂以对杂草适当进行控制。HT大豆中的抗草甘膦杉叶藻(marestail)于2000年在美国首次出现,在HT棉花中也已鉴别出此种物质[27]。 其它研究显示,基因工程农作物本身也会对其使用的除草剂产生抗性,引发严重的自身自长作物问题(同一块地里早先种植的作物种子发芽的植物后来变成杂草)并迫使进一步使用除草剂。加拿大科学家证实了抗多种除草剂之基因工程油菜的迅速演化,此种作物因花粉长距离传播而融合了不同公司研制的单价抗除草剂特性 。 此外,科学家还在2002年确认了转基因可从Bt向日葵移动到附近的野生向日葵,使杂化物更强、对化学药品更具抗性,因为较之无基因控制的情况,杂化物多了50%的种子,且种子健康,甚至在干旱条件下也如此。 北卡罗莱那州大学的研究显示,Bt油菜与相关杂草、鸟食草之间的交叉物可产生抗虫性杂合物,使杂草控制更困难。 所有这些事件使预防方法和严格的生物安全管理变得突出。预防原则在《卡塔赫纳生物安全协议》这一主要管理转基因微生物的国际法律中已得到重申。尤其是第 10(6)条声称,如果缺乏科学定论,缔约方可限制或禁止转基因生物的进口,以避免或使生物多样性及人类健康的不利影响降到最低 | [
"4个分类",
"药品",
"克隆",
"基因",
"生物学"
] | 15,156 | zh-CN |
转基因植物 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%94%B9%E9%80%A0%E4%BD%9C%E7%89%A9 | (重定向自基因改造作物) 转基因植物(Transgene plant)是拥有来自其他物种基因的植物。该基因变化过程可以来自不同物种之间的杂交,但今天该名词更多的特指那些在实验室里通过重组DNA技术人工插入其他物种基因以创造出拥有新特性的植物。 概念简介 转基因植物的研究主要在于改进植物的品质,改变生长周期或花期等提高其经济价值或观赏价值;作为某些蛋白质和次生代谢产物的生物反应器,进行大规模生产;研究基因在植物个体发育中,以及正常生理代谢过程中的功能。 以植物作为生物技术的实验材料有其特定的优点,那就是植物细胞大部分都有全能性(totipotency),可以用单个细胞分化发育出整个植株。这样,经过基因工程改造的单个植物细胞有可能再生成一棵完整的转基因植株。这些植株还可通过有性生殖过程把改变了的性状遗传给下一代。 植物基因工程用作外源基因的转化受体有许多种,包括胚性愈伤组织(cai—lus)、分生细胞、幼胚、成熟胚、受精胚珠、种子和原生质体等。从这些受体细胞都可获得再生的转基植株。 植物基因转化方法 ①农杆菌介导法:农杆菌的Ti质粒可以作为载体。Ti质粒上有两个区域,一个是T-DNA区,这是能够转移并整合进植物受体的区段;另一个是Vir区,它编码实现质粒转移所需的蛋白质。将待转化的外源基因先克隆在大肠杆菌质粒上,然后将此质粒转入不会引起冠瘿瘤的农杆菌(这种菌的Ti质粒已除去了T-DNA),使外源基因通过同源重组整合在Ti质粒上;然后用带有外源基因的这种农杆菌去转化植物细胞,将外源基因转入植物细胞的基因组。 ②直接转入法:这是将裸露的DNA直接导入植物细胞,然后将这些细胞在体外培养再生出植株。裸露的DNA的转化效率较低,因而要辅之以高效率的组织培养系统。 植物细胞有一层很厚的细胞壁,因此需先去除植物细胞壁,使之成为原生质体,然后用来直接转入外源DNA。当然,也可用机械的方法将DNA直接注入植物细胞而毋须去除细胞壁,这类方法有用显微操纵仪把DNA直接注入植物细胞,也可在金属微粒上蘸涂了外源DNA,把它当作子弹,用“基因枪”轰击植物组织而进入植物细胞。 ③原生质体融合:将不同物种的原生质体进行融合,可实现两种基因组的结合。也可将一种细胞的细胞器,如线粒体或叶绿体与另一种细胞融合,此时,是一种细胞的细胞核处于两种细胞来源的细胞质中,这就形成了胞质杂种(cybrid)。 ④花粉管通道法:在授粉后向子房注射含目的基因的DNA溶液,利用植物在开花、受精过程中形成的花粉管通道,将外源DNA导入受精卵细胞中,并进一步整合到受体细胞的基因中,随受精卵的发育而成为转基因新个体。该方法是由我国学者在20世纪80年代提出的。我国目前推广面积最大的转基因抗虫棉就是采用花粉管通道法培育出来的。 国外转基因植物产业化现状 植物转基因技术是指把从动物、植物或微生物中分离到的目的基因,通过各种方法转移到植物的基因组中,使之稳定遗传并赋予植物新的农艺性状,如抗虫、抗病、抗逆、高产、优质等。随着现代生物技术的迅速发展,植物转基因技术方兴未艾。自从1983年首次获得转基因植物后,至今已有35科120多种植物转基因获得成功。1986年首批转基因植物被批准进入田间试验,至今国际上已有30个国家批准数千例转基因植物进入田间试验,涉及的植物种类有40多种。 目前,农作物生物技术育种的研究已经不再处于实验室阶段,而是进入了实际应用,走到了商业化阶段。近年来,转基因植物在全球的种植面积增长迅速,种植转基因植物的国家从1992年的1个增长到1996年的6个,1998年9个,1999年进一步扩大到12个国家。全球转基因植物的种植面积1996年仅为170万hm2,1997年为1100万hm2,1998年增长到2780万hm2,1999年又比1998年增长44%,达到3990万hm2。 美国转基因植物的商业化速度进展很快,其推广应用走在其它国家的前列。1994年国Calgene公司研制的转基因延熟番茄首次进入商业化生产,到1998年底就有30多例转基因植物被批准进行商业化生产。1999年全球转基因植物种植面积中,美国就占72%,达2870万hm2;其次是阿根廷670万hm2;占17%;加拿大400万hm2,占10%;我国名列第4位,1999年种植面积达30万hm 2,占1%,其他国家的种植面积都小于1%。 种植的转基因植物种类主要有:大豆(占54%),玉米(占28%),棉花(占9%),Canola油菜(占9%),马铃薯、西葫芦和木瓜的比例都小于1%。按转基因植物的性状划分,抗除草剂占71%,如抗除草剂的大豆(54%)、Canola油菜(9%)、玉米(4%)和棉花(4%):抗虫转基因植物占22%,主要是抗虫玉米(19%)和抗虫棉(3%);抗虫兼抗除草剂占7%,主要是抗虫兼抗除草剂的玉米(5%)和棉花(2%);抗病毒和其它性状转基因植物的比例小于1%。 转基因植物的产业化,尤其是转基因农作物的产业化,由于提高产量、减少除草剂、杀虫剂等农药使用量和节约大量劳力,而带来巨大的经济效益和社会效益。近5年来,全球转基因植物的销售额成倍增长,1995年仅7500万美元,1996年增加了3倍达2.35亿美元,1997年和1998年继续增长,到1999年达到21∽23亿美元。 中国转基因植物研究与产业化发展 在国家“863”高新技术研究与发展计划及国家科技攻关计划的资助下,我国转基因植物的研究和开发取得了显著的进展,有些研究已经达到国际先进水平。据1996年国生物技术学会统计,我国投入研究和开发的转基因植物达47种,涉及各类基因103种。近年来有近20种转基因植物进入了田间试验或环境释放阶段。至1999年,农业部批准可进行商业化生产的国内研制的转基因植物有5种,它们分别是:抗虫棉花、改变花色的矮牵牛、延熟番茄、抗病毒的甜椒和番茄。 1、植物抗虫基因工程 在国家"863"计划的支持下,中国农业科学院生物技术研究所成功地人工合成和改造了植物抗虫害的Bt基因,获得了高抗棉铃虫的转基因棉花品种和品系。此外,中国农业科学院棉花所、南京农业大学和山西省农科院棉花所等单位还以转基因抗虫棉为亲本,育成了一批抗虫能力在80%以上,单产比主栽品种高15%以上的转基因抗虫杂交棉组合。拥有我国自主知识产权的抗虫棉花的育成和大面积推广应用,标志着我国转基因植物研究开始进入产业化发展阶段。 为了有效控制水稻害虫的危害,中国农业科学院生物技术研究所和华中农业大学合作成功地获得了转Bt基因杂交水稻,对二化螟、三化螟和稻纵卷叶螟的毒杀效果达到95%。浙江农业大学(现已并入浙江大学)也成功地将Bt基因导入水稻早稻品种。目前转Bt基因抗螟虫水稻已进入环境释放阶段。中国科学院遗传所研制成功的转CpTI基因抗虫水稻也分别获准在北京、福建和山西进入中间试验和环境释放。此外,中国农业大学研制的转基因抗玉米螟玉米、复旦大学遗传所研制的转基因抗褐习虱水稻、中国科学院微生物研究所和中国林业科学院林研所研制的抗虫转基因杨树也都进入环境释放阶段。 2、抗病基因工程 中国农业科学院生物技术研究所已成功地人工合成和改造了来自天蚕蛾的抗菌肽基因,并导入我国马铃薯主栽品种米拉,获得抗病性提高I∽Ⅲ级的抗青枯病的转基因株系,现已经农业部批准在四川省进行环境释放。目前抗菌肽基因已经供给国内10多家研究单位,进行抗水稻白叶枯病、马铃薯软腐病、花生和番茄的青枯病、大白菜软腐病、柑桔细菌性溃疡病、桑树和桉树青枯病、樱桃根肿病等抗细菌病基因工程研究。 白叶枯病也是危害水稻生产的最为严重的病害之一。中国农业科学院生物技术研究所与国外合作研制成功的转Xa21基因抗白叶枯病水稻明恢63株系已分别在安徽省和海南省进行环境释放;华中农业大学和中国科学院遗传所研制的转Xa21基因抗白叶枯病水稻也分别进入中试阶段。 真菌病也是严重影响农作物生产的一类病害。中国农业科学院生物技术研究所与中国科学院上海植物生理研究所等单位合作,成功地克隆和修饰了植物来源的几丁质酶基因和葡萄糖氧化酶基因,通过花粉管通道法分别将这两个基因导入棉花,获得了抗黄萎病和枯萎病和枯萎的转基因棉花,这些株系在病圃中表现良好,现已进入中试阶段。 在抗病毒的基因工程方面,国内也取得了很好进展。北京大学克隆了烟草花叶病毒TMV、黄瓜花叶病毒CMV、马铃薯X病毒等中国株系以及水稻矮缩病毒的外壳蛋白基因,研制成功的抗黄瓜花叶病毒甜椒和番茄都已经分别在云南和福建进入中试或环境释放。中国农业科学院油料研究所研制的转基因抗条纹病毒花生、北京市农林科学院蔬菜研究中心育成的抗芜菁花叶病毒白菜和新疆农科院核技术生物技术所获得的抗黄瓜花叶病毒转基因甜瓜都已分别进入中试。此外,国内一些研究单位还获得了抗环斑病毒(PRSV)的番木瓜,抗黄矮病和黄花叶病毒的小麦等抗病毒病的基因工程植株。 3、植物抗逆基因工程 我国在抗盐基因工程上已取得了一些进展,先后克隆了脯氨酸合成酶(proA),山菠菜碱脱氢酶(BADH),磷酸甘露醇脱氢酶(mtl)及磷酸山梨醇脱氢酶(gutD)等与耐盐相关基因,通过遗传转化获得了而1%NACL的苜蓿、耐0.8%NACL的草莓及耐2%NACL的烟草,这些转基因植物已进入田间试验阶段。中国科学院遗传所将BADH基因导入水稻,获得的转基因水稻有交较高的耐盐性,并能在盐田中结实。 4、植物品质改良的基因工程 北京大学已将编码必需氨基酸的基因转入马铃薯,获得含高必需氨基酸的马铃薯品系,这些品系已在内蒙试种,正准备进入中试开发。中国农业大学成功地将高赖氨酸基因导入玉米,获得的转基因玉米中赖氨酸含量比对照提高10%。 在控制植物发育的基因工程中,较为成熟的技术延迟成熟番茄的研究。华中农业大学和中国科学院植物所分别获得了这种转基因番,贮存时间可延长1∽2个月,有的可达80多天。1997年农业部基因工程安全委员会已批准这种耐储存番茄进行商业化生产。中国农业大学利用反义基因技术培育的耐储存番茄新品种已进行环境释放。 北京大学成功地将与植物花青素代谢有关的查而酮合酶基因导入花卉植物矮牵牛,转基因矮牵牛的花色呈现自然界没有的变异,提高了花卉的观赏价值。转基因兰花和转基因非洲菊的研究工作正在进行中。 5、植物叶绿体基因工程 中国农业科学院生物技术研究所在国内较早开始进行植物叶绿体遗传转化研究。1996年建立了烟草叶绿体遗传转化体系,并成功地将Bt基因导入烟草叶绿体中,转基因植物杀虫效果显著]。他们还将固氮酶基因(nifH和nifM)、抗剂基因(bar基因)和绿色荧光蛋白(GFP)基因导入了烟草叶绿体。 6、植物生物反应器 利用转基因植物作为生物反应器生产药用蛋白的研究逐渐受到各国的重视,研究探索的热点之一是利用转基因植物生产口服疫苗。中国农业科学院生物技术研究所的科研人员将乙型肝炎病毒表面抗原基因导入马铃薯和蕃茄,饲喂小鼠试验检测到较高的保护性抗体,浓度足以对人类产生保护作用。该所还进行了利用植物叶绿体作为生物反应器生产药用蛋白的探索,目前已将丙肝病毒(HCV)抗原基因导入衣藻叶绿体。利用转基因植物生产口服疫苗可以大大降低疫苗的生产成本,在发展中国家更有良好的发展前景。 转基因植物发展 2001年世界转基因植物商品化种植面积达到5260万公顷,其中我国的种植面积为150万公顷,是2000年的3倍,成为世界转基因作物种植面积增长最快的国家。其主要原因一方面是因为已开发的产品效果良好,受到农户的重视而加大了种植面积;另一方面是由于国家加大了研究力度,转基因植物的新技术和新产品不断产生。 1、抗虫转基因植物 2001年,转基因抗虫棉在已经取得重大成绩的基础上又有新的突破。中国农业科学院生物技术研究所的抗虫棉基因专利“编码杀虫蛋白质融合基因和表达载体及其应用”获得国家知识产权局和世界知识产权组织授予的中国专利金奖。同时,双价转基因抗虫棉SGK321也顺利通过河北省品种审定委员会审定,标志着我国在双基因抗虫棉研究领域处于国际领先地位。目前,SGK321已经通过了农业转基因生物安全性评价,并获准在晋、冀、鲁、豫、皖进行商品化生产,在湖北进行环境释放。综合2000年和2001年两年区试结果,SGK321早熟性明显优于其他品种,霜前皮棉亩产75.4公斤,相当于对照抗虫杂交种的93.4%。该品种纤维品质好,长度为29.2毫米,比强度29.4厘米/特克斯,马克隆值4.8,抗虫性突出。 到目前为止,我国已审定抗虫棉品种14个,其中单价棉11个,分别为:GK1(国抗1号)、GK12(国抗12号)、GK19(国抗19号)、GK22(国抗22号)、GK30(鲁棉研16号)、GK95-1(晋棉26号)和GK46(晋棉31号)、GKz10(鲁棉研15号)、GKz13(鲁RH-1)、GKz6(中棉所38)和GKz8(南抗3号);双价棉3个,分别为:sGK321、sGK9708(中棉所41)、sGK5(新研96-48)。这些抗虫棉品种均高抗棉铃虫,具有较好的品质性状及丰产性。同时,还培育出一批具有较强竞争力的抗虫棉品种,其中杂交棉品种2个(鲁H9513和中抗杂5号),常规品种2个(ZGK9708和鲁S6145)。此外还有正在参加国家区试的有潜力的品种6个,杂交棉4个。2001年国产抗虫棉已经在河北、河南、山西、山东、湖南、湖北、江苏、安徽、新疆、辽宁等17个省市推广60万公顷,占据了国内抗虫棉43.3%的市场份额。加上孟山都公司的抗虫棉,2001年转基因抗虫棉的种植面积达到了全国棉花种植面积的31%,种植农户超过350万户。 在抗虫转基因水稻方面,中科院遗传与发育生物学研究所研制的转SCK基因(修饰豇豆蛋白酶抑制剂基因)抗虫水稻在福建已连续进行了5年大田试验。经鉴定,其对二化螟田间防治效果达90-100%,稻纵卷叶螟抗性达81-100%,对大螟62.6-63.9%,稻苞虫83.9%。鉴于目前政策原因暂时还不能大面积推广种植,但已采取多地区多点进行大田试验。该转基因水稻的食品安全性检测已基本完成,结果表明与常规稻无明显差异。目前正进一步发展无选择标记、高效表达、多价抗虫基因等转基因水稻新品种。 中国农业大学从Bt菌株克隆得到一种沉默的新杀虫基因cry1Ie1,该基因表达的毒蛋白对亚洲玉米螟显示了高杀虫活性,目前国际上已经确定了其在分类上的模式基因地位。该基因及该基因与cry1A基因的组合已申请国家发明专利。在此基础上进一步完成了cry1Ie1和cry1Ac基因的密码子改造和原核、真核表达载体的构建,改造基因的杀虫活性鉴定正在进行之中。 2、抗病转基因植物 中科院遗传与发育生物学研究所和国外单位合作定位和克隆成功的白叶枯病抗性基因Xa21通过独创的水稻Xa21基因农杆菌介导转化系统大量转化高产优质水稻品种明恢63、珍汕97B、盐恢559、太湖粳6、培矮64S、C418、8706和中花11等。抗性分析显示这些转基因系对19个不同的白叶枯病原菌株包括9个菲律宾小种,3个日本小种和7个我国病原型高度抗性,接种鉴定病斑面积小于10%。多数Xa21转基因系的抗性强于Xa21基因供体IRBB21,这表明在不同的遗传背影下Xa21仍保留了对白叶枯病的高度抗性和广谱抗性。目前部分转基因株系已经进入中试阶段。 中国农业大学利用已建立的小麦高频遗传转化体系,利用基因枪轰击法将小麦黄花叶病毒(WYMV)外壳蛋白基因、菌传相关72kDa蛋白基因和RNaseIII、2-5A System等目的基因分别导入小麦,获得多种抗病毒转基因株系。其中NY-8等50份材料已通过国家生物安全审定批准进入田间试验。从中筛选获得了多个保持了受体品系的优良综合农艺性状、抗病毒能力达到极显著水平的品系,并首次在禾谷类作物上确认了由转基因沉默所介导的抗病毒机制。 中国水稻研究所等单位通过转基因技术将昆虫抗菌肽基因通过基因枪技术或通过pCBl载体导入水稻未成熟胚,获得抗细菌病转基因水稻植株,实验证明转基因水稻在温室条件下对白叶枯病菌和水稻细条病菌的抵抗能力增强,并表现其遗传稳定性。 中国农科院生物技术研究所与中国科学院上海植物生理研究所等单位合作成功地克隆和修饰了植物来源的几丁质酶基因和葡萄糖氧化酶基因,获得了抗黄萎病和枯萎病的转基因棉花,现已进入中试阶段。 3、转基因植物反应器 中国科学院上海植物生理研究所开展了利用烟草花叶病毒(TMV)作为表达载体应用于植物生物反应器的研究,用该方法大规模表达口蹄疫病毒表面抗原多肽,制备高效,安全,廉价的重组口蹄疫疫苗。该研究利用自建的TMV本地株系基因组cDNA突变体库,在外源肽的表达上取得了较大突破。已获得能融合表达长达31肽的各种口蹄疫病毒表面抗原肽的重组TMV。重组病毒具有稳定的系统感染能力,每克烟草鲜叶中可得到1毫克以上高纯度的融合蛋白。并且找到了简单有效的从烟草中大规模纯化病毒蛋白工艺路线及重组疫苗的配制技术。 4、转基因植物品质改良 浙江省农科院在国际上首次从光合产物分配的角度,提出了利用反义PEP基因提高油菜种子含油量的技术路线,据此构建了反义PEP基因,利用农杆菌介导途径,将反义PEP基因导入油菜基因组,相继获得了多批反义PEP基因油菜植株。育成的"超油一号"含油量达47.4%,"超油二号"含油量高达52.82%,含油量均比传统品种提高25%以上,成为目前国际上含油量最高的甘蓝型油菜。打破了我国长江流域油菜含油量在37%~43%长期徘徊的局面,实现了我国油菜种子含油量的突破。 扬州大学及中科院遗传与发育生物学研究所等分离并克隆了与水稻种子中淀粉合成相关的基因:淀粉分支酶Sbe1、淀粉分支酶Sbe3和可溶性淀粉合成酶SSS,以及水稻胚乳特异性表达基因启动子元件Gt1、GluB-1、RP5和RAG1。构建了可转化水稻的、含有义或反义淀粉合成酶和高赖氨酸含量蛋白(LRP)基因等的工程载体,通过转化获得了含不同品质基因的转基因水稻植株800余株。目前已经完成了部分转基因水稻植株的分子鉴定 | [
"3个分类",
"生物学",
"遗传学",
"基因"
] | 7,396 | zh-CN |
基因工程 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%94%B9%E9%80%A0 | (重定向自基因改造) 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 学科概况 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。 这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。 随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基本操作步骤 1.获取目的基因是实施基因工程的第一步。如植物的抗病(抗病毒 抗细菌)基因,种子的贮藏蛋白的基因,以及人的胰岛素基因干扰素基因等,都是目的基因。 要从浩瀚的“基因海洋”中获得特定的目的基因,是十分不易的。科学家们经过不懈地探索,想出了许多办法,其中主要有两条途径:一条是从供体细胞的DNA中直接分离基因;另一条是人工合成基因。 直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。鸟枪法的具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞提供的DNA(即外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。如许多抗虫抗病毒的基因都可以用上述方法获得。 用鸟枪法获得目的基因的优点是操作简便,缺点是工作量大,具有一定的盲目性。又由于真核细胞的基因含有不表达的DNA片段,一般使用人工合成的方法。 目前人工合成基因的方法主要有两条。一条途径是以目的基因转录成的信使RNA为模版,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需要的基因。另一条途径是根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对的原则,推测出它的基因的核苷酸序列,再通过化学方法,以单核苷酸为原料合成目的基因。如人的血红蛋白基因胰岛素基因等就可以通过人工合成基因的方法获得。 2.基因表达载体的构建(即目的基因与运载体结合)是实施基因工程的第二步,也是基因工程的核心。 将目的基因与运载体结合的过程,实际上是不同来源的DNA重新组合的过程。如果以质粒作为运载体,首先要用一定的限制酶切割质粒,使质粒出现一个缺口,露出黏性末端。然后用同一种限制酶切断目的基因,使其产生相同的黏性末端。将切下的目的基因的片段插入质粒的切口处,再加入适量DNA连接酶,质粒的黏性末端与目的基因DNA片段的黏性末端就会因碱基互补配对而结合,形成一个重组DNA分子。如人的胰岛素基因就是通过这种方法与大肠杆菌中的质粒DNA分子结合,形成重组DNA分子(也叫重组质粒)的。 3.将目的基因导入受体细胞是实施基因工程的第三步。目的基因的片段与运载体在生物体外连接形成重组DNA分子后,下一步是将重组DNA分子引入受体细胞中进行扩增。 基因工程中常用的受体细胞有大肠杆菌,枯草杆菌,土壤农杆菌,酵母菌和动植物细胞等。 用人工方法使体外重组的DNA分子转移到受体细胞,主要是借鉴细菌或病毒侵染细胞的途径。例如,如果运载体是质粒,受体细胞是细菌,一般是将细菌用氯化钙处理,以增大细菌细胞壁的通透性,使含有目的基因的重组质粒进入受体细胞。目的基因导入受体细胞后,就可以随着受体细胞的繁殖而复制,由于细菌的繁殖速度非常快,在很短的时间内就能够获得大量的目的基因。 4.目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。 以上步骤完成后,在全部的受体细胞中,真正能够摄入重组DNA分子的受体细胞是很少的。因此,必须通过一定的手段对受体细胞中是否导入了目的基因进行检测。检测的方法有很多种,例如,大肠杆菌的某种质粒具有青霉素抗性基因,当这种质粒与外源DNA组合在一起形成重组质粒,并被转入受体细胞后,就可以根据受体细胞是否具有青霉素抗性来判断受体细胞是否获得了目的基因。重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程。 前景 科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。 生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。 生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。 历史 人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。 人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。 科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。 人类基因工程 信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。有科学家预言,随着癌症、心脑血管疾病等顽症的有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。到2050年,人类的平均寿命将达到90至95岁。 人类将挑战生命科学的极限。1953年2月的一天,英国科学家弗朗西斯.克里克宣布:我们已经发现了生命的秘密。他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具体位置,查清每个基因核苷酸的顺序,建立人类基因库。1999年,人的第22对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。可以预见,在今后的四分世纪里,科学家们就可能揭示人类大约5000种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。 继2000年6月26日科学家公布人类基因组"工作框架图"之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司2001年2月12日联合公布人类基因组图谱及初步分析结果。这次公布的人类基因组图谱是在原"工作框架图"的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。随着人类基因组研究工作的进一步深入,生命科学和生物技术将随着新的世纪进入新的纪元。 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 基因工程大事记 1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。 1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。 1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。 1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。 1969年 科学家成功分离出第一个基因。 1980年 科学家首次培育出世界第一个转基因动物转基因小鼠。 1983年 科学家首次培育出世界第一个转基因植物转基因烟草。 1988年 K.Mullis发明了PCR技术。 1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。 1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。 1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。 1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。 1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。 2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。 2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。 2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。 2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。 2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。 2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。 科学家首次公布人类基因组草图“基因信息”。 各国研究状况 英国:早在20世纪80年代中期,英国就有了第一家生物科技企业,是欧洲国家中发展最早的。如今它已拥有560家生物技术公司,欧洲70家上市的生物技术公司中,英国占了一半。 德国:德国政府认识到,生物科技将是保持德国未来经济竞争力的关键,于是在1993年通过立法,简化生物技术企业的审批手续,并且拨款1.5亿马克,成立了3个生物技术研究中心。此外,政府还计划在未来5年中斥资12亿马克,用于人类基因组计划的研究。1999年德国研究人员申请的生物技术专利已经占到了欧洲的14%。 法国:法国政府在过去10年中用于生物技术的资金已经增加了10倍,其中最典型的项目就是1998年在巴黎附近成立的号称“基因谷”的科技园区,这里聚集着法国最有潜力的新兴生物技术公司。另外20个法国城市也准备仿照“基因谷”建立自己的生物科技园区。 西班牙:马尔制药公司是该国生物科技企业的代表,该公司专门从海洋生物中寻找抗癌物质。其中最具开发价值的是ET-743,这是一种从加勒比海和地中海的海底喷出物中提取的红色抗癌药物。ET-743计划于2002年在欧洲注册生产,将用于治疗骨癌、皮肤癌、卵巢癌、乳腺癌等多种常见癌症。 印度:印度政府资助全国50多家研究中心来收集人类基因组数据。由于独特的“种姓制度”和一些偏僻部落的内部通婚习俗,印度人口的基因库是全世界保存得最完整的,这对于科学家寻找遗传疾病的病理和治疗方法来说是个非常宝贵的资料库。但印度的私营生物技术企业还处于起步阶段。 日本:日本政府已经计划将明年用于生物技术研究的经费增加23%。一家私营企业还成立了“龙基因中心”,它将是亚洲最大的基因组研究机构。 新加坡:新加坡宣布了一项耗资6000万美元的基因技术研究项目,研究疾病如何对亚洲人和白种人产生不同影响。该计划重点分析基因差异以及什么样的治疗方法对亚洲人管用,以最终获得用于确定和治疗疾病的新知识;并设立高技术公司来制造这一研究所衍生出的药物和医疗产品。 中国:参与了人类基因组计划,测定了1%的序列,这为21世纪的中国生物产业带来了光明。这“1%项目”使中国走进生物产业的国际先进行列,也使中国理所当然地分享人类基因组计划的全部成果、资源与技术。 基因工程的应用 农牧业、食品工业 运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。 1.转基因鱼 生长快、耐不良环境、肉质好的转基因鱼(中国)。 2.转基因牛 乳汁中含有人生长激素的转基因牛(阿根廷)。 3.转黄瓜抗青枯病基因的甜椒 4.转鱼抗寒基因的番茄 5.转黄瓜抗青枯病基因的马铃薯 6.不会引起过敏的转基因大豆 7.超级动物 导入贮藏蛋白基因的超级羊和超级小鼠 8.特殊动物 导入人基因具特殊用途的猪和小鼠 9.抗虫棉 苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫棉。 环境保护 基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。 利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。 基因工程与环境污染治理 基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。 (通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。) 医学 基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。 用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。 我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。 无论哪一种基因治疗,目前都处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。 可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。 医药卫生 1.基因工程药品的生产: 许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。 微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。 ⑴基因工程胰岛素 胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。 将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%! ⑵基因工程干扰素 干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。 基因工程人干扰素α-2b(安达芬) 是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。 ⑶其它基因工程药物 人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。 2.基因诊断与基因治疗: 运用基因工程设计制造的“DNA探针”检测肝炎病毒等病毒感染及遗传缺陷,不但准确而且迅速。通过基因工程给患有遗传病的人体内导入正常基因可“一次性”解除病人的疾苦。 ◆SCID的基因工程治疗 重症联合免疫缺陷(SCID)患者缺乏正常的人体免疫功能,只要稍被细菌或者病毒感染,就会发病死亡。这个病的机理是细胞的一个常染色体上编码腺苷酸脱氨酶(简称ADA)的基因(ada)发生了突变。可以通过基因工程的方法治疗。 我国基因工程制药业发展 80年代中期以来,我国生物技术蓬勃发展、成绩喜人。由于国家高技术研究计划(即“八六三”计划)、攻关计划和国家自然科学基金会都将生物技术作为优先发展领域予以重点支持,我国生物技术整体研究水平迅速提高,取得了一批高水平的研究成果,为我国新兴生物技术产业的建立和发展提供了技术源泉。目前,我国基因工程制药产业进入快速发展时期。 一、产业现状 1989年,我国批准了第一个在我国生产的基因工程药物——重组人干扰素αlb,标志着我国生产的基因工程药物实现了零的突破。重组人干扰素αlb是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个我国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,我国基因工程制药产业从无到有,不断发展壮大。1998年,我国基因工程制药产业销售额已达到了7.2亿元人民币。截止1998年底,我国已批准上市的基因工程药物和疫苗产品共计15种。目前,国内已有30余家生物制药企业取得了基因工程药物或疫苗试生产或正式生产批准文号。 根据1997年对全国452从个事生物技术研究、开发和生产的单位进行的通讯调查结果,截止1996年底,我国已有8种基因工程药物和疫苗商品化(包括试生产),1996年基因工程药物和疫苗销售额约为2.2亿元人民币,仅占同期全国医药生物技术产品年销售额21.16亿元人民的10.4%。然而可喜的是,近年来我国基因工程制药产业发展迅猛,年销售额已从1996年的2.2亿元人民币增长到1998年的7.2亿元人民币,年均增长率高达80%。预计2000年我国基因工程药物销售额将达到22.8亿元人民币。 二、国内外对比 我国生物技术产业,特别是生物制药产业规模与美国相比差距很大。1996年,我国生物技术销售额为114亿元人民币,美国为100亿美元,相差7倍。1996年,我国基因工程和疫苗销售额为2.3亿元人民币,同期美国75亿美元。1998年,我国基因工程药物和疫苗销售额为7.2亿元人民币,还不到1亿美元,而1996年国Amgen公司的两个主要产品Neupgen(G-CSF)和Epogen(红细胞生成素)销售额均达到10亿美元。 从上市品种看,1998年,我国有15种基因工程药物和疫苗获准上市,美国上市的生物药物(主要是基因工程药物)共53种。我国基国工程药物市时间较美国同品种上市时间晚5年-10年。 三、存在的主要问题 1、同种产品生产厂家过多,造成市场恶性竞争,严重影响产业的健康发展: 我国已批准上市的基因工程药物和疫苗绝大多数是多家生产。例如:干扰素α2a生产厂家有5家,干扰素α2b有5家,白细胞介素-2有10家,G-CSF有7家,GM-CSF有6家。基因工程药物临床应用剂量一般都很小(微克级),通常2-3个厂家满负荷生产就能满足全国市场需要。因此,过多厂家生产同一种基因工程药物势必造成市场过度竞争,使各生产企业的利润下降,同时还导致现有生产能力开工不足,成本增加,使企业不能获得合理利润,无法步入良性发展的轨道,甚至迫使有些企业严重亏损和破产。 这种重复生产的现象与我国新药研究开发的指导思想不无关系。以往我国新药的研究开发是以引进开发为主,我国研制上市的和在研的新药绝大部分是仿制国外的,创新药物很少。已批准的15种基因工程药物和疫苗中,只有干扰素αlb拥有我自主知识产权。在研究的生物新药中,绝大多数是国外进入二、三期临床后我国开始跟踪研制的。由此不难看出,我国新药研究开发缺乏创新和低水平重复是导致医药产业重复生产的源头。大力加强创新药物的研究是从源头解决基因工程药物重复生产问题的根本出路。同时,我国还必须进一步完善新药审批制度和专利制度,从制度上鼓励创新,切实保护创新者的知识产权,避免重复生产。 2、融资渠道单一、产业发展资金不足: 基因工程制药产业是典型的技术产业,具有高投入、高风险、高收益的特点。目前,我国基因工程制药企业投资大多在2000万元-1亿元人民币。资金来源除股东投入的股本金外,主要是靠银行贷款,融资渠道狭窄。由于银行十分注意资金的的安全性和流动性,高技术投资的风险使银行对之贷款慎之又慎。同时,我国基因工程制药使得这些企业融资能力明显不足,很难从一般融资渠道获得企业发展所需的资金。发展资金严重不足已成为基因工程制药产业发展的巨大障碍因素。因此,我国应借鉴国外利用风险投资发展高技术产业的成功经验,制定有关法规政策,积极稳妥地启动风险投资。 3、医药市场竞争无序,行业不正之风盛行: 随着我国从计划经济向市场经济转轨,医药市场出现了新的变化,药品购销各个环节利润分配极不合理。按国家现行价格规定,药品批发价是出厂价的115%,零售价为批发价的120%。但是,基因工程药物实际营销中,医院一般以国家批发价的70%-85%进药,从而获得零售价的30%-50%的利润,而生产企业的利润只有5%-15%。这种利润不合理分配导致众多制药企业亏损。更加上同种基因工程药品由多家生产,迫使生产企业纷纷采取高定价、高让利的促销手段,使药品市场竞争进一步恶化。企业迫于市场压力,主要精力都用在市场竞争上,无力顾及技术创新。过多的市场投入和让利,使正常生产经营都十分困难,更谈不上如何发展了。医药市场恶性竞争非但未能使消费者受益,却使得国家、制药企业和广大消费者的利益受到极大的损害。 另据调查,绝大多数进口基因工程药品的销售价格都大大高于同种国产药品销售价格,而且更为不合理的是,一半以上的进口基因工程药品在我国的售价高于原产国售价。 4、企业管理相对滞后,技术兼经营型人才匮乏: 我国基因工程制药产业起步较晚,但是起点相对较高。许多企业的关键性生产设备都是从国外进口。然而,在经营管理上与国外相比还有很大的差距。现代企业制度的特点之一是所有权与经营权分离,企业的所有者对经营者进行监督,经营者通过自主经营使企业的资产保值增值。我国大多数基因工程制药企业,虽然在形式上是有限责任公司或股份有限,但是企业的所有经营者一般由企业出任或委派。企业这种所有权与经营以不分的状况,既不利于企业长远发展,也不利于企业经营阶层即企业家阶层的形成。 基因工程制药企业是典型的技术密集型高技术企业,企业要在激烈的竞争中求得生存和发展就必须拥有一批高素质的复合型人才。如何培养和造就一批这种复合型人才已成为我国生物制药闰为亟持解决的问题。 四、对策及政策建议 根据国家内外工程制药产业现状及发展趋势,为促进我国基因工程制药产业的快速健康发展,我们提出以下建议: 1、制定产业发展战略规划,强化财政税收优惠政策 目前,我国基因工程制药产业存在的盲目性和严重的重复现象与缺乏明确的产业发展战略和规划不无关系。因此,我国应该尽早制定出台生物技术产业发展战略和指导性发展规划,在引进、消化、吸收、创新及对传统产业的改造方面,集中有限财力、物力,重点支持一批具自主知识产权和国际竞争优势,对国民经济发展和人民生活具有重大影响的关键性基因工程产业化项目。只有这样,我国基本工程制药产业才能避免盲目性和无政府状态,从而走上良性发展的道路。 基因工程制药业与其它高技术产业一样,具有高投入、高风险和高产出等特点,起步阶段必须依靠国家优惠政策扶持才能不断发展壮大。我国各级政府为支持高科技产为发展虽制定了许多优惠政策,但优惠的力度不够,而且在具体实施过程中因涉及部门较多,落无实处的情况时有发生。因此,建议国家进一步强化并规范对基因工程制药产业的财政、税收优惠政策。 2、大力加强基因工程创新药物的研制和生产 由于我国上市销售和在研的基因工程药物绝大多数是仿制国外的,这使得我国基因工程药物很难讲入国际市场。特别是我国加入WTO后,一些基因工程制药企业将处于十分被动的境地,有可能会面临专利纠纷。为了从根本上改变我国基因工程制药业重复生产和缺乏国际竞争力的局面,我国的新药研制开发思想必须做战略调整,从以仿制为主向创新与仿制相结合转变。为此,我国必须大力加强创新药物研究,进一步完善知识产权保护制度和新药审批制度,特别是要加大对侵犯知识产权的打击力度,切实保护创新者权益。同时,新药研制单位和个人应该注意学会用专利保护自己的利益。近来国外一些公司采取的“专利加发表”的策略具有一定的启发性。为了使自己的技术专利化,并防止别人申请同样的专利,美国公司在申请专利后便迅速将专利内容公开发表。这种做法既确立了自己的领先地位,又有效一阻止了他人申请相同的专利。 在加强创新药物研究的同时,可以有选择地合法仿制一些专利即将过期、疗效明确、应用前景广阔基因工程药物。对仿制药物有关的专利要进行认真的研究,采取有效的专利回避策略,避免简单的、盲目的仿制。要在仿制的基础上创新。创造出专利方法不同的生产工艺和方法,避免引起专利纠纷。 3、积极引导培育风险投资市场 融资困难、资金不足已严重制约了我国基因工程制药产业的迅速发展。欧美发达国家的成功经验表明,风险投资是解决高技术商品化、产业化过程中资金困难的有效途径。因此,我国政府应积极稳妥地引导和培育风险投资,尽制定风险投资运行的法规和政策,为风险投资创造宽松的环境和条件,适时允许投资银行、信托投资公司、保险公司等机构发起设立风险投资基金。积极吸引国外风险投资历基金流入。同时,还应该放宽高技术企业股票发行条件,为高技术企业股票上市提供更多机会。积极准备开辟高技术企业股票市场即第二股票市场,为风险投资进入和退了资本市场创造条件。 基因工程危害及其具体实例 关于转基因生物的安全性,目前仍没有科学性共识。尽管如此,基因工程农作物已被大规模投放,生物医学应用也日益增加。转基因生物还被投入工业使用和环境恢复,而公众对此却知之甚少。最近几年,越来越多的证据证明存在生态、健康危害和风险,对农民也有不利影响. 基因工程细菌影响土壤生物,导致植物死亡 1999出版的研究资料例举了基因工程微生物释放到环境中将如何导致广泛的生态破环。 当把克氏杆菌的基因工程菌株与砂土和小麦作物加入微观体中时,喂食线虫类生物的细菌和真菌数量明显增加,导致植物死亡。而加入亲本非基因工程菌株时,仅有喂食线虫类生物的细菌数量增加,而植物不会死亡。没有植物而将任何一种菌株引入土壤都不会改变线虫类群落。 克氏杆菌是一种能使乳糖发酵的常见土壤细菌。基因工程细菌被制造用来在发酵桶中产生使农业废物转换为乙醇的增强乙醇浓缩物。发酵残留物,包括基因工程细菌亦可于土壤改良。 研究证明,一些土壤生态系统中的基因工程细菌在某些条件下可长期存活,时间之长足以刺激土壤生物产生变化,影响植物生长和营养循环进程。虽然目前仍不清楚此类就地观测的程度,但是基因工程细菌引起植物死亡的发现也说明如果使用此种土壤改良有杀伤农作物的可能。 致命基因工程鼠痘病毒偶然产生 澳大利亚研究员在研发对相对无害的鼠痘病毒基因工程时竟意外制创造出可彻底消灭老鼠的杀手病毒。 研究员们将白细胞间介素4的基因(在身体中自然产生)插入到一种鼠痘病毒中以促进抗体的产生,并创造出用于控制鼠害的鼠类避妊疫苗。非常意外的是,插入的基因完全抑制了老鼠的免疫系统。鼠痘病毒通常仅导致轻微的症状,但加入IL-4基因后,该病毒9天内使所有动物致死。更糟的是,此种基因工程病毒对接种疫苗有着异乎寻常的抵抗力。 经改良的鼠痘病毒虽然对人类无影响,但却与天花关系十分密切,让人担心基因工程将会被用于生物战。一名研究员在谈及他们决定出版研究成果的原因时曾说:" 我们想警告普通民众,现在有了这种有潜在危险的技术","我们还想让科学界明白,必须小心行事,制造高危致命生物并不是太困难。" 杀虫剂使用的增加大部分是由于HT作物,尤其是HT大豆使用的杀虫剂增加,这一点可追溯到对HT作物的严重依赖性以及杂草管理的单一除草剂(草甘磷)使用。这已导致转移到更加难以控制的杂草,而某些杂草中还出现了遗传抗性,迫使许多农民在基因工程作物上喷洒更多的除草剂以对杂草适当进行控制。HT大豆中的抗草甘膦杉叶藻(marestail)于2000年在美国首次出现,在HT棉花中也已鉴别出此种物质[27]。 其它研究显示,基因工程农作物本身也会对其使用的除草剂产生抗性,引发严重的自身自长作物问题(同一块地里早先种植的作物种子发芽的植物后来变成杂草)并迫使进一步使用除草剂。加拿大科学家证实了抗多种除草剂之基因工程油菜的迅速演化,此种作物因花粉长距离传播而融合了不同公司研制的单价抗除草剂特性 。 此外,科学家还在2002年确认了转基因可从Bt向日葵移动到附近的野生向日葵,使杂化物更强、对化学药品更具抗性,因为较之无基因控制的情况,杂化物多了50%的种子,且种子健康,甚至在干旱条件下也如此。 北卡罗莱那州大学的研究显示,Bt油菜与相关杂草、鸟食草之间的交叉物可产生抗虫性杂合物,使杂草控制更困难。 所有这些事件使预防方法和严格的生物安全管理变得突出。预防原则在《卡塔赫纳生物安全协议》这一主要管理转基因微生物的国际法律中已得到重申。尤其是第 10(6)条声称,如果缺乏科学定论,缔约方可限制或禁止转基因生物的进口,以避免或使生物多样性及人类健康的不利影响降到最低 | [
"4个分类",
"药品",
"克隆",
"基因",
"生物学"
] | 15,154 | zh-CN |
基因工程 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%94%B9%E8%89%AF | (重定向自基因改良) 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 学科概况 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。 这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。 随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基本操作步骤 1.获取目的基因是实施基因工程的第一步。如植物的抗病(抗病毒 抗细菌)基因,种子的贮藏蛋白的基因,以及人的胰岛素基因干扰素基因等,都是目的基因。 要从浩瀚的“基因海洋”中获得特定的目的基因,是十分不易的。科学家们经过不懈地探索,想出了许多办法,其中主要有两条途径:一条是从供体细胞的DNA中直接分离基因;另一条是人工合成基因。 直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。鸟枪法的具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞提供的DNA(即外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。如许多抗虫抗病毒的基因都可以用上述方法获得。 用鸟枪法获得目的基因的优点是操作简便,缺点是工作量大,具有一定的盲目性。又由于真核细胞的基因含有不表达的DNA片段,一般使用人工合成的方法。 目前人工合成基因的方法主要有两条。一条途径是以目的基因转录成的信使RNA为模版,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需要的基因。另一条途径是根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对的原则,推测出它的基因的核苷酸序列,再通过化学方法,以单核苷酸为原料合成目的基因。如人的血红蛋白基因胰岛素基因等就可以通过人工合成基因的方法获得。 2.基因表达载体的构建(即目的基因与运载体结合)是实施基因工程的第二步,也是基因工程的核心。 将目的基因与运载体结合的过程,实际上是不同来源的DNA重新组合的过程。如果以质粒作为运载体,首先要用一定的限制酶切割质粒,使质粒出现一个缺口,露出黏性末端。然后用同一种限制酶切断目的基因,使其产生相同的黏性末端。将切下的目的基因的片段插入质粒的切口处,再加入适量DNA连接酶,质粒的黏性末端与目的基因DNA片段的黏性末端就会因碱基互补配对而结合,形成一个重组DNA分子。如人的胰岛素基因就是通过这种方法与大肠杆菌中的质粒DNA分子结合,形成重组DNA分子(也叫重组质粒)的。 3.将目的基因导入受体细胞是实施基因工程的第三步。目的基因的片段与运载体在生物体外连接形成重组DNA分子后,下一步是将重组DNA分子引入受体细胞中进行扩增。 基因工程中常用的受体细胞有大肠杆菌,枯草杆菌,土壤农杆菌,酵母菌和动植物细胞等。 用人工方法使体外重组的DNA分子转移到受体细胞,主要是借鉴细菌或病毒侵染细胞的途径。例如,如果运载体是质粒,受体细胞是细菌,一般是将细菌用氯化钙处理,以增大细菌细胞壁的通透性,使含有目的基因的重组质粒进入受体细胞。目的基因导入受体细胞后,就可以随着受体细胞的繁殖而复制,由于细菌的繁殖速度非常快,在很短的时间内就能够获得大量的目的基因。 4.目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。 以上步骤完成后,在全部的受体细胞中,真正能够摄入重组DNA分子的受体细胞是很少的。因此,必须通过一定的手段对受体细胞中是否导入了目的基因进行检测。检测的方法有很多种,例如,大肠杆菌的某种质粒具有青霉素抗性基因,当这种质粒与外源DNA组合在一起形成重组质粒,并被转入受体细胞后,就可以根据受体细胞是否具有青霉素抗性来判断受体细胞是否获得了目的基因。重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程。 前景 科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。 生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。 生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。 历史 人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。 人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。 科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。 人类基因工程 信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。有科学家预言,随着癌症、心脑血管疾病等顽症的有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。到2050年,人类的平均寿命将达到90至95岁。 人类将挑战生命科学的极限。1953年2月的一天,英国科学家弗朗西斯.克里克宣布:我们已经发现了生命的秘密。他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具体位置,查清每个基因核苷酸的顺序,建立人类基因库。1999年,人的第22对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。可以预见,在今后的四分世纪里,科学家们就可能揭示人类大约5000种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。 继2000年6月26日科学家公布人类基因组"工作框架图"之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司2001年2月12日联合公布人类基因组图谱及初步分析结果。这次公布的人类基因组图谱是在原"工作框架图"的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。随着人类基因组研究工作的进一步深入,生命科学和生物技术将随着新的世纪进入新的纪元。 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 基因工程大事记 1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。 1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。 1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。 1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。 1969年 科学家成功分离出第一个基因。 1980年 科学家首次培育出世界第一个转基因动物转基因小鼠。 1983年 科学家首次培育出世界第一个转基因植物转基因烟草。 1988年 K.Mullis发明了PCR技术。 1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。 1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。 1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。 1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。 1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。 2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。 2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。 2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。 2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。 2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。 2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。 科学家首次公布人类基因组草图“基因信息”。 各国研究状况 英国:早在20世纪80年代中期,英国就有了第一家生物科技企业,是欧洲国家中发展最早的。如今它已拥有560家生物技术公司,欧洲70家上市的生物技术公司中,英国占了一半。 德国:德国政府认识到,生物科技将是保持德国未来经济竞争力的关键,于是在1993年通过立法,简化生物技术企业的审批手续,并且拨款1.5亿马克,成立了3个生物技术研究中心。此外,政府还计划在未来5年中斥资12亿马克,用于人类基因组计划的研究。1999年德国研究人员申请的生物技术专利已经占到了欧洲的14%。 法国:法国政府在过去10年中用于生物技术的资金已经增加了10倍,其中最典型的项目就是1998年在巴黎附近成立的号称“基因谷”的科技园区,这里聚集着法国最有潜力的新兴生物技术公司。另外20个法国城市也准备仿照“基因谷”建立自己的生物科技园区。 西班牙:马尔制药公司是该国生物科技企业的代表,该公司专门从海洋生物中寻找抗癌物质。其中最具开发价值的是ET-743,这是一种从加勒比海和地中海的海底喷出物中提取的红色抗癌药物。ET-743计划于2002年在欧洲注册生产,将用于治疗骨癌、皮肤癌、卵巢癌、乳腺癌等多种常见癌症。 印度:印度政府资助全国50多家研究中心来收集人类基因组数据。由于独特的“种姓制度”和一些偏僻部落的内部通婚习俗,印度人口的基因库是全世界保存得最完整的,这对于科学家寻找遗传疾病的病理和治疗方法来说是个非常宝贵的资料库。但印度的私营生物技术企业还处于起步阶段。 日本:日本政府已经计划将明年用于生物技术研究的经费增加23%。一家私营企业还成立了“龙基因中心”,它将是亚洲最大的基因组研究机构。 新加坡:新加坡宣布了一项耗资6000万美元的基因技术研究项目,研究疾病如何对亚洲人和白种人产生不同影响。该计划重点分析基因差异以及什么样的治疗方法对亚洲人管用,以最终获得用于确定和治疗疾病的新知识;并设立高技术公司来制造这一研究所衍生出的药物和医疗产品。 中国:参与了人类基因组计划,测定了1%的序列,这为21世纪的中国生物产业带来了光明。这“1%项目”使中国走进生物产业的国际先进行列,也使中国理所当然地分享人类基因组计划的全部成果、资源与技术。 基因工程的应用 农牧业、食品工业 运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。 1.转基因鱼 生长快、耐不良环境、肉质好的转基因鱼(中国)。 2.转基因牛 乳汁中含有人生长激素的转基因牛(阿根廷)。 3.转黄瓜抗青枯病基因的甜椒 4.转鱼抗寒基因的番茄 5.转黄瓜抗青枯病基因的马铃薯 6.不会引起过敏的转基因大豆 7.超级动物 导入贮藏蛋白基因的超级羊和超级小鼠 8.特殊动物 导入人基因具特殊用途的猪和小鼠 9.抗虫棉 苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫棉。 环境保护 基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。 利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。 基因工程与环境污染治理 基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。 (通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。) 医学 基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。 用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。 我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。 无论哪一种基因治疗,目前都处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。 可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。 医药卫生 1.基因工程药品的生产: 许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。 微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。 ⑴基因工程胰岛素 胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。 将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%! ⑵基因工程干扰素 干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。 基因工程人干扰素α-2b(安达芬) 是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。 ⑶其它基因工程药物 人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。 2.基因诊断与基因治疗: 运用基因工程设计制造的“DNA探针”检测肝炎病毒等病毒感染及遗传缺陷,不但准确而且迅速。通过基因工程给患有遗传病的人体内导入正常基因可“一次性”解除病人的疾苦。 ◆SCID的基因工程治疗 重症联合免疫缺陷(SCID)患者缺乏正常的人体免疫功能,只要稍被细菌或者病毒感染,就会发病死亡。这个病的机理是细胞的一个常染色体上编码腺苷酸脱氨酶(简称ADA)的基因(ada)发生了突变。可以通过基因工程的方法治疗。 我国基因工程制药业发展 80年代中期以来,我国生物技术蓬勃发展、成绩喜人。由于国家高技术研究计划(即“八六三”计划)、攻关计划和国家自然科学基金会都将生物技术作为优先发展领域予以重点支持,我国生物技术整体研究水平迅速提高,取得了一批高水平的研究成果,为我国新兴生物技术产业的建立和发展提供了技术源泉。目前,我国基因工程制药产业进入快速发展时期。 一、产业现状 1989年,我国批准了第一个在我国生产的基因工程药物——重组人干扰素αlb,标志着我国生产的基因工程药物实现了零的突破。重组人干扰素αlb是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个我国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,我国基因工程制药产业从无到有,不断发展壮大。1998年,我国基因工程制药产业销售额已达到了7.2亿元人民币。截止1998年底,我国已批准上市的基因工程药物和疫苗产品共计15种。目前,国内已有30余家生物制药企业取得了基因工程药物或疫苗试生产或正式生产批准文号。 根据1997年对全国452从个事生物技术研究、开发和生产的单位进行的通讯调查结果,截止1996年底,我国已有8种基因工程药物和疫苗商品化(包括试生产),1996年基因工程药物和疫苗销售额约为2.2亿元人民币,仅占同期全国医药生物技术产品年销售额21.16亿元人民的10.4%。然而可喜的是,近年来我国基因工程制药产业发展迅猛,年销售额已从1996年的2.2亿元人民币增长到1998年的7.2亿元人民币,年均增长率高达80%。预计2000年我国基因工程药物销售额将达到22.8亿元人民币。 二、国内外对比 我国生物技术产业,特别是生物制药产业规模与美国相比差距很大。1996年,我国生物技术销售额为114亿元人民币,美国为100亿美元,相差7倍。1996年,我国基因工程和疫苗销售额为2.3亿元人民币,同期美国75亿美元。1998年,我国基因工程药物和疫苗销售额为7.2亿元人民币,还不到1亿美元,而1996年国Amgen公司的两个主要产品Neupgen(G-CSF)和Epogen(红细胞生成素)销售额均达到10亿美元。 从上市品种看,1998年,我国有15种基因工程药物和疫苗获准上市,美国上市的生物药物(主要是基因工程药物)共53种。我国基国工程药物市时间较美国同品种上市时间晚5年-10年。 三、存在的主要问题 1、同种产品生产厂家过多,造成市场恶性竞争,严重影响产业的健康发展: 我国已批准上市的基因工程药物和疫苗绝大多数是多家生产。例如:干扰素α2a生产厂家有5家,干扰素α2b有5家,白细胞介素-2有10家,G-CSF有7家,GM-CSF有6家。基因工程药物临床应用剂量一般都很小(微克级),通常2-3个厂家满负荷生产就能满足全国市场需要。因此,过多厂家生产同一种基因工程药物势必造成市场过度竞争,使各生产企业的利润下降,同时还导致现有生产能力开工不足,成本增加,使企业不能获得合理利润,无法步入良性发展的轨道,甚至迫使有些企业严重亏损和破产。 这种重复生产的现象与我国新药研究开发的指导思想不无关系。以往我国新药的研究开发是以引进开发为主,我国研制上市的和在研的新药绝大部分是仿制国外的,创新药物很少。已批准的15种基因工程药物和疫苗中,只有干扰素αlb拥有我自主知识产权。在研究的生物新药中,绝大多数是国外进入二、三期临床后我国开始跟踪研制的。由此不难看出,我国新药研究开发缺乏创新和低水平重复是导致医药产业重复生产的源头。大力加强创新药物的研究是从源头解决基因工程药物重复生产问题的根本出路。同时,我国还必须进一步完善新药审批制度和专利制度,从制度上鼓励创新,切实保护创新者的知识产权,避免重复生产。 2、融资渠道单一、产业发展资金不足: 基因工程制药产业是典型的技术产业,具有高投入、高风险、高收益的特点。目前,我国基因工程制药企业投资大多在2000万元-1亿元人民币。资金来源除股东投入的股本金外,主要是靠银行贷款,融资渠道狭窄。由于银行十分注意资金的的安全性和流动性,高技术投资的风险使银行对之贷款慎之又慎。同时,我国基因工程制药使得这些企业融资能力明显不足,很难从一般融资渠道获得企业发展所需的资金。发展资金严重不足已成为基因工程制药产业发展的巨大障碍因素。因此,我国应借鉴国外利用风险投资发展高技术产业的成功经验,制定有关法规政策,积极稳妥地启动风险投资。 3、医药市场竞争无序,行业不正之风盛行: 随着我国从计划经济向市场经济转轨,医药市场出现了新的变化,药品购销各个环节利润分配极不合理。按国家现行价格规定,药品批发价是出厂价的115%,零售价为批发价的120%。但是,基因工程药物实际营销中,医院一般以国家批发价的70%-85%进药,从而获得零售价的30%-50%的利润,而生产企业的利润只有5%-15%。这种利润不合理分配导致众多制药企业亏损。更加上同种基因工程药品由多家生产,迫使生产企业纷纷采取高定价、高让利的促销手段,使药品市场竞争进一步恶化。企业迫于市场压力,主要精力都用在市场竞争上,无力顾及技术创新。过多的市场投入和让利,使正常生产经营都十分困难,更谈不上如何发展了。医药市场恶性竞争非但未能使消费者受益,却使得国家、制药企业和广大消费者的利益受到极大的损害。 另据调查,绝大多数进口基因工程药品的销售价格都大大高于同种国产药品销售价格,而且更为不合理的是,一半以上的进口基因工程药品在我国的售价高于原产国售价。 4、企业管理相对滞后,技术兼经营型人才匮乏: 我国基因工程制药产业起步较晚,但是起点相对较高。许多企业的关键性生产设备都是从国外进口。然而,在经营管理上与国外相比还有很大的差距。现代企业制度的特点之一是所有权与经营权分离,企业的所有者对经营者进行监督,经营者通过自主经营使企业的资产保值增值。我国大多数基因工程制药企业,虽然在形式上是有限责任公司或股份有限,但是企业的所有经营者一般由企业出任或委派。企业这种所有权与经营以不分的状况,既不利于企业长远发展,也不利于企业经营阶层即企业家阶层的形成。 基因工程制药企业是典型的技术密集型高技术企业,企业要在激烈的竞争中求得生存和发展就必须拥有一批高素质的复合型人才。如何培养和造就一批这种复合型人才已成为我国生物制药闰为亟持解决的问题。 四、对策及政策建议 根据国家内外工程制药产业现状及发展趋势,为促进我国基因工程制药产业的快速健康发展,我们提出以下建议: 1、制定产业发展战略规划,强化财政税收优惠政策 目前,我国基因工程制药产业存在的盲目性和严重的重复现象与缺乏明确的产业发展战略和规划不无关系。因此,我国应该尽早制定出台生物技术产业发展战略和指导性发展规划,在引进、消化、吸收、创新及对传统产业的改造方面,集中有限财力、物力,重点支持一批具自主知识产权和国际竞争优势,对国民经济发展和人民生活具有重大影响的关键性基因工程产业化项目。只有这样,我国基本工程制药产业才能避免盲目性和无政府状态,从而走上良性发展的道路。 基因工程制药业与其它高技术产业一样,具有高投入、高风险和高产出等特点,起步阶段必须依靠国家优惠政策扶持才能不断发展壮大。我国各级政府为支持高科技产为发展虽制定了许多优惠政策,但优惠的力度不够,而且在具体实施过程中因涉及部门较多,落无实处的情况时有发生。因此,建议国家进一步强化并规范对基因工程制药产业的财政、税收优惠政策。 2、大力加强基因工程创新药物的研制和生产 由于我国上市销售和在研的基因工程药物绝大多数是仿制国外的,这使得我国基因工程药物很难讲入国际市场。特别是我国加入WTO后,一些基因工程制药企业将处于十分被动的境地,有可能会面临专利纠纷。为了从根本上改变我国基因工程制药业重复生产和缺乏国际竞争力的局面,我国的新药研制开发思想必须做战略调整,从以仿制为主向创新与仿制相结合转变。为此,我国必须大力加强创新药物研究,进一步完善知识产权保护制度和新药审批制度,特别是要加大对侵犯知识产权的打击力度,切实保护创新者权益。同时,新药研制单位和个人应该注意学会用专利保护自己的利益。近来国外一些公司采取的“专利加发表”的策略具有一定的启发性。为了使自己的技术专利化,并防止别人申请同样的专利,美国公司在申请专利后便迅速将专利内容公开发表。这种做法既确立了自己的领先地位,又有效一阻止了他人申请相同的专利。 在加强创新药物研究的同时,可以有选择地合法仿制一些专利即将过期、疗效明确、应用前景广阔基因工程药物。对仿制药物有关的专利要进行认真的研究,采取有效的专利回避策略,避免简单的、盲目的仿制。要在仿制的基础上创新。创造出专利方法不同的生产工艺和方法,避免引起专利纠纷。 3、积极引导培育风险投资市场 融资困难、资金不足已严重制约了我国基因工程制药产业的迅速发展。欧美发达国家的成功经验表明,风险投资是解决高技术商品化、产业化过程中资金困难的有效途径。因此,我国政府应积极稳妥地引导和培育风险投资,尽制定风险投资运行的法规和政策,为风险投资创造宽松的环境和条件,适时允许投资银行、信托投资公司、保险公司等机构发起设立风险投资基金。积极吸引国外风险投资历基金流入。同时,还应该放宽高技术企业股票发行条件,为高技术企业股票上市提供更多机会。积极准备开辟高技术企业股票市场即第二股票市场,为风险投资进入和退了资本市场创造条件。 基因工程危害及其具体实例 关于转基因生物的安全性,目前仍没有科学性共识。尽管如此,基因工程农作物已被大规模投放,生物医学应用也日益增加。转基因生物还被投入工业使用和环境恢复,而公众对此却知之甚少。最近几年,越来越多的证据证明存在生态、健康危害和风险,对农民也有不利影响. 基因工程细菌影响土壤生物,导致植物死亡 1999出版的研究资料例举了基因工程微生物释放到环境中将如何导致广泛的生态破环。 当把克氏杆菌的基因工程菌株与砂土和小麦作物加入微观体中时,喂食线虫类生物的细菌和真菌数量明显增加,导致植物死亡。而加入亲本非基因工程菌株时,仅有喂食线虫类生物的细菌数量增加,而植物不会死亡。没有植物而将任何一种菌株引入土壤都不会改变线虫类群落。 克氏杆菌是一种能使乳糖发酵的常见土壤细菌。基因工程细菌被制造用来在发酵桶中产生使农业废物转换为乙醇的增强乙醇浓缩物。发酵残留物,包括基因工程细菌亦可于土壤改良。 研究证明,一些土壤生态系统中的基因工程细菌在某些条件下可长期存活,时间之长足以刺激土壤生物产生变化,影响植物生长和营养循环进程。虽然目前仍不清楚此类就地观测的程度,但是基因工程细菌引起植物死亡的发现也说明如果使用此种土壤改良有杀伤农作物的可能。 致命基因工程鼠痘病毒偶然产生 澳大利亚研究员在研发对相对无害的鼠痘病毒基因工程时竟意外制创造出可彻底消灭老鼠的杀手病毒。 研究员们将白细胞间介素4的基因(在身体中自然产生)插入到一种鼠痘病毒中以促进抗体的产生,并创造出用于控制鼠害的鼠类避妊疫苗。非常意外的是,插入的基因完全抑制了老鼠的免疫系统。鼠痘病毒通常仅导致轻微的症状,但加入IL-4基因后,该病毒9天内使所有动物致死。更糟的是,此种基因工程病毒对接种疫苗有着异乎寻常的抵抗力。 经改良的鼠痘病毒虽然对人类无影响,但却与天花关系十分密切,让人担心基因工程将会被用于生物战。一名研究员在谈及他们决定出版研究成果的原因时曾说:" 我们想警告普通民众,现在有了这种有潜在危险的技术","我们还想让科学界明白,必须小心行事,制造高危致命生物并不是太困难。" 杀虫剂使用的增加大部分是由于HT作物,尤其是HT大豆使用的杀虫剂增加,这一点可追溯到对HT作物的严重依赖性以及杂草管理的单一除草剂(草甘磷)使用。这已导致转移到更加难以控制的杂草,而某些杂草中还出现了遗传抗性,迫使许多农民在基因工程作物上喷洒更多的除草剂以对杂草适当进行控制。HT大豆中的抗草甘膦杉叶藻(marestail)于2000年在美国首次出现,在HT棉花中也已鉴别出此种物质[27]。 其它研究显示,基因工程农作物本身也会对其使用的除草剂产生抗性,引发严重的自身自长作物问题(同一块地里早先种植的作物种子发芽的植物后来变成杂草)并迫使进一步使用除草剂。加拿大科学家证实了抗多种除草剂之基因工程油菜的迅速演化,此种作物因花粉长距离传播而融合了不同公司研制的单价抗除草剂特性 。 此外,科学家还在2002年确认了转基因可从Bt向日葵移动到附近的野生向日葵,使杂化物更强、对化学药品更具抗性,因为较之无基因控制的情况,杂化物多了50%的种子,且种子健康,甚至在干旱条件下也如此。 北卡罗莱那州大学的研究显示,Bt油菜与相关杂草、鸟食草之间的交叉物可产生抗虫性杂合物,使杂草控制更困难。 所有这些事件使预防方法和严格的生物安全管理变得突出。预防原则在《卡塔赫纳生物安全协议》这一主要管理转基因微生物的国际法律中已得到重申。尤其是第 10(6)条声称,如果缺乏科学定论,缔约方可限制或禁止转基因生物的进口,以避免或使生物多样性及人类健康的不利影响降到最低 | [
"4个分类",
"药品",
"克隆",
"基因",
"生物学"
] | 15,154 | zh-CN |
基因探针 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%8E%A2%E9%92%88 | 基因探针 基因探针,即核酸探针,是一段带有检测标记,且顺序已知的,与目的基因互补的核酸序列(DNA或RNA)。基因探针通过分子杂交与目的基因结合,产生杂交信号,能从浩翰的基因组中把目的基因显示出来。根据杂交原理,作为探针的核酸序列至少必须具备以下两个条件:①应是单链,若为双链,必须先行变性处理。②应带有容易被检测的标记。它可以包括整个基因,也可以仅仅是基因的一部分;可以是DNA本身,也可以是由之转录而来的RNA。 简要概述 基因探针(probe)又称“寡核苷酸探针”,简称“探针”,就是一段与目的基因或DNA互补的特异核苷酸序列,它可以包括整个基因,也可以仅仅是/基因的一部分;可以是DNA本身,也可以是由之转录而来的RNA。 1.探针的来源 DNA探针根据其来源有3种:一种来自基因组中有关的基因本身,称为基因组探针(genomic probe);另一种是从相应的基因转录获得了mRNA,再通过逆转录得到的探针,称为cDNa 探针(cDNa probe)。与基因组探针不同的是,cDNA探针不含有内含子序列。此外,还可在体外人工合成碱基数不多的与基因序列互补的DNA片段,称为寡核苷酸探针。 2.探针的制备 进行分子突变需要大量的探针拷贝,后者一般是通过分子克隆(molecular cloning)获得的。克隆是指用无性繁殖方法获得同一个体、细胞或分子的大量复制品。当制备基因组DNA探针进,应先制备基因组文库,即把基因组DNA打断,或用限制性酶作不完全水解,得到许多大小不等的随机片段,将这些片段体外重组到运载体(噬菌体、质粒等)中去,再将后者转染适当的宿主细胞如大肠肝菌,这时在固体培养基上可以得到许多携带有不同DNA片段的克隆噬菌斑,通过原位杂交,从中可筛出含有目的基因片段的克隆,然后通过细胞扩增,制备出大量的探针。 为了制备cDNA 探针,首先需分离纯化相应mRNA,这从含有大量mRNA的组织、细胞中比较容易做到,如从造血细胞中制备α或β珠蛋白mRNA。有了mRNA作模板后,在逆转录酶的作用下,就可以合成与之互补的DNA(即cDNA),cDNA与待测基因的编码区有完全相同的碱基顺序,但内含子已在加工过程中切除。 寡核苷酸探针是人工合成的,与已知基因DNA互补的,长度可从十几到几十个核苷酸的片段。如仅知蛋白质的氨基酸顺序量,也可以按氨基酸的密码推导出核苷酸序列,并用化学方法合成。 3.探针的标记 为了确定探针是否与相应的基因组DNA杂交,有必要对探针加以标记,以便在结合部位获得可识别的信号,通常采用放射性同位素32P标记探针的某种核苷酸α磷酸基。但近年来已发展了一些用非同位素如生物素、地高辛配体等作为标记物的方法。但都不及同位素敏感。非同位素标记的优点是保存时间较长,而且避免了同位素的污染。最常用的探针标记法是缺口平移法(nick translation)。首先用适当浓度的DNA酶Ⅰ(DNAseⅠ)在探针DNA双链上造成缺口,然后再借助于DNA聚合酶Ⅰ(DNa poly merasⅠ)的5’→3’的外切酶活性,切去带有5’磷酸的核苷酸;同时又利用该酶的5’→3’聚酶活性,使32P标记的互补核苷酸补入缺口,DNA聚合酶Ⅰ的这两种活性的交替作用,使缺口不断向3’的方向移动,同时DNA链上的核苷酸不断为32P标记的核苷酸所取代。 探针的标记也可以采用随机引物法,即向变性的探针溶液加入6个核苷酸的随机DNA小片段,作为引物,当后者与单链DNA互补结合后,按碱基互补原则不断在其3’OH端添加同位素标记的单核苷酸,这样也可以获得比放射性很高的DNA探针。 DNA探针 荧光间接标记dna探针检测 DNA探针是最常用的核酸探针,指长度在几百碱基对以上的双链DNA或单链DNA探针。现已获得DNA探针数量很多,有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针。这类探针多为某一基因的全部或部分序列,或某一非编码序列。这些DNA片段须是特异的,如细菌的毒力因子基因探针和人类Alu探针。这些DNA探针的获得有赖于分子克隆技术的发展和应用。以细菌为例,目前分子杂交技术用于细菌的分类和菌种鉴定比之G+C百分比值要准确的多,是细菌分类学的一个发展方向。加之分子杂交技术的高敏感性,分子杂交在临床微生物诊断上具有广阔的前景。细菌的基因组大小约5×106bp,约含3000个基因。各种细菌之间绝大部分DNA是相同的,要获得某细菌特异的核酸探针,通常要采取建立细菌基因组DNA文库的办法,即将细菌DNA切成小片段后分别克隆得到包含基因组的全信息的克隆库。然后用多种其它菌种的DNA作探针来筛选,产生杂交信号的克隆被剔除,最后剩下的不与任何其它细菌杂交的克隆则可能含有该细菌特异性DNA片段。将此重组质粒标记后作探针进一步鉴定,亦可经DNA序列分析鉴定其基因来源和功能。因此要得到一种特异性DNA探针,常常是比较繁琐的。探针DNA克隆的筛选也可采用血清学方法,所不同的是所建DNA文库为可表达性,克隆菌落或噬斑经裂解后释放出表达抗原,然后用来源细菌的多克隆抗血清筛选阳性克隆,所得到多个阳性克隆再经其它细菌的抗血清筛选,最后只与本细菌抗血清反应的表达克隆即含有此细菌的特异性基因片段,它所编码的蛋白是该菌种所特有的。用这种表达文库筛选得到的显然只是特定基因探针。 对于基因探针的克隆尚有更快捷的途径。这也是许多重要蛋白质的编码基因的克隆方法。该方法的第一步是分离纯化蛋白质,然后测定该蛋白的氨基或羟基末端的部分氨基酸序列,然后根据这一序列合成一套寡核苷酸探针。用此探针在DNA文库中筛选,阳性克隆即是目标蛋白的编码基因。值得一提的是真核细胞和原核细胞DNA组织有所不同。真核基因中含有非编码的内含子序列,而原核则没有。因此,真核基因组DNA探针用于检测基因表达时杂交效率要明显低于cDNA探针。DNA探针(包括cDNA探针)的主要优点有下面三点:①这类探针多克隆在质粒载体中,可以无限繁殖,取之不尽,制备方法简便。②DNA探针不易降解(相对RNA而言),一般能有效抑制DNA酶活性。③DNA探针的标记方法较成熟,有多种方法可供选择,如缺口平移,随机引物法,PCR标记法等,能用于同位素和非同位素标记。 DNA探针可以用来诊断寄生虫病,现场调查及虫种鉴定,可用于病毒性肝炎的诊断,遗传性疾病的诊断,可用于改造变异的基因,可用于检测饮用水病毒含量。具体方法:用一个特定的DNA片段制成探针,与被测的病毒DNA杂交,从而把病毒检测出来。与传统方法相比具有快速、灵敏的特点。传统的检测一次,需几天或几个星期的时间,精确度不高,而用DNA探针只需一天。据报道,能从1t水中检测出10个病毒来,精确度大大提高。 RNA探针 高辛标记的rna探针 RNA探针是一类很有前途的核酸探针,由于RNA是单链分子,所以它与靶序列的杂交反应效率极高。早期采用的RNA探针是细胞mRNA探针和病毒RNA探针,这些RNA是在细胞基因转录或病毒复制过程中得到标记的,标记效率往往不高,且受到多种因素的制约。这类RNA探针主要用于研究目的,而不是用于检测。例如,在筛选逆转录病毒人类免疫缺陷病毒(HIV)的基因组DNA克隆时,因无DNA探针可利用,就利用HIV的全套标记mRNA作为探针,成功地筛选到多株HIV基因组DNA克隆。又如进行中的转录分析(nuclearrunontranscrip-tionassay)时,在体外将细胞核分离出来,然后在α-32P-ATP的存在下进行转录,所合成mR-NA均掺入同位素而得到标记,此混合mRNA与固定于硝酸纤维素滤膜上的某一特定的基因的DNA进行杂交,便可反映出该基因的转录状态,这是一种反向探针实验技术。 近几年体外转录技术不断完善,已相继建立了单向和双向体外转录系统。该系统主要基于一类新型载体pSP和pGEM,这类载体在多克隆位点两侧分别带有SP6启动子和T7启动子,在SP6RNA聚合酶或T7RNA聚合酶作用下可以进行RNA转录,如果在多克隆位点接头中插入了外源DNA片段,则可以此DNA两条链中的一条为模板转录生成RNA。这种体外转录反应效率很高,在1h内可合成近10μg的RNA产生,只要在底物中加入适量的放射性或生物素标记的NTP,则所合成的RNA可得到高效标记。该方法能有效地控制探针的长度并可提高标记物的利用率。 值得一提的是,通过改变外源基因的插入方向或选用不同的RNA聚合酶,可以控制RNA的转录方向,即以哪条DNA链以模板转录RNA。这种可以得到同义RNA探针(与mRNA同序列)和反义RNA探针(与mRNA互补),反义RNA又称cRNA,除可用于反义核酸研究外,还可用于检测mRNA的表达水平。在这种情况下,因为探针和靶序列均为单链,所以杂交的效率要比DNA-DNA杂交高几个数量级。RNA探针除可用于检测DNA和mRNA外,还有一个重要用途,在研究基因表达时,常常需要观察该基因的转录状况。在原核表达系统中外源基因不仅进行正向转录,有时还存在反向转录(即生成反义RNA),这种现象往往是外源基因表达不高的重要原因。另外,在真核系统,某些基因也存在反向转录,产生反义RNA,参与自身表达的调控。在这些情况下,要准确测定正向和反向转录水平就不能用双链DNA探针,而只能用RNA探针或单链DNA探针。 探针标记 质粒的酶切分析 探针是能与特异靶分子反应并带有供反应后检测的合适标记物的分子。利用核苷酸碱基顺序互补的原理,用特异的基因探针即识别特异碱基序列的有标记的一段单链DNA(或RNA)分子,与被测定的靶序列互补,以检测被测靶序列的技术叫核酸探针技术。探针制备就是将目的基因进行标记。特异性探针有三种形式——cDNA、RNA、寡核苷酸。cDNA和寡核苷酸是目前最常采用的探针。RNA探针用途很广,也容易获得,但其不稳定性限制了其商业用途。cDNA探针的获得是,将特定的基因片段装载到质粒或噬菌体中,经过扩增、酶切、纯化等复杂的步骤,才能得到一定长度的cDNA探针。这一过程比较复杂,有相应条件的实验室才能做到。寡核苷酸探针是在已知基因序列的情况下,由核酸合成仪来完成,可廉价获得大量的此类探针。质量也相对来说更为稳定。由于cDNA探针长度通常为数百至数千个碱基,所以有良好的信号放大作用,但其渗透性比较差。寡核苷酸探针一般为十数个至数十个碱基,渗透性强,但信号放大作用则较差,合成的多相寡核苷酸探针,敏感性可以达到cDNA探针水平。 探针的标记方式有放射性标记和非放射性标记。标记物质有放射性元素(如32P等)和非放射性物质(如生物素、地高辛等)。32P是最常用的核苷酸标记同位素,被标记的dNTP本身就带有磷酸基团,便于标记。特点是比活性高,可达9000Ci/mmol;发射的β射线能量高。用它标记的探针自显影时间短,灵敏度高。32P的半寿期短,虽使用不方便,但为废弃物的处理减轻了压力。非放射性标记法有酶标法和化学物标记法。酶标方法与免疫测定ELISA方法相似,只是被标记的核酸代替了被标记的抗体,事实上被标记的抗体也称为探针,现有许多商品是生物素、地高辛标记的。血凝素与生物素有非常高的亲和性,当血凝素标记上过氧化物酶或碱性磷酸酶,经杂交反应最终形成探针-生物素-血凝素酶复合物(ABC法),酶催化底物显色,观察结果。ABC法底物显色生成不溶物,以便观测结果。酶标记法复杂、重复性差,成本高,但便于运输、保存,灵敏度与放射物标记法相当。 探针标记方法有:①缺口平移标记法。利用的是DNA聚合酶I能修复DNA链的功能。该法先由DNaseI在DNA双链上随机切出切口,然后DNA聚合酶I沿缺口水解5´端核苷酸,同时在3´端修复加入被标记核苷酸,切口平行推移。缺口平移法快速、简便、成本相对较低、比活性相对较高、标记均匀,多用于大分子DNA标记,(>1000bp最好),但单链DNA、RNA不能用该法标记。②随机引物法。随机引物是指含有各种可能排列顺序的寡聚核苷酸片断的混合物,因此它可以与任意核苷酸序列杂交,起到聚合酶反应的引物作用。将待标记的DNA探针片断变性后与随机引物一起杂交,然后以此杂交的寡聚核苷酸为引物,在大肠杆菌DNA聚合酶I大断段(KlenowFragment)催化下,合成与探针DNA互补的DNA链,当在反应体系中含有a-32P-dNTP时,即形成放射性同位素标记的DNA探针。具有上述优点,可代替缺口平移法。此外大小、单双DNA均可标记,标记均匀,标记率高,但也不能标记环状DNA。随机引物法标记探针一般长400~600bp。③末端标记法(又叫尾标)。利用末端转移酶可进行“尾标”,尾标适用于寡核苷酸探针标记,寡核苷酸探针多用于核酸“点”突变的检测,该探针可用核酸合成仪人工合成,克隆出的探针一般较长,特异性好,标记量大,杂交的检出信号强。 探针合成的注意事项有:①合成探针的长短,一般在20~50个核苷酸之间。合成过长成本高,且易出现聚合酶合成错误,杂交时间长,合成太短则特异性下降。②碱基组成G-C应含40%~60%,一种碱基连续重复不超过4个,以免非特异性杂交产生。③探针自身序列内应无互补区域,以免产生“发夹”结构,影响杂交。总之,一个好的探针最终要在实践中才能加以确认。 实验应用 禽流感病毒核蛋白基因探针制备及其初步应用 探针浓度鉴定 将禽流感病毒H9N2亚型毒株核蛋白(NP)基因3′端较为保守的、约350bp的编码序列通过限制性内切酶Hae¸切割、分离后,用随机引物法制备Digoxigenin2112dUTP标记探针。测定该探针的浓度为100Lgöml。特异性试验发现该探针只能与实验室构建的、含有NP基因的重组载体pGEM2TE2NP和pBacPAK2NP以及A型流感病毒H9N2亚型、H3N2亚型以及H9N3亚型毒株基因组RNA结合出现特异性的颜色反应,而与实验室常用的载体pGEM2Teasy、pBacPAK2His3、pTARGET和pGEMEX22以及新城疫病毒、传染性支气管炎病毒和传染性喉气管炎病毒基因组不发生反应。应用该探针检测含NP基因的重组载体和重组病毒证明该探针是有效的,可用于含禽流感病毒样品或材料的检测。 DNA探针原位杂交 1、4-6微米切片,用防脱片胶(多聚赖氨酸)处理过的玻片贴附 2、56—60℃烤片2-16h 3、新鲜二甲苯脱蜡,10minX2(趁热脱蜡) 4、100%乙醇5minX2次,不用浸水,直接空气干燥 5、加入50μl蛋白酶K工作液(蛋白酶K用蒸馏水稀释,浓度为25μg/ml),37℃消化10-15min 6、弃去蛋白酶K工作液,0.1MTBS洗涤3minX3次逐级酒精脱水(85%,95%,100%酒精)1minX3次然后空气干燥 7、加入20μl探针,加盖薄膜。(探针用预杂交液稀释,浓度为5μg/ml)。 8、95℃变性10-12min;立刻置于冰块上,防止复性。 9、37℃杂交16—20h 10、揭去薄膜,每张切片加入以下杂交后洗涤液: >用2-3滴2XSSC37℃洗涤3minX2次; >0.5XSSC37℃洗涤3minX2次; >0.2XSSC37℃洗涤3minX2次; 11、0.1MPBS/TBS缓冲液洗涤,1minX3次 12、滴加小鼠抗地高辛生物素标记的抗体工作液,37℃孵育45—60min; 13、0.1MPBS浸洗,5minX3次 14、滴加高敏碱性磷酸酶链亲和素复合物工作液,37℃孵育45—60min。 15、0.1MPBS浸洗,5minX3次 16、滴加NBT/BCIP显色6-16h, 17、双蒸水终止反应(37℃10min—2h),双蒸水浸洗,5minX2次 18、滴加核固红,30秒—5min; 19、双蒸水浸洗,5minX3次 20、脱水、透明、封片 参看 《医学遗传学基础》- 基因探针 | [
"3个分类",
"生物学",
"分子生物学",
"动物学"
] | 6,487 | zh-CN |
RNA剪接 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%8B%BC%E6%8E%A5 | (重定向自基因拼接) 剪接(英语:Splicing,又称拼接),是一种基因重组技术,在分子生物学中是指基因资讯在转录后的一种修饰,即将内含子移除及合并外显子。是真核生物的信使RNA/信使RNA前体(precursor messenger RNA)变成成熟mRNA的过程之一。这也是真核生物与原核生物的区别之一(请参看顺反子)。这些成熟的mRNA会接着进行蛋白质生物合成中的翻译,以产生蛋白质,称转译作用。 剪接是核糖核酸(RNA)核苷酸之间的一连串生化反应,并由小核核糖蛋白(snRNP)中的snRNA负责催化并作用。也有一些类型不需外在催化物质,而是在特定二价金属离子存在的情况下,以自我催化方式进行剪接,如第I型或第II型内含子 (type-I or type-II intron)。 mRNA前体的外显子(exon)及内含子(intron)图解。 剪接途径 RNA剪接可以有多种的方式。剪接的型式以内含子的结构及剪接所需的剪接因子而定。此外,RNA剪接还分为分子内 (intramolecular) 剪接 (cis splicing) 以及分子间 (intermolecular) 剪接 (trans splicing)。但不论哪一种途径,移除的内含子都会被抛弃。 剪接体 内含子经常存在于真核生物的蛋白质编码基因(coding gene)中。在内含子里,需要有 5' 剪接位点(5' splice site)、3' 剪接位点(3' splice site)及剪接分枝位点(branch point)来进行剪接。剪接是由剪接体(Spliceosome)来催化,它是以五个不同的小核核糖核酸 (snRNs) 以及不下于一百个蛋白质所组成的大型核糖核酸蛋白质复合物,称为小核核糖蛋白(snRNP)。snRNP 的 RNA 会与内含子行杂交反应(hybridization),并且参与剪接的催化反应。 自剪接 自剪接*出现在稀少的内含子组成核酸酶,核酸酶在只有RNA的情况下代替了剪接体的功能。自剪接的内含子有两种,称为第I型及第Ⅱ型。第I型及第Ⅱ型内含子以与剪接体类似的方式进行剪接,但不需要任何蛋白质。这种相似性使人相信这些内含子与剪接体在演化过程上有着关连。自剪接亦可能是非常古老,且可能出现在一个还未有蛋白质的核糖核酸世界。虽然以下两种剪接可以在没有蛋白质的情况下进行,但依然会额外的使用5个RNA分子及超过50多个蛋白质,并水解多个三磷酸腺苷(ATP)分子。使用 ATP 是要提高剪接mRNA的准确性,避免出现错误。 以下两次转酯化是第I型内含子自剪接的特征: 游离鸟嘌呤核苷酸(被包在内含子中)的3'羟基,或是核苷酸辅助因子(即鸟苷单磷酸(GMP)、鸟苷二磷酸(GDP)、鸟苷三磷酸(GTP))攻击内含子的5'剪接位点。内含子并不形成套索结构,而该鸟粪苷则会从内含子中转移位置到内含子的5'位,从而成为第I型内含子的第一个核苷酸。 内含子5'剪接位点上游外显子最后一个核苷酸的3'羟基变成亲核基,而第二次交酯化/转酯化会将两个外显子接合。 以下是第Ⅱ型内含子自剪接的特征(与第I型相同是两次交酯化): 内含子内特定腺苷的2'羟基攻击5'剪接位点,从而形成一个套索。 5'外显子的3'羟基新亲核基于3'剪接位点引发第二次的交酯化/转酯化反应,从而将两个外显子接合。 转运RNA剪接 转运RNA(tRNA)剪接是另一种较罕见的剪接方法,但是却经常在 tRNA 出现。它的剪接反应涉及与剪接体或自剪接不同的生物化学过程。核糖核酸酶切开RNA,而连接酶 (RNA ligase) 则将外显子接合。这种剪接方式同样不需要任何RNA分子来催化,而是一种全由蛋白质催化和作用的反应。整个过程中并未有交酯化/转酯化作用。 演化 在所有生物界或生物域中都有出现剪接,剪接的幅度及类型在主要的生物门中都可以非常不同。真核生物中RNA剪接好发于mRNA及一些非编码RNA。原核生物则很少剪接,但多是非编码RNA。两种生物最大的差异是原核生物没有剪接体剪接途径。 由于剪接体内含子并非在所有 生物种中得到保存,有人便因此质疑剪接体演化的起始点。现时有两种建议的模式:内含子先天存在理论及内含子后天衍生理论。 生物化学过程 剪接的生物化学图解 剪接体剪接及自剪接涉及两个步骤的生物化学过程。两个步骤均需要在RNA间进行转酯化反应。但是tRNA剪接则没有交醋化/转酯化过程。 剪接体及自剪接交酯化反应的发生有特定的次序。首先,一个在内含子的特定“剪接分枝位点”核苷酸会与这个内含子的第一个核苷酸产生转酯化反应,形成两个RNA分子,一个是“内含子套索”另一个则是内含子前的外显子。第二,第一个外显子最后的核苷酸会与第二个外显子的首个核苷酸产生转酯化反应,连接外显子并释放内含子套索。 选择性剪接 在很多时候,剪接过程可以透过对同一个基因转录的相同pre-mRNA使用不同的剪接选择,产生不同的mRNA异构物(isoform),最后产生多种相似却又独特的蛋白质,或是产生出稳定性低的mRNA产物以达到调节基因表现的目的。而由于选择性剪接的存在而使基因组可以产生比基因子量还多许多倍的基因产物。 Pre-mRNA的剪接也并不是完美的。据估计,人体细胞中有约70%的基因会进行选择性剪接。而其中又有三分之二以上的剪接产物 (spliced transcripts) 因为剪接过程的不够精确、或是形成未成熟的终止密码子 (premature termination codon, PTC) 而造成该 RNA 的降解 (RAN degradation)[1]。另有研究显示,剪接过程中的交酯化/转酯化反应在特定条件下是可逆的[2]。这对于剪接反应如何维持或调结其精确性提供了新的思路,并对如何治疗因剪接错误而起的人类疾病提供了新方向。 剪接的实验处理 干扰 mRNA 剪接的实验可以透过将以吗啉基或肽核酸修饰之反义寡核苷酸结合在 snRNP 于 mRNA 上的结合位点、型成套索结的核苷酸分支点或剪接调控因子的结合位点上[3]来作出修改。[4][5] 另外,籍由影响剪接调控因子在细胞的正常表现,或是在试管反应中控制调控因子的相对浓度,甚至是剪接体的相对浓度都能达成对 mRNA 剪接干扰的目的。 剪接误差 内含子或外显子的突变可以阻碍剪接及从而影响蛋白质合成。一般的误差包括: 拼接位点的突变造成位点失去功能。这是因过早与终止密码子的接触、失去外显子、或包含内含子。 拼接位点附近的突变减少独特性。这可以是因拼接位置的差异,引发插入或移除胺基酸,或通常是失去阅读框架。 拼接位点的移位。这是因包含或排除比预期更多的DNA,造成较长或较短的混合外显子。 选择性剪接作用蛋白的影响。这些非剪接体的核糖核酸结合蛋白会影响剪接体对于剪接位点的选择。通常的作用是各式阅读框架的改变。 内部连结 cDNA 外显子 内含子 剪接体 参考 ↑ Sorek R, Shamir R, Ast G. How prevalent is functional alternative splicing in the human genome?. Trends Genet. 2004, 20 (2): 68-71. PMID 14746986. ↑ Tseng CK, Cheng SC. Both Catalytic Steps of Nuclear Pre-mRNA Splicing Are Reversible. Science. 2008, 320 (5884): 2409-20. PMID 18583613. ↑ Bruno IG, Jin W, Cote GJ. Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements. Hum Mol Genet. 2004, 13 (20): 2409-20. PMID 15333583. ↑ Draper BW, Morcos PA, Kimmel CB. Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: A quantifiable method for gene knockdown. Genesis. 2001, 30 (3): 154-6. PMID 11477696. ↑ Sazani P, Kang SH, Maier MA, Wei C, Dillman J, Summerton J, Manoharan M, Kole R. Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res. 2001, 29 (19): 3965-74. PMID 11574678. 参考来源 维基百科-RNA剪接 | [
"3个分类",
"基因表现",
"剪接体",
"RNA剪接"
] | 3,757 | zh-CN |
基因扩增 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E6%89%A9%E5%A2%9E | 基因扩增(gene amplification) 细胞内选择性复制DNA, 产生大量的拷贝。如两栖类卵母细胞在发育的早期,rRNA基因的数量扩增到1000多倍。基因扩增是通过形成几千个核进行的,每个核里含有几百拷贝的编码28S、18S和5.8S的rRNA基因,最后卵母细胞中的这些rRNA基因的拷贝数几乎达到50万个,而在相同生物的其它类型细胞中,这些rRNA基因的拷贝数只有几百个。卵母细胞中有如此众多的rRNA基因拷贝,为卵细胞在受精后的发育过程中合成大量核糖体创造了条件。 至于卵母细胞中rRNA基因扩增的机制,有人认为可能是通过从染色体上分离出来的环状DNA分子,这种环状DNA中含有rRNA基因,但是第一个含有rRNA基因的环状DNA是如何形成的尚不清楚。由于环状DNA能够通过滚环复制(rolling circle replication)的方式进行复制,因而能够产生大量的rRNA基因。 为一特异蛋白质编码的基因的拷贝数选择性地增加而其他基因并未按比例增加的过程。在自然条件下,基因扩增是通过从染色体切除基因的重复序列再在质粒中进行染色体外复制或通过将核糖体RNA的全部重复序列生成RNA转录物再转录生成原来DNA分子的额外拷贝而实现的。在实验室已建立了不等交换、从裂解细胞提取DNA或经过滚环复制(rolling circle replication)生成染色体外序列进行人工基因扩增。例如,在非洲爪蟾的卵母细胞中原有rRNA基因(rDNA)约200个拷贝,在减数分裂Ⅰ的粗线期,这个基因开始迅速复制,到双线期它的拷贝数约为200万个,扩增近4000倍,可用于合成10的12次方个核糖体,以满足卵裂期和胚胎期合成大量蛋白质的需要。在果蝇中也发现了基因扩增现象。 在卵巢成熟之前,卵巢颗粒细胞中产生卵壳蛋白的基因被扩增。果蝇中的卵原细胞,经4次分裂产生16个细胞,其中一个是卵母细胞(oocyte),将发育成为卵细胞,其他15个是营养细胞(nurse cell),它们为卵细胞的形成提供大量的蛋白质及其他大分子物质,营养细胞之所以能够产生大量的营养物质,是因为它们在形成的过程中发生了多次特殊的DNA复制,卵壳蛋白等基因拷贝数显著增加。 PCR(Polymerase Chain Reaction,聚合酶链反应)是一种选择性体外扩增DNA或RNA的方法.它包括三个基本步骤: (1) 变性(Denature):目的双链DNA片段在94℃下解链; (2) 退火(Anneal):两种寡核苷酸引物在适当温度(50℃左右)下与模板上的目的序列通过氢键配对;(3) 延伸(Extension):在Taq DNA聚合酶合成DNA的最适温度下,以目的DNA为模板进行合成.由这三个基本步骤组成一轮循环,理论上每一轮循环将使目的DNA扩增一倍(图4),这些经合成产生的DNA又可作为下一轮循环的模板,所以经25-35轮循环就可使DNA扩增达106 倍。 PCR:聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术。它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究 的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研 究和检测鉴定。过去几天几星期才能做到的事情,用 PCR几小时便可完成。PCR技术是生物医学领域中的一项革命性创举和里程碑。 PCR是在体外由酶促合成特异DNA片段的一种新方法。在反应液中含有模板DNA、人工合成的目的片段的5′端和3′端PCR引物、合成DNA的四种脱氧核苷酸底物(dNTP)、一种耐热的DNA聚合酶(Taq酶),以及含各种离子的缓冲液。此反应体系由高温变性、低温复性及适温延伸等步骤共同组成一个周期,然后反复循环进行,使目的DNA片段得以迅速扩增。其主要步骤是,待扩增的模板DNA在94℃高温下解链成为单链DNA;低温复性时人工合成的两个寡聚核苷酸引物分别与目的片段两条链的两端互补结合;在72℃时Taq酶可将dNTP从引物3′端开始掺入,沿模板DNA5′→3′方向延伸,合成一条新的互补链。由于每一周期所产生的新DNA链均能成为下一循环的模板,所以PCR产物以指数方式增加,经过25~30个周期后,一般可扩增至106~107。PCR技术由于有操作简便、省时间、特异性及敏感性均较高等特点,所以一经问世,就得到了广泛的应用,许多条件较差的实验室,也得以开展分子生物学研究,故可看作是分子生物学技术的一次革命。在PCR反应的各种成分中,模板DNA和引物是两个重要因素,虽然PCR敏感性很高,可以检测微量DNA的用量,以不低于0.1μg为宜。模板DNA的纯度要求不是很严格,但不能混有任何蛋白酶、核酸酶及Taq酶抑制剂。引物是决定PCR结果的关键,引物长度以15~30个碱基为宜;(G+C)约占总碱基中的50%;两个引物之间不应发生互补;应尽量减少重复的碱基,特别是在3′端。PCR可用于扩增DNA或RNA。在扩增RNA时必须先用反转录酶合成cDNA第一链,然后进行PCT扩增,这种方法称为逆转录-聚合酶链反应(RT-PCR)。目前PCR技术在肿瘤研究中也得到广泛的应用。例如从肿瘤细胞提取基因组DNA然后用设计好的对某个基因特异的OCR引物,如p53基因第5~8外显子的引物,进行PCR扩增,然后用单链DNA构型多态性(SSCP)分析技术或直接DNA测序技术,研究p53基因的点突变。RT-PCR技术广泛应用于检测某个癌基因、抑癌基因或其他肿瘤相关基因的过度表达或低表达。 PCR技术基本原理 PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加 热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引 物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合 物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需 2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。 PCR技术简史 PCR的最早设想 核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因”。 PCR的实现 1985年国PE-Cetus公司人类遗传研究室的Mullis等发明了具有划时代意义的聚合酶链反应。其原理类似于DNA的体内复制,只是在试管中给 DNA的体外合成提供以致一种合适的条件---摸板DNA,寡核苷酸引物,DNA聚合酶,合适的缓冲体系,DNA变性、复性及延伸的温度与时间。 PCR的改进与完善 Mullis最初使用的DNA聚合酶是大肠杆菌DNA聚合酶I的 Klenow片段,其缺点是:①Klenow酶不耐高温,90℃会变性失活,每次循环都要重新加。②引物链延伸反应在37℃下进行,容易发生模板和引物之 间的碱基错配,其PCR产物特异性较差,合成的DNA片段不均一。此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于 Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添了不少困难。这使得 PCR技术在一段时间内没能引起生物医学界的足够重视。1988年初,Keohanog改用T4 DNA聚合酶进行PCR,其扩增的DNA片段很均一,真实性也较高,只有所期望的一种DNA片段。但每循环一次,仍需加入新酶。1988年Saiki 等从温泉中分离的一株水生嗜热杆菌(thermus aquaticus) 中提取到一种耐热DNA聚合酶。此酶具有以下特点:①耐高温,在70℃下反应2h后其残留活性大于原来的90%,在93℃下反应2h后其残留活性是原来的 60%,在95℃下反应2h后其残留活性是原来的40%。②在热变性时不会被钝化,不必在每次扩增反应后再加新酶。③大大提高了扩增片段特异性和扩增效 率,增加了扩增长度(2.0Kb)。由于提高了扩增的特异性和效率,因而其灵敏性也大大提高。为与大肠杆菌多聚酶I Klenow片段区别,将此酶命名为Taq DNA多聚酶(Taq DNA Polymerase)。此酶的发现使PCR广泛的被应用。 PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%, 但在实际反应中平均效率达不到理论值。反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进 入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竞争等因素。大多数情 况下,平台期的到来是不可避免的。 PCR扩增产物 可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5’端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引物所 结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3’端开始延伸,其5’端是固定的,3’端则没 有固定的止点,长短不一,这就是“长产物片段”。进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。引物在与新链结合 时,由于新链模板的5’端序列是固定的,这就等于这次延伸的片段3’端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的 “短产物片段”。不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计, 这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用 | [
"4个分类",
"生物学",
"分子生物学",
"细胞",
"基因"
] | 4,434 | zh-CN |
基因座位 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%BA%A7%E4%BD%8D | 指各个基因在染色体上所占的位置。也可简称为座位。但就位点的实体而言,指的就是基因 | [
"1个分类",
"遗传学"
] | 40 | zh-CN |
基因座 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%BA%A7 | 基因座(locus,loci)又称座位。基因在染色体上所占的位置。在分子水平上,是有遗传效应的DNA序列。一个基因座可以是一个基因,一个基因的一部分,或具有某种调控作用的DNA序列。基因座与位点(site)不同,后者是一个顺反子内部的突变位置,可以小到一个核苷酸对。 基因座是染色体上的固定部位,编码在相同基因座上的DNA被称为等位基因。一些基因座上的等位基因具有明显的个体差异,因此它们就像指纹一样可以确定一个人的身份。(引自《环球科学》2007年第一期《DNA时代的犯罪株连》) | [
"2个分类",
"生物学",
"分子生物学"
] | 241 | zh-CN |
基因库 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%BA%93 | gene library;gene bank;gene pool (1)细胞培养物、种子、冷冻精子或卵子等的收集物,作为保持有任何一种生物的代表性基因组的手段来加以保存。 (2)目的基因(包括DNA片段)或一基因的供体的DNA片段经体外与载体重组转到宿主细胞中扩增后以细菌或噬菌体形式保存。 (3)在一定的地域中,一个物种的全体成员构成一个种群。一个主要特征是种群内的雌雄个体能通过有性生殖而实现基因的交流。一个种群全部个体所带有的全部基因的总和就是一个基因库。 一个种群或一个物种基因频率的变化称为微进化,一个种群以上水平的进化称为大进化。 具体举例 基因库(gene pool)是一个群体中所有个体的基因型的集合。对二倍体生物来说,有n个个体的一个群体的基因库由2n个单倍体基因组所组成。因此,在一个有n个个体的群体基因库中,对每个基因座来说,各有2n个基因,共有n对同源染色体。例外的是性染色体和性连锁基因,它们在异型配子的个体中只有单份剂量存在。生物的表型是可以直接观察的,但基因型和基因无法直接观察,基因库中的变异可用基因型的频率或基因频率来研究。如果我们知道特定基因型及其相应的表型之间的关系,就能将表型的频率转换成基因型的频率。现在以红细胞血型——MN血型为例。MN血型有三种:M、N和MN,这是由一个基因座上的两个等位基因LM和LN所决定的。从一个群体中采集730人的血样研究他们的血型,22人为M型,216人为MN型,492人为N血型。将每种血型的人数除以总人数得到的是血型及其相应的基因型的频率,由此可以用来描述血型M—N基因座上的变异。由于这730人是随机采集的样本,一个随机样本是一个群体的、有代表性的、无偏向的样本,所以可将观察到的频率看作这个群体的特性 | [
"3个分类",
"生物",
"生物学",
"基因"
] | 740 | zh-CN |
遗传信息 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%BA%8F%E5%88%97 | (重定向自基因序列) 遗传信息 genetic information 遗传信息 genetic information 指生物为复制与自己相同的东西、由亲代传递给子代、或各细胞每次分裂时由细胞传递给细胞的信息, 即碱基对的排列顺序(或指DNA分子的脱氧核苷酸的排列顺序) 。从历史上看,首先是由G.J.Mendel(1866)的研究形成了概念,即相应于生物各种性状的因素(现在称为基因)中包含着相应的信息(以后G.Beadle等人(1941)所开创了遗传生物化学的研究,描绘出这样一个轮廓:基因和决定生物结构与功能的蛋白质之间具有一对一的对应关系。关于基因的化学本质方面,根据O.T.Avery等(1944)进行的转化实验,以及A.Hershey和M.Chase(1952)用大肠杆菌噬菌体的DNA进行的性状表达实验,已阐明DNA是遗传信息的载体。附着DNA结构研究的进展,现在已经确立了这样的概念,即基因所具有的信息可将DNA的碱基排列进行符号化。信息在表达时,DNA的碱基排列首先被转录成RNA的碱基排列,然后再根据这种排列合成蛋白质。有的病毒的遗传信息的载体不是DNA,而是RNA。遗传信息不仅有相应于蛋白质的基因信息,也包括对信息解读所必需的信息、控制信息表达所必需的信息,以及生物为了复制与自己相同结构所必需的一切信息 | [
"1个分类",
"生物"
] | 565 | zh-CN |
基因带 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%B8%A6 | genophore 又称基因载体。这一概念是基于真核生物的细胞核在细胞分裂时核内染色质凝缩而成线状结构,并易被碱性染料着色的染色体(chromosome),而在原核细胞中无真正的细胞核,DNA也无组蛋白包裹而是裸露于细胞质中,同样存在于病毒外壳蛋白中的DNA或RNA也呈裸露状态,在生物学中常把原核生物和病毒中的遗传物质称为基因带,以示区别于真核生物中由DNA、组蛋白和少量RNA所组成的染色体。基因带的生物学功能与染色体相同 | [
"4个分类",
"生物学",
"基因",
"生物医学",
"细胞生物学"
] | 213 | zh-CN |
基因工程干扰素 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%B7%A5%E7%A8%8B%E5%B9%B2%E6%89%B0%E7%B4%A0 | 基因工程干扰素(猫犬注射用基因工程干扰素) 药品详情 1支=10万国际单位,此产品需要用注射用水稀释,注射用水1元支. 药物原理 基因工程干扰素具有广泛抗病毒、抗肿瘤及免疫调节功能。干扰素与细胞表面受体结合,诱导细胞产生多种抗病毒蛋白,抑制病毒在细胞内繁殖,提高免疫功能包括增强巨噬细胞的 吞噬功能,增强淋巴细胞对靶细胞的细胞毒性和天然杀伤性细胞的功能。 作用用途 用于各种病毒性疾病的预防和治疗。对猫犬等动物感染犬瘟热、细小病毒性肠炎、副流感、病毒性流感、传染性肝炎、庖疹、传染性气管炎、慢性宫颈炎等具有良好的预防治疗作用。 用法用量 用注射用水2ml溶解,皮下或肌肉注射。猫,幼犬1ml/日次,中型犬2ml/日次,大型犬4ml/日次,5-7天为一个疗程.重症者用量可略加。 注意事项 如制品颜色变化,溶解后幼沉淀、浑浊、瓶裂或透气不得使用。注射溶解时硬沿瓶壁注入用水,以免产生气泡,溶解后应当日用完,不得放置保存。 储藏效期 4摄氏度以下冷藏避光保存 | [
"1个分类",
"兽药"
] | 427 | zh-CN |
基因工程 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%B7%A5%E7%A8%8B%E5%AD%A6 | (重定向自基因工程学) 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 学科概况 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。 这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。 随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基本操作步骤 1.获取目的基因是实施基因工程的第一步。如植物的抗病(抗病毒 抗细菌)基因,种子的贮藏蛋白的基因,以及人的胰岛素基因干扰素基因等,都是目的基因。 要从浩瀚的“基因海洋”中获得特定的目的基因,是十分不易的。科学家们经过不懈地探索,想出了许多办法,其中主要有两条途径:一条是从供体细胞的DNA中直接分离基因;另一条是人工合成基因。 直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。鸟枪法的具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞提供的DNA(即外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。如许多抗虫抗病毒的基因都可以用上述方法获得。 用鸟枪法获得目的基因的优点是操作简便,缺点是工作量大,具有一定的盲目性。又由于真核细胞的基因含有不表达的DNA片段,一般使用人工合成的方法。 目前人工合成基因的方法主要有两条。一条途径是以目的基因转录成的信使RNA为模版,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需要的基因。另一条途径是根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对的原则,推测出它的基因的核苷酸序列,再通过化学方法,以单核苷酸为原料合成目的基因。如人的血红蛋白基因胰岛素基因等就可以通过人工合成基因的方法获得。 2.基因表达载体的构建(即目的基因与运载体结合)是实施基因工程的第二步,也是基因工程的核心。 将目的基因与运载体结合的过程,实际上是不同来源的DNA重新组合的过程。如果以质粒作为运载体,首先要用一定的限制酶切割质粒,使质粒出现一个缺口,露出黏性末端。然后用同一种限制酶切断目的基因,使其产生相同的黏性末端。将切下的目的基因的片段插入质粒的切口处,再加入适量DNA连接酶,质粒的黏性末端与目的基因DNA片段的黏性末端就会因碱基互补配对而结合,形成一个重组DNA分子。如人的胰岛素基因就是通过这种方法与大肠杆菌中的质粒DNA分子结合,形成重组DNA分子(也叫重组质粒)的。 3.将目的基因导入受体细胞是实施基因工程的第三步。目的基因的片段与运载体在生物体外连接形成重组DNA分子后,下一步是将重组DNA分子引入受体细胞中进行扩增。 基因工程中常用的受体细胞有大肠杆菌,枯草杆菌,土壤农杆菌,酵母菌和动植物细胞等。 用人工方法使体外重组的DNA分子转移到受体细胞,主要是借鉴细菌或病毒侵染细胞的途径。例如,如果运载体是质粒,受体细胞是细菌,一般是将细菌用氯化钙处理,以增大细菌细胞壁的通透性,使含有目的基因的重组质粒进入受体细胞。目的基因导入受体细胞后,就可以随着受体细胞的繁殖而复制,由于细菌的繁殖速度非常快,在很短的时间内就能够获得大量的目的基因。 4.目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。 以上步骤完成后,在全部的受体细胞中,真正能够摄入重组DNA分子的受体细胞是很少的。因此,必须通过一定的手段对受体细胞中是否导入了目的基因进行检测。检测的方法有很多种,例如,大肠杆菌的某种质粒具有青霉素抗性基因,当这种质粒与外源DNA组合在一起形成重组质粒,并被转入受体细胞后,就可以根据受体细胞是否具有青霉素抗性来判断受体细胞是否获得了目的基因。重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程。 前景 科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。 生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。 生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。 历史 人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。 人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。 科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。 人类基因工程 信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。有科学家预言,随着癌症、心脑血管疾病等顽症的有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。到2050年,人类的平均寿命将达到90至95岁。 人类将挑战生命科学的极限。1953年2月的一天,英国科学家弗朗西斯.克里克宣布:我们已经发现了生命的秘密。他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具体位置,查清每个基因核苷酸的顺序,建立人类基因库。1999年,人的第22对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。可以预见,在今后的四分世纪里,科学家们就可能揭示人类大约5000种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。 继2000年6月26日科学家公布人类基因组"工作框架图"之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司2001年2月12日联合公布人类基因组图谱及初步分析结果。这次公布的人类基因组图谱是在原"工作框架图"的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。随着人类基因组研究工作的进一步深入,生命科学和生物技术将随着新的世纪进入新的纪元。 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 基因工程大事记 1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。 1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。 1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。 1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。 1969年 科学家成功分离出第一个基因。 1980年 科学家首次培育出世界第一个转基因动物转基因小鼠。 1983年 科学家首次培育出世界第一个转基因植物转基因烟草。 1988年 K.Mullis发明了PCR技术。 1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。 1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。 1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。 1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。 1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。 2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。 2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。 2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。 2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。 2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。 2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。 科学家首次公布人类基因组草图“基因信息”。 各国研究状况 英国:早在20世纪80年代中期,英国就有了第一家生物科技企业,是欧洲国家中发展最早的。如今它已拥有560家生物技术公司,欧洲70家上市的生物技术公司中,英国占了一半。 德国:德国政府认识到,生物科技将是保持德国未来经济竞争力的关键,于是在1993年通过立法,简化生物技术企业的审批手续,并且拨款1.5亿马克,成立了3个生物技术研究中心。此外,政府还计划在未来5年中斥资12亿马克,用于人类基因组计划的研究。1999年德国研究人员申请的生物技术专利已经占到了欧洲的14%。 法国:法国政府在过去10年中用于生物技术的资金已经增加了10倍,其中最典型的项目就是1998年在巴黎附近成立的号称“基因谷”的科技园区,这里聚集着法国最有潜力的新兴生物技术公司。另外20个法国城市也准备仿照“基因谷”建立自己的生物科技园区。 西班牙:马尔制药公司是该国生物科技企业的代表,该公司专门从海洋生物中寻找抗癌物质。其中最具开发价值的是ET-743,这是一种从加勒比海和地中海的海底喷出物中提取的红色抗癌药物。ET-743计划于2002年在欧洲注册生产,将用于治疗骨癌、皮肤癌、卵巢癌、乳腺癌等多种常见癌症。 印度:印度政府资助全国50多家研究中心来收集人类基因组数据。由于独特的“种姓制度”和一些偏僻部落的内部通婚习俗,印度人口的基因库是全世界保存得最完整的,这对于科学家寻找遗传疾病的病理和治疗方法来说是个非常宝贵的资料库。但印度的私营生物技术企业还处于起步阶段。 日本:日本政府已经计划将明年用于生物技术研究的经费增加23%。一家私营企业还成立了“龙基因中心”,它将是亚洲最大的基因组研究机构。 新加坡:新加坡宣布了一项耗资6000万美元的基因技术研究项目,研究疾病如何对亚洲人和白种人产生不同影响。该计划重点分析基因差异以及什么样的治疗方法对亚洲人管用,以最终获得用于确定和治疗疾病的新知识;并设立高技术公司来制造这一研究所衍生出的药物和医疗产品。 中国:参与了人类基因组计划,测定了1%的序列,这为21世纪的中国生物产业带来了光明。这“1%项目”使中国走进生物产业的国际先进行列,也使中国理所当然地分享人类基因组计划的全部成果、资源与技术。 基因工程的应用 农牧业、食品工业 运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。 1.转基因鱼 生长快、耐不良环境、肉质好的转基因鱼(中国)。 2.转基因牛 乳汁中含有人生长激素的转基因牛(阿根廷)。 3.转黄瓜抗青枯病基因的甜椒 4.转鱼抗寒基因的番茄 5.转黄瓜抗青枯病基因的马铃薯 6.不会引起过敏的转基因大豆 7.超级动物 导入贮藏蛋白基因的超级羊和超级小鼠 8.特殊动物 导入人基因具特殊用途的猪和小鼠 9.抗虫棉 苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫棉。 环境保护 基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。 利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。 基因工程与环境污染治理 基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。 (通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。) 医学 基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。 用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。 我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。 无论哪一种基因治疗,目前都处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。 可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。 医药卫生 1.基因工程药品的生产: 许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。 微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。 ⑴基因工程胰岛素 胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。 将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%! ⑵基因工程干扰素 干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。 基因工程人干扰素α-2b(安达芬) 是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。 ⑶其它基因工程药物 人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。 2.基因诊断与基因治疗: 运用基因工程设计制造的“DNA探针”检测肝炎病毒等病毒感染及遗传缺陷,不但准确而且迅速。通过基因工程给患有遗传病的人体内导入正常基因可“一次性”解除病人的疾苦。 ◆SCID的基因工程治疗 重症联合免疫缺陷(SCID)患者缺乏正常的人体免疫功能,只要稍被细菌或者病毒感染,就会发病死亡。这个病的机理是细胞的一个常染色体上编码腺苷酸脱氨酶(简称ADA)的基因(ada)发生了突变。可以通过基因工程的方法治疗。 我国基因工程制药业发展 80年代中期以来,我国生物技术蓬勃发展、成绩喜人。由于国家高技术研究计划(即“八六三”计划)、攻关计划和国家自然科学基金会都将生物技术作为优先发展领域予以重点支持,我国生物技术整体研究水平迅速提高,取得了一批高水平的研究成果,为我国新兴生物技术产业的建立和发展提供了技术源泉。目前,我国基因工程制药产业进入快速发展时期。 一、产业现状 1989年,我国批准了第一个在我国生产的基因工程药物——重组人干扰素αlb,标志着我国生产的基因工程药物实现了零的突破。重组人干扰素αlb是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个我国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,我国基因工程制药产业从无到有,不断发展壮大。1998年,我国基因工程制药产业销售额已达到了7.2亿元人民币。截止1998年底,我国已批准上市的基因工程药物和疫苗产品共计15种。目前,国内已有30余家生物制药企业取得了基因工程药物或疫苗试生产或正式生产批准文号。 根据1997年对全国452从个事生物技术研究、开发和生产的单位进行的通讯调查结果,截止1996年底,我国已有8种基因工程药物和疫苗商品化(包括试生产),1996年基因工程药物和疫苗销售额约为2.2亿元人民币,仅占同期全国医药生物技术产品年销售额21.16亿元人民的10.4%。然而可喜的是,近年来我国基因工程制药产业发展迅猛,年销售额已从1996年的2.2亿元人民币增长到1998年的7.2亿元人民币,年均增长率高达80%。预计2000年我国基因工程药物销售额将达到22.8亿元人民币。 二、国内外对比 我国生物技术产业,特别是生物制药产业规模与美国相比差距很大。1996年,我国生物技术销售额为114亿元人民币,美国为100亿美元,相差7倍。1996年,我国基因工程和疫苗销售额为2.3亿元人民币,同期美国75亿美元。1998年,我国基因工程药物和疫苗销售额为7.2亿元人民币,还不到1亿美元,而1996年国Amgen公司的两个主要产品Neupgen(G-CSF)和Epogen(红细胞生成素)销售额均达到10亿美元。 从上市品种看,1998年,我国有15种基因工程药物和疫苗获准上市,美国上市的生物药物(主要是基因工程药物)共53种。我国基国工程药物市时间较美国同品种上市时间晚5年-10年。 三、存在的主要问题 1、同种产品生产厂家过多,造成市场恶性竞争,严重影响产业的健康发展: 我国已批准上市的基因工程药物和疫苗绝大多数是多家生产。例如:干扰素α2a生产厂家有5家,干扰素α2b有5家,白细胞介素-2有10家,G-CSF有7家,GM-CSF有6家。基因工程药物临床应用剂量一般都很小(微克级),通常2-3个厂家满负荷生产就能满足全国市场需要。因此,过多厂家生产同一种基因工程药物势必造成市场过度竞争,使各生产企业的利润下降,同时还导致现有生产能力开工不足,成本增加,使企业不能获得合理利润,无法步入良性发展的轨道,甚至迫使有些企业严重亏损和破产。 这种重复生产的现象与我国新药研究开发的指导思想不无关系。以往我国新药的研究开发是以引进开发为主,我国研制上市的和在研的新药绝大部分是仿制国外的,创新药物很少。已批准的15种基因工程药物和疫苗中,只有干扰素αlb拥有我自主知识产权。在研究的生物新药中,绝大多数是国外进入二、三期临床后我国开始跟踪研制的。由此不难看出,我国新药研究开发缺乏创新和低水平重复是导致医药产业重复生产的源头。大力加强创新药物的研究是从源头解决基因工程药物重复生产问题的根本出路。同时,我国还必须进一步完善新药审批制度和专利制度,从制度上鼓励创新,切实保护创新者的知识产权,避免重复生产。 2、融资渠道单一、产业发展资金不足: 基因工程制药产业是典型的技术产业,具有高投入、高风险、高收益的特点。目前,我国基因工程制药企业投资大多在2000万元-1亿元人民币。资金来源除股东投入的股本金外,主要是靠银行贷款,融资渠道狭窄。由于银行十分注意资金的的安全性和流动性,高技术投资的风险使银行对之贷款慎之又慎。同时,我国基因工程制药使得这些企业融资能力明显不足,很难从一般融资渠道获得企业发展所需的资金。发展资金严重不足已成为基因工程制药产业发展的巨大障碍因素。因此,我国应借鉴国外利用风险投资发展高技术产业的成功经验,制定有关法规政策,积极稳妥地启动风险投资。 3、医药市场竞争无序,行业不正之风盛行: 随着我国从计划经济向市场经济转轨,医药市场出现了新的变化,药品购销各个环节利润分配极不合理。按国家现行价格规定,药品批发价是出厂价的115%,零售价为批发价的120%。但是,基因工程药物实际营销中,医院一般以国家批发价的70%-85%进药,从而获得零售价的30%-50%的利润,而生产企业的利润只有5%-15%。这种利润不合理分配导致众多制药企业亏损。更加上同种基因工程药品由多家生产,迫使生产企业纷纷采取高定价、高让利的促销手段,使药品市场竞争进一步恶化。企业迫于市场压力,主要精力都用在市场竞争上,无力顾及技术创新。过多的市场投入和让利,使正常生产经营都十分困难,更谈不上如何发展了。医药市场恶性竞争非但未能使消费者受益,却使得国家、制药企业和广大消费者的利益受到极大的损害。 另据调查,绝大多数进口基因工程药品的销售价格都大大高于同种国产药品销售价格,而且更为不合理的是,一半以上的进口基因工程药品在我国的售价高于原产国售价。 4、企业管理相对滞后,技术兼经营型人才匮乏: 我国基因工程制药产业起步较晚,但是起点相对较高。许多企业的关键性生产设备都是从国外进口。然而,在经营管理上与国外相比还有很大的差距。现代企业制度的特点之一是所有权与经营权分离,企业的所有者对经营者进行监督,经营者通过自主经营使企业的资产保值增值。我国大多数基因工程制药企业,虽然在形式上是有限责任公司或股份有限,但是企业的所有经营者一般由企业出任或委派。企业这种所有权与经营以不分的状况,既不利于企业长远发展,也不利于企业经营阶层即企业家阶层的形成。 基因工程制药企业是典型的技术密集型高技术企业,企业要在激烈的竞争中求得生存和发展就必须拥有一批高素质的复合型人才。如何培养和造就一批这种复合型人才已成为我国生物制药闰为亟持解决的问题。 四、对策及政策建议 根据国家内外工程制药产业现状及发展趋势,为促进我国基因工程制药产业的快速健康发展,我们提出以下建议: 1、制定产业发展战略规划,强化财政税收优惠政策 目前,我国基因工程制药产业存在的盲目性和严重的重复现象与缺乏明确的产业发展战略和规划不无关系。因此,我国应该尽早制定出台生物技术产业发展战略和指导性发展规划,在引进、消化、吸收、创新及对传统产业的改造方面,集中有限财力、物力,重点支持一批具自主知识产权和国际竞争优势,对国民经济发展和人民生活具有重大影响的关键性基因工程产业化项目。只有这样,我国基本工程制药产业才能避免盲目性和无政府状态,从而走上良性发展的道路。 基因工程制药业与其它高技术产业一样,具有高投入、高风险和高产出等特点,起步阶段必须依靠国家优惠政策扶持才能不断发展壮大。我国各级政府为支持高科技产为发展虽制定了许多优惠政策,但优惠的力度不够,而且在具体实施过程中因涉及部门较多,落无实处的情况时有发生。因此,建议国家进一步强化并规范对基因工程制药产业的财政、税收优惠政策。 2、大力加强基因工程创新药物的研制和生产 由于我国上市销售和在研的基因工程药物绝大多数是仿制国外的,这使得我国基因工程药物很难讲入国际市场。特别是我国加入WTO后,一些基因工程制药企业将处于十分被动的境地,有可能会面临专利纠纷。为了从根本上改变我国基因工程制药业重复生产和缺乏国际竞争力的局面,我国的新药研制开发思想必须做战略调整,从以仿制为主向创新与仿制相结合转变。为此,我国必须大力加强创新药物研究,进一步完善知识产权保护制度和新药审批制度,特别是要加大对侵犯知识产权的打击力度,切实保护创新者权益。同时,新药研制单位和个人应该注意学会用专利保护自己的利益。近来国外一些公司采取的“专利加发表”的策略具有一定的启发性。为了使自己的技术专利化,并防止别人申请同样的专利,美国公司在申请专利后便迅速将专利内容公开发表。这种做法既确立了自己的领先地位,又有效一阻止了他人申请相同的专利。 在加强创新药物研究的同时,可以有选择地合法仿制一些专利即将过期、疗效明确、应用前景广阔基因工程药物。对仿制药物有关的专利要进行认真的研究,采取有效的专利回避策略,避免简单的、盲目的仿制。要在仿制的基础上创新。创造出专利方法不同的生产工艺和方法,避免引起专利纠纷。 3、积极引导培育风险投资市场 融资困难、资金不足已严重制约了我国基因工程制药产业的迅速发展。欧美发达国家的成功经验表明,风险投资是解决高技术商品化、产业化过程中资金困难的有效途径。因此,我国政府应积极稳妥地引导和培育风险投资,尽制定风险投资运行的法规和政策,为风险投资创造宽松的环境和条件,适时允许投资银行、信托投资公司、保险公司等机构发起设立风险投资基金。积极吸引国外风险投资历基金流入。同时,还应该放宽高技术企业股票发行条件,为高技术企业股票上市提供更多机会。积极准备开辟高技术企业股票市场即第二股票市场,为风险投资进入和退了资本市场创造条件。 基因工程危害及其具体实例 关于转基因生物的安全性,目前仍没有科学性共识。尽管如此,基因工程农作物已被大规模投放,生物医学应用也日益增加。转基因生物还被投入工业使用和环境恢复,而公众对此却知之甚少。最近几年,越来越多的证据证明存在生态、健康危害和风险,对农民也有不利影响. 基因工程细菌影响土壤生物,导致植物死亡 1999出版的研究资料例举了基因工程微生物释放到环境中将如何导致广泛的生态破环。 当把克氏杆菌的基因工程菌株与砂土和小麦作物加入微观体中时,喂食线虫类生物的细菌和真菌数量明显增加,导致植物死亡。而加入亲本非基因工程菌株时,仅有喂食线虫类生物的细菌数量增加,而植物不会死亡。没有植物而将任何一种菌株引入土壤都不会改变线虫类群落。 克氏杆菌是一种能使乳糖发酵的常见土壤细菌。基因工程细菌被制造用来在发酵桶中产生使农业废物转换为乙醇的增强乙醇浓缩物。发酵残留物,包括基因工程细菌亦可于土壤改良。 研究证明,一些土壤生态系统中的基因工程细菌在某些条件下可长期存活,时间之长足以刺激土壤生物产生变化,影响植物生长和营养循环进程。虽然目前仍不清楚此类就地观测的程度,但是基因工程细菌引起植物死亡的发现也说明如果使用此种土壤改良有杀伤农作物的可能。 致命基因工程鼠痘病毒偶然产生 澳大利亚研究员在研发对相对无害的鼠痘病毒基因工程时竟意外制创造出可彻底消灭老鼠的杀手病毒。 研究员们将白细胞间介素4的基因(在身体中自然产生)插入到一种鼠痘病毒中以促进抗体的产生,并创造出用于控制鼠害的鼠类避妊疫苗。非常意外的是,插入的基因完全抑制了老鼠的免疫系统。鼠痘病毒通常仅导致轻微的症状,但加入IL-4基因后,该病毒9天内使所有动物致死。更糟的是,此种基因工程病毒对接种疫苗有着异乎寻常的抵抗力。 经改良的鼠痘病毒虽然对人类无影响,但却与天花关系十分密切,让人担心基因工程将会被用于生物战。一名研究员在谈及他们决定出版研究成果的原因时曾说:" 我们想警告普通民众,现在有了这种有潜在危险的技术","我们还想让科学界明白,必须小心行事,制造高危致命生物并不是太困难。" 杀虫剂使用的增加大部分是由于HT作物,尤其是HT大豆使用的杀虫剂增加,这一点可追溯到对HT作物的严重依赖性以及杂草管理的单一除草剂(草甘磷)使用。这已导致转移到更加难以控制的杂草,而某些杂草中还出现了遗传抗性,迫使许多农民在基因工程作物上喷洒更多的除草剂以对杂草适当进行控制。HT大豆中的抗草甘膦杉叶藻(marestail)于2000年在美国首次出现,在HT棉花中也已鉴别出此种物质[27]。 其它研究显示,基因工程农作物本身也会对其使用的除草剂产生抗性,引发严重的自身自长作物问题(同一块地里早先种植的作物种子发芽的植物后来变成杂草)并迫使进一步使用除草剂。加拿大科学家证实了抗多种除草剂之基因工程油菜的迅速演化,此种作物因花粉长距离传播而融合了不同公司研制的单价抗除草剂特性 。 此外,科学家还在2002年确认了转基因可从Bt向日葵移动到附近的野生向日葵,使杂化物更强、对化学药品更具抗性,因为较之无基因控制的情况,杂化物多了50%的种子,且种子健康,甚至在干旱条件下也如此。 北卡罗莱那州大学的研究显示,Bt油菜与相关杂草、鸟食草之间的交叉物可产生抗虫性杂合物,使杂草控制更困难。 所有这些事件使预防方法和严格的生物安全管理变得突出。预防原则在《卡塔赫纳生物安全协议》这一主要管理转基因微生物的国际法律中已得到重申。尤其是第 10(6)条声称,如果缺乏科学定论,缔约方可限制或禁止转基因生物的进口,以避免或使生物多样性及人类健康的不利影响降到最低 | [
"4个分类",
"药品",
"克隆",
"基因",
"生物学"
] | 15,155 | zh-CN |
基因工程 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%B7%A5%E7%A8%8B | 基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。 学科概况 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。 这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。 随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基本操作步骤 1.获取目的基因是实施基因工程的第一步。如植物的抗病(抗病毒 抗细菌)基因,种子的贮藏蛋白的基因,以及人的胰岛素基因干扰素基因等,都是目的基因。 要从浩瀚的“基因海洋”中获得特定的目的基因,是十分不易的。科学家们经过不懈地探索,想出了许多办法,其中主要有两条途径:一条是从供体细胞的DNA中直接分离基因;另一条是人工合成基因。 直接分离基因最常用的方法是“鸟枪法”,又叫“散弹射击法”。鸟枪法的具体做法是:用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞提供的DNA(即外源DNA)的所有片段分别在各个受体细胞中大量复制(在遗传学中叫做扩增),从中找出含有目的基因的细胞,再用一定的方法把带有目的基因的DNA片段分离出来。如许多抗虫抗病毒的基因都可以用上述方法获得。 用鸟枪法获得目的基因的优点是操作简便,缺点是工作量大,具有一定的盲目性。又由于真核细胞的基因含有不表达的DNA片段,一般使用人工合成的方法。 目前人工合成基因的方法主要有两条。一条途径是以目的基因转录成的信使RNA为模版,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需要的基因。另一条途径是根据已知的蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对的原则,推测出它的基因的核苷酸序列,再通过化学方法,以单核苷酸为原料合成目的基因。如人的血红蛋白基因胰岛素基因等就可以通过人工合成基因的方法获得。 2.基因表达载体的构建(即目的基因与运载体结合)是实施基因工程的第二步,也是基因工程的核心。 将目的基因与运载体结合的过程,实际上是不同来源的DNA重新组合的过程。如果以质粒作为运载体,首先要用一定的限制酶切割质粒,使质粒出现一个缺口,露出黏性末端。然后用同一种限制酶切断目的基因,使其产生相同的黏性末端。将切下的目的基因的片段插入质粒的切口处,再加入适量DNA连接酶,质粒的黏性末端与目的基因DNA片段的黏性末端就会因碱基互补配对而结合,形成一个重组DNA分子。如人的胰岛素基因就是通过这种方法与大肠杆菌中的质粒DNA分子结合,形成重组DNA分子(也叫重组质粒)的。 3.将目的基因导入受体细胞是实施基因工程的第三步。目的基因的片段与运载体在生物体外连接形成重组DNA分子后,下一步是将重组DNA分子引入受体细胞中进行扩增。 基因工程中常用的受体细胞有大肠杆菌,枯草杆菌,土壤农杆菌,酵母菌和动植物细胞等。 用人工方法使体外重组的DNA分子转移到受体细胞,主要是借鉴细菌或病毒侵染细胞的途径。例如,如果运载体是质粒,受体细胞是细菌,一般是将细菌用氯化钙处理,以增大细菌细胞壁的通透性,使含有目的基因的重组质粒进入受体细胞。目的基因导入受体细胞后,就可以随着受体细胞的繁殖而复制,由于细菌的繁殖速度非常快,在很短的时间内就能够获得大量的目的基因。 4.目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。 以上步骤完成后,在全部的受体细胞中,真正能够摄入重组DNA分子的受体细胞是很少的。因此,必须通过一定的手段对受体细胞中是否导入了目的基因进行检测。检测的方法有很多种,例如,大肠杆菌的某种质粒具有青霉素抗性基因,当这种质粒与外源DNA组合在一起形成重组质粒,并被转入受体细胞后,就可以根据受体细胞是否具有青霉素抗性来判断受体细胞是否获得了目的基因。重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程。 前景 科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。 生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。 生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。 历史 人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。 人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。 科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。 人类基因工程 信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。有科学家预言,随着癌症、心脑血管疾病等顽症的有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。到2050年,人类的平均寿命将达到90至95岁。 人类将挑战生命科学的极限。1953年2月的一天,英国科学家弗朗西斯.克里克宣布:我们已经发现了生命的秘密。他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具体位置,查清每个基因核苷酸的顺序,建立人类基因库。1999年,人的第22对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。可以预见,在今后的四分世纪里,科学家们就可能揭示人类大约5000种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。 继2000年6月26日科学家公布人类基因组"工作框架图"之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司2001年2月12日联合公布人类基因组图谱及初步分析结果。这次公布的人类基因组图谱是在原"工作框架图"的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。随着人类基因组研究工作的进一步深入,生命科学和生物技术将随着新的世纪进入新的纪元。 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 基因工程大事记 1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。 1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。 1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。 1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。 1969年 科学家成功分离出第一个基因。 1980年 科学家首次培育出世界第一个转基因动物转基因小鼠。 1983年 科学家首次培育出世界第一个转基因植物转基因烟草。 1988年 K.Mullis发明了PCR技术。 1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。 1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。 1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。 1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。 1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。 2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。 2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。 2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。 2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。 2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。 2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。 科学家首次公布人类基因组草图“基因信息”。 各国研究状况 英国:早在20世纪80年代中期,英国就有了第一家生物科技企业,是欧洲国家中发展最早的。如今它已拥有560家生物技术公司,欧洲70家上市的生物技术公司中,英国占了一半。 德国:德国政府认识到,生物科技将是保持德国未来经济竞争力的关键,于是在1993年通过立法,简化生物技术企业的审批手续,并且拨款1.5亿马克,成立了3个生物技术研究中心。此外,政府还计划在未来5年中斥资12亿马克,用于人类基因组计划的研究。1999年德国研究人员申请的生物技术专利已经占到了欧洲的14%。 法国:法国政府在过去10年中用于生物技术的资金已经增加了10倍,其中最典型的项目就是1998年在巴黎附近成立的号称“基因谷”的科技园区,这里聚集着法国最有潜力的新兴生物技术公司。另外20个法国城市也准备仿照“基因谷”建立自己的生物科技园区。 西班牙:马尔制药公司是该国生物科技企业的代表,该公司专门从海洋生物中寻找抗癌物质。其中最具开发价值的是ET-743,这是一种从加勒比海和地中海的海底喷出物中提取的红色抗癌药物。ET-743计划于2002年在欧洲注册生产,将用于治疗骨癌、皮肤癌、卵巢癌、乳腺癌等多种常见癌症。 印度:印度政府资助全国50多家研究中心来收集人类基因组数据。由于独特的“种姓制度”和一些偏僻部落的内部通婚习俗,印度人口的基因库是全世界保存得最完整的,这对于科学家寻找遗传疾病的病理和治疗方法来说是个非常宝贵的资料库。但印度的私营生物技术企业还处于起步阶段。 日本:日本政府已经计划将明年用于生物技术研究的经费增加23%。一家私营企业还成立了“龙基因中心”,它将是亚洲最大的基因组研究机构。 新加坡:新加坡宣布了一项耗资6000万美元的基因技术研究项目,研究疾病如何对亚洲人和白种人产生不同影响。该计划重点分析基因差异以及什么样的治疗方法对亚洲人管用,以最终获得用于确定和治疗疾病的新知识;并设立高技术公司来制造这一研究所衍生出的药物和医疗产品。 中国:参与了人类基因组计划,测定了1%的序列,这为21世纪的中国生物产业带来了光明。这“1%项目”使中国走进生物产业的国际先进行列,也使中国理所当然地分享人类基因组计划的全部成果、资源与技术。 基因工程的应用 农牧业、食品工业 运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。 1.转基因鱼 生长快、耐不良环境、肉质好的转基因鱼(中国)。 2.转基因牛 乳汁中含有人生长激素的转基因牛(阿根廷)。 3.转黄瓜抗青枯病基因的甜椒 4.转鱼抗寒基因的番茄 5.转黄瓜抗青枯病基因的马铃薯 6.不会引起过敏的转基因大豆 7.超级动物 导入贮藏蛋白基因的超级羊和超级小鼠 8.特殊动物 导入人基因具特殊用途的猪和小鼠 9.抗虫棉 苏云金芽胞杆菌可合成毒蛋白杀死棉铃虫,把这部分基因导入棉花的离体细胞中,再组织培养就可获得抗虫棉。 环境保护 基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。 利用基因工程培育的指示生物能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。 基因工程与环境污染治理 基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。 (通常一种细菌只能分解石油中的一种烃类,用基因工程培育成功的“超级细菌”却能分解石油中的多种烃类化合物。有的还能吞食转化汞、镉等重金属,分解DDT等毒害物质。) 医学 基因作为机体内的遗传单位,不仅可以决定我们的相貌、高矮,而且它的异常会不可避免地导致各种疾病的出现。某些缺陷基因可能会遗传给后代,有些则不能。基因治疗的提出最初是针对单基因缺陷的遗传疾病,目的在于有一个正常的基因来代替缺陷基因或者来补救缺陷基因的致病因素。 用基因治病是把功能基因导入病人体内使之表达,并因表达产物——蛋白质发挥了功能使疾病得以治疗。基因治疗的结果就像给基因做了一次手术,治病治根,所以有人又把它形容为“分子外科”。 我们可以将基因治疗分为性细胞基因和体细胞基因治疗两种类型。性细胞基因治疗是在患者的性细胞中进行操作,使其后代从此再不会得这种遗传疾病。体细胞基因治疗是当前基因治疗研究的主流。但其不足之处也很明显,它并没前改变病人已有单个或多个基因缺陷的遗传背景,以致在其后代的子孙中必然还会有人要患这一疾病。 无论哪一种基因治疗,目前都处于初期的临床试验阶段,均没有稳定的疗效和完全的安全性,这是当前基因治疗的研究现状。 可以说,在没有完全解释人类基因组的运转机制、充分了解基因调控机制和疾病的分子机理之前进行基因治疗是相当危险的。增强基因治疗的安全性,提高临床试验的严密性及合理性尤为重要。尽管基因治疗仍有许多障碍有待克服,但总的趋势是令人鼓舞的。据统计,截止1998年底,世界范围内已有373个临床法案被实施,累计3134人接受了基因转移试验,充分显示了其巨大的开发潜力及应用前景。正如基因治疗的奠基者们当初所预言的那样,基因治疗的出现将推动新世纪医学的革命性变化。 医药卫生 1.基因工程药品的生产: 许多药品的生产是从生物组织中提取的。受材料来源限制产量有限,其价格往往十分昂贵。 微生物生长迅速,容易控制,适于大规模工业化生产。若将生物合成相应药物成分的基因导入微生物细胞内,让它们产生相应的药物,不但能解决产量问题,还能大大降低生产成本。 ⑴基因工程胰岛素 胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。 将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题,还使其价格降低了30%-50%! ⑵基因工程干扰素 干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。 基因工程人干扰素α-2b(安达芬) 是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。 ⑶其它基因工程药物 人造血液、白细胞介素、乙肝疫苗等通过基因工程实现工业化生产,均为解除人类的病苦,提高人类的健康水平发挥了重大的作用。 2.基因诊断与基因治疗: 运用基因工程设计制造的“DNA探针”检测肝炎病毒等病毒感染及遗传缺陷,不但准确而且迅速。通过基因工程给患有遗传病的人体内导入正常基因可“一次性”解除病人的疾苦。 ◆SCID的基因工程治疗 重症联合免疫缺陷(SCID)患者缺乏正常的人体免疫功能,只要稍被细菌或者病毒感染,就会发病死亡。这个病的机理是细胞的一个常染色体上编码腺苷酸脱氨酶(简称ADA)的基因(ada)发生了突变。可以通过基因工程的方法治疗。 我国基因工程制药业发展 80年代中期以来,我国生物技术蓬勃发展、成绩喜人。由于国家高技术研究计划(即“八六三”计划)、攻关计划和国家自然科学基金会都将生物技术作为优先发展领域予以重点支持,我国生物技术整体研究水平迅速提高,取得了一批高水平的研究成果,为我国新兴生物技术产业的建立和发展提供了技术源泉。目前,我国基因工程制药产业进入快速发展时期。 一、产业现状 1989年,我国批准了第一个在我国生产的基因工程药物——重组人干扰素αlb,标志着我国生产的基因工程药物实现了零的突破。重组人干扰素αlb是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个我国自主研制成功的拥有自主知识产权的基因工程一类新药。从此以后,我国基因工程制药产业从无到有,不断发展壮大。1998年,我国基因工程制药产业销售额已达到了7.2亿元人民币。截止1998年底,我国已批准上市的基因工程药物和疫苗产品共计15种。目前,国内已有30余家生物制药企业取得了基因工程药物或疫苗试生产或正式生产批准文号。 根据1997年对全国452从个事生物技术研究、开发和生产的单位进行的通讯调查结果,截止1996年底,我国已有8种基因工程药物和疫苗商品化(包括试生产),1996年基因工程药物和疫苗销售额约为2.2亿元人民币,仅占同期全国医药生物技术产品年销售额21.16亿元人民的10.4%。然而可喜的是,近年来我国基因工程制药产业发展迅猛,年销售额已从1996年的2.2亿元人民币增长到1998年的7.2亿元人民币,年均增长率高达80%。预计2000年我国基因工程药物销售额将达到22.8亿元人民币。 二、国内外对比 我国生物技术产业,特别是生物制药产业规模与美国相比差距很大。1996年,我国生物技术销售额为114亿元人民币,美国为100亿美元,相差7倍。1996年,我国基因工程和疫苗销售额为2.3亿元人民币,同期美国75亿美元。1998年,我国基因工程药物和疫苗销售额为7.2亿元人民币,还不到1亿美元,而1996年国Amgen公司的两个主要产品Neupgen(G-CSF)和Epogen(红细胞生成素)销售额均达到10亿美元。 从上市品种看,1998年,我国有15种基因工程药物和疫苗获准上市,美国上市的生物药物(主要是基因工程药物)共53种。我国基国工程药物市时间较美国同品种上市时间晚5年-10年。 三、存在的主要问题 1、同种产品生产厂家过多,造成市场恶性竞争,严重影响产业的健康发展: 我国已批准上市的基因工程药物和疫苗绝大多数是多家生产。例如:干扰素α2a生产厂家有5家,干扰素α2b有5家,白细胞介素-2有10家,G-CSF有7家,GM-CSF有6家。基因工程药物临床应用剂量一般都很小(微克级),通常2-3个厂家满负荷生产就能满足全国市场需要。因此,过多厂家生产同一种基因工程药物势必造成市场过度竞争,使各生产企业的利润下降,同时还导致现有生产能力开工不足,成本增加,使企业不能获得合理利润,无法步入良性发展的轨道,甚至迫使有些企业严重亏损和破产。 这种重复生产的现象与我国新药研究开发的指导思想不无关系。以往我国新药的研究开发是以引进开发为主,我国研制上市的和在研的新药绝大部分是仿制国外的,创新药物很少。已批准的15种基因工程药物和疫苗中,只有干扰素αlb拥有我自主知识产权。在研究的生物新药中,绝大多数是国外进入二、三期临床后我国开始跟踪研制的。由此不难看出,我国新药研究开发缺乏创新和低水平重复是导致医药产业重复生产的源头。大力加强创新药物的研究是从源头解决基因工程药物重复生产问题的根本出路。同时,我国还必须进一步完善新药审批制度和专利制度,从制度上鼓励创新,切实保护创新者的知识产权,避免重复生产。 2、融资渠道单一、产业发展资金不足: 基因工程制药产业是典型的技术产业,具有高投入、高风险、高收益的特点。目前,我国基因工程制药企业投资大多在2000万元-1亿元人民币。资金来源除股东投入的股本金外,主要是靠银行贷款,融资渠道狭窄。由于银行十分注意资金的的安全性和流动性,高技术投资的风险使银行对之贷款慎之又慎。同时,我国基因工程制药使得这些企业融资能力明显不足,很难从一般融资渠道获得企业发展所需的资金。发展资金严重不足已成为基因工程制药产业发展的巨大障碍因素。因此,我国应借鉴国外利用风险投资发展高技术产业的成功经验,制定有关法规政策,积极稳妥地启动风险投资。 3、医药市场竞争无序,行业不正之风盛行: 随着我国从计划经济向市场经济转轨,医药市场出现了新的变化,药品购销各个环节利润分配极不合理。按国家现行价格规定,药品批发价是出厂价的115%,零售价为批发价的120%。但是,基因工程药物实际营销中,医院一般以国家批发价的70%-85%进药,从而获得零售价的30%-50%的利润,而生产企业的利润只有5%-15%。这种利润不合理分配导致众多制药企业亏损。更加上同种基因工程药品由多家生产,迫使生产企业纷纷采取高定价、高让利的促销手段,使药品市场竞争进一步恶化。企业迫于市场压力,主要精力都用在市场竞争上,无力顾及技术创新。过多的市场投入和让利,使正常生产经营都十分困难,更谈不上如何发展了。医药市场恶性竞争非但未能使消费者受益,却使得国家、制药企业和广大消费者的利益受到极大的损害。 另据调查,绝大多数进口基因工程药品的销售价格都大大高于同种国产药品销售价格,而且更为不合理的是,一半以上的进口基因工程药品在我国的售价高于原产国售价。 4、企业管理相对滞后,技术兼经营型人才匮乏: 我国基因工程制药产业起步较晚,但是起点相对较高。许多企业的关键性生产设备都是从国外进口。然而,在经营管理上与国外相比还有很大的差距。现代企业制度的特点之一是所有权与经营权分离,企业的所有者对经营者进行监督,经营者通过自主经营使企业的资产保值增值。我国大多数基因工程制药企业,虽然在形式上是有限责任公司或股份有限,但是企业的所有经营者一般由企业出任或委派。企业这种所有权与经营以不分的状况,既不利于企业长远发展,也不利于企业经营阶层即企业家阶层的形成。 基因工程制药企业是典型的技术密集型高技术企业,企业要在激烈的竞争中求得生存和发展就必须拥有一批高素质的复合型人才。如何培养和造就一批这种复合型人才已成为我国生物制药闰为亟持解决的问题。 四、对策及政策建议 根据国家内外工程制药产业现状及发展趋势,为促进我国基因工程制药产业的快速健康发展,我们提出以下建议: 1、制定产业发展战略规划,强化财政税收优惠政策 目前,我国基因工程制药产业存在的盲目性和严重的重复现象与缺乏明确的产业发展战略和规划不无关系。因此,我国应该尽早制定出台生物技术产业发展战略和指导性发展规划,在引进、消化、吸收、创新及对传统产业的改造方面,集中有限财力、物力,重点支持一批具自主知识产权和国际竞争优势,对国民经济发展和人民生活具有重大影响的关键性基因工程产业化项目。只有这样,我国基本工程制药产业才能避免盲目性和无政府状态,从而走上良性发展的道路。 基因工程制药业与其它高技术产业一样,具有高投入、高风险和高产出等特点,起步阶段必须依靠国家优惠政策扶持才能不断发展壮大。我国各级政府为支持高科技产为发展虽制定了许多优惠政策,但优惠的力度不够,而且在具体实施过程中因涉及部门较多,落无实处的情况时有发生。因此,建议国家进一步强化并规范对基因工程制药产业的财政、税收优惠政策。 2、大力加强基因工程创新药物的研制和生产 由于我国上市销售和在研的基因工程药物绝大多数是仿制国外的,这使得我国基因工程药物很难讲入国际市场。特别是我国加入WTO后,一些基因工程制药企业将处于十分被动的境地,有可能会面临专利纠纷。为了从根本上改变我国基因工程制药业重复生产和缺乏国际竞争力的局面,我国的新药研制开发思想必须做战略调整,从以仿制为主向创新与仿制相结合转变。为此,我国必须大力加强创新药物研究,进一步完善知识产权保护制度和新药审批制度,特别是要加大对侵犯知识产权的打击力度,切实保护创新者权益。同时,新药研制单位和个人应该注意学会用专利保护自己的利益。近来国外一些公司采取的“专利加发表”的策略具有一定的启发性。为了使自己的技术专利化,并防止别人申请同样的专利,美国公司在申请专利后便迅速将专利内容公开发表。这种做法既确立了自己的领先地位,又有效一阻止了他人申请相同的专利。 在加强创新药物研究的同时,可以有选择地合法仿制一些专利即将过期、疗效明确、应用前景广阔基因工程药物。对仿制药物有关的专利要进行认真的研究,采取有效的专利回避策略,避免简单的、盲目的仿制。要在仿制的基础上创新。创造出专利方法不同的生产工艺和方法,避免引起专利纠纷。 3、积极引导培育风险投资市场 融资困难、资金不足已严重制约了我国基因工程制药产业的迅速发展。欧美发达国家的成功经验表明,风险投资是解决高技术商品化、产业化过程中资金困难的有效途径。因此,我国政府应积极稳妥地引导和培育风险投资,尽制定风险投资运行的法规和政策,为风险投资创造宽松的环境和条件,适时允许投资银行、信托投资公司、保险公司等机构发起设立风险投资基金。积极吸引国外风险投资历基金流入。同时,还应该放宽高技术企业股票发行条件,为高技术企业股票上市提供更多机会。积极准备开辟高技术企业股票市场即第二股票市场,为风险投资进入和退了资本市场创造条件。 基因工程危害及其具体实例 关于转基因生物的安全性,目前仍没有科学性共识。尽管如此,基因工程农作物已被大规模投放,生物医学应用也日益增加。转基因生物还被投入工业使用和环境恢复,而公众对此却知之甚少。最近几年,越来越多的证据证明存在生态、健康危害和风险,对农民也有不利影响. 基因工程细菌影响土壤生物,导致植物死亡 1999出版的研究资料例举了基因工程微生物释放到环境中将如何导致广泛的生态破环。 当把克氏杆菌的基因工程菌株与砂土和小麦作物加入微观体中时,喂食线虫类生物的细菌和真菌数量明显增加,导致植物死亡。而加入亲本非基因工程菌株时,仅有喂食线虫类生物的细菌数量增加,而植物不会死亡。没有植物而将任何一种菌株引入土壤都不会改变线虫类群落。 克氏杆菌是一种能使乳糖发酵的常见土壤细菌。基因工程细菌被制造用来在发酵桶中产生使农业废物转换为乙醇的增强乙醇浓缩物。发酵残留物,包括基因工程细菌亦可于土壤改良。 研究证明,一些土壤生态系统中的基因工程细菌在某些条件下可长期存活,时间之长足以刺激土壤生物产生变化,影响植物生长和营养循环进程。虽然目前仍不清楚此类就地观测的程度,但是基因工程细菌引起植物死亡的发现也说明如果使用此种土壤改良有杀伤农作物的可能。 致命基因工程鼠痘病毒偶然产生 澳大利亚研究员在研发对相对无害的鼠痘病毒基因工程时竟意外制创造出可彻底消灭老鼠的杀手病毒。 研究员们将白细胞间介素4的基因(在身体中自然产生)插入到一种鼠痘病毒中以促进抗体的产生,并创造出用于控制鼠害的鼠类避妊疫苗。非常意外的是,插入的基因完全抑制了老鼠的免疫系统。鼠痘病毒通常仅导致轻微的症状,但加入IL-4基因后,该病毒9天内使所有动物致死。更糟的是,此种基因工程病毒对接种疫苗有着异乎寻常的抵抗力。 经改良的鼠痘病毒虽然对人类无影响,但却与天花关系十分密切,让人担心基因工程将会被用于生物战。一名研究员在谈及他们决定出版研究成果的原因时曾说:" 我们想警告普通民众,现在有了这种有潜在危险的技术","我们还想让科学界明白,必须小心行事,制造高危致命生物并不是太困难。" 杀虫剂使用的增加大部分是由于HT作物,尤其是HT大豆使用的杀虫剂增加,这一点可追溯到对HT作物的严重依赖性以及杂草管理的单一除草剂(草甘磷)使用。这已导致转移到更加难以控制的杂草,而某些杂草中还出现了遗传抗性,迫使许多农民在基因工程作物上喷洒更多的除草剂以对杂草适当进行控制。HT大豆中的抗草甘膦杉叶藻(marestail)于2000年在美国首次出现,在HT棉花中也已鉴别出此种物质[27]。 其它研究显示,基因工程农作物本身也会对其使用的除草剂产生抗性,引发严重的自身自长作物问题(同一块地里早先种植的作物种子发芽的植物后来变成杂草)并迫使进一步使用除草剂。加拿大科学家证实了抗多种除草剂之基因工程油菜的迅速演化,此种作物因花粉长距离传播而融合了不同公司研制的单价抗除草剂特性 。 此外,科学家还在2002年确认了转基因可从Bt向日葵移动到附近的野生向日葵,使杂化物更强、对化学药品更具抗性,因为较之无基因控制的情况,杂化物多了50%的种子,且种子健康,甚至在干旱条件下也如此。 北卡罗莱那州大学的研究显示,Bt油菜与相关杂草、鸟食草之间的交叉物可产生抗虫性杂合物,使杂草控制更困难。 所有这些事件使预防方法和严格的生物安全管理变得突出。预防原则在《卡塔赫纳生物安全协议》这一主要管理转基因微生物的国际法律中已得到重申。尤其是第 10(6)条声称,如果缺乏科学定论,缔约方可限制或禁止转基因生物的进口,以避免或使生物多样性及人类健康的不利影响降到最低 | [
"4个分类",
"药品",
"克隆",
"基因",
"生物学"
] | 15,143 | zh-CN |
基因家族 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%AE%B6%E6%97%8F | 基因组进化中,一个基因通过基因重复产生了两个或更多的拷贝,这些基因即构成一个基因家族。 特点 是具有显著相似性的一组基因,编码相似的蛋白质产物。 在真核细胞中许多相关的基因常按功能成套组合,被称为基因家族(gene family)。同一家族中的成员有时紧密的排列在一起,成为一个基因簇; 更多的时候,它们却分散在同一染色体的不同部位,甚至位于不同染色体上,具有各自不同的表达调控模式。 一组功能相似且核苷酸序列具有同源性的基因,可能由某一共同祖先基因经重复和突变产生。(北大分子生物学笔记版) 由外显子相关的一组基因所组成,家族成员来自某个祖先基因的倍增和变异。 多基因家族 真核基因组的特点之一就是存在多基因家族(multi gene family)。多基因家族是指由某一祖先基因经过重复和变异所产生的一组基因。多基因家族大致可分为两类:一类是基因家族成簇地分布在某一条染色体上,它们可同时发挥作用,合成某些蛋白质,如组蛋白基因家族就成簇地集中在第7号染色体长臂3区2带到3区6带区域内;另一类是一个基因家族的不同成员成簇地分布不同染色体上,这些不同成员编码一组功能上紧密相关的蛋白质,如珠蛋白基因家族。在多基因家族中,某些成员并不产生有功能的基因产物,这些基因称为假基因(pseudo gene)。假基因与有功能的基因同源,原来可能也是有功能的基因,但由于缺失,倒位或点突变等,使这一基因失去活性,成为无功能基因。与相应的正常基因相比,假基因往往缺少正常基因的内含子,两侧有顺向重复序列。人们推测,假基因的来源之一,可能是基因经过转录后生成的RNA前体通过剪接失去内含子形成mRNA,如果mRNA经反复转录产生cDNA,再整合到染色体DNA中去,便有可能成为假基因,因此该假基因是没有内含子的,在这个过程中,可能同时会发生缺失,倒位或点突变等变化,从而使假基因不能表达 | [
"3个分类",
"生物",
"分子生物学",
"基因"
] | 786 | zh-CN |
基因定位 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%AE%9A%E4%BD%8D | 基因定位(mapping),基因所属连锁群或染色体以及基因在染色体上的位置的测定。它是遗传学研究中的一项基本工作;至于一个基因内部的突变位点的测定则一般称为基因精细结构分析。染色体基因定位方法多数也适用于染色体外遗传研究中的基因定位。 基因定位是遗传学研究中的重要环节。在遗传学的早期研究中并未发现果蝇等生物的基因在染色体上的位置和生理功能有什么关系。但以后发现一些有类似表型效应的基因是紧密连锁的。例如1945年E.B.刘易斯在果蝇中发现与中胸发育有关的几个基因相邻接,构成一个复合座位或称基因复合体或拟等位基因系列;1960年J.莫诺和F.雅各布报道大肠杆菌的与乳糖发酵有关的几个基因紧密连锁,构成一个操纵子。可见基因的位置并不是和它们的功能完全无关的,因此基因定位有助于了解基因的功能。此外,测定了某一基因在某一染色体上的位置以后,便可以用这一基因作为所属染色体或其一部分的标记,追踪并研究染色体的行为。例如通过分析大肠杆菌的接合过程中各个标记基因在受体菌株中出现的先后次序,就有助于了解接合过程中染色体的行为(见细菌接合);在许多生物中根据杂交子代中各个标记基因的组合,可以研究染色体干涉、染色单体干涉和染色体畸变;在育种工作中也经常通过标记基因来识别染色体的替换。1913年C.B.布里奇斯首先在果蝇中通过 X染色体的不离开现象证实了白眼基因(white,w)是在X染色体上。同年A.H.斯特蒂文特根据两个基因之间的距离愈远则交换频率愈高这一假设,首先在果蝇中进行了基因定位工作。 基因所属连锁群或染色体的测定 系谱分析法 在早期的人类遗传学研究中,基因所属染色体的测定一般都通过系谱分析进行。由于女子有两个X染色体,男子有一个X染色体和一个Y染色体,Y染色体上不存在和 X染色体相应的等位基因(也就是说对于 X连锁基因来讲,男子是半合体)。因此男性患者的X连锁致病基因必然来自母亲,以后又必定传给女儿。这种遗传方式称为交叉遗传。如果在一个家系中外祖父是某种疾病的患者,母亲的表型是正常的,外孙中有半数是患者,就可以判断有关的隐性致病基因是在 X染色体上。色盲基因便是1911年通过系谱分析最早发现的人的性连锁基因。位置在X染色体上的性连锁基因称为X连锁基因。常染色体遗传也有它自己的系谱特点(见人类遗传性疾病)。根据系谱分析一般只能够判断基因属于性染色体或常染色体,可是不能判断究竟属于哪一个常染色体。 非整倍体测交法 非整倍体测交法可以用来测定基因属于哪一个常染色体。用常染色体隐性突变型纯合体(a/a)和野生型二倍体(+/+)杂交,再用子一代杂合体(a/+)和隐性亲本回交,在它们的子代中表型是野生型的和表型是突变型的各占50%(见孟德尔定律)。 杂交 a/a × +/+ ↓ 回交 a/+ × a/a ↓ 回交子代 a/a a/+ 突变型 野生型 比例 1 ∶ 1 如果常染色体隐性突变型纯合体和某一染色体的野生型三体 (+/+/+)品系(见染色体畸变)杂交,子一代中的三体个体再和隐性亲本回交,在它们的子代中野生型和突变型之比是5∶1而不是1∶1。 如果常染色体隐性突变型纯合体和某一染色体的野生型单体品系 (+)杂交,在子一代中就出现50%的突变型个体,而不是100%的野生型。 杂交 a/a × + ↓ 子一代 a/+ ∶ a 野生型 突变型 比例 1 ∶ 1 根据上述三种不同的杂交结果,可见只要具备相当于每一染色体的一系列三体和单体品系,便能从杂交子代的突变型和野生型的比数中判断任何一个突变基因所属的染色体。小麦是多倍体植物,多倍体植物增加或减少一个染色体不会使它的生活力受到严重的影响,因此容易建立整套三体或单体品系,使基因定位工作得以顺利进行。除了小麦等植物以外,这一方法也用在酵母菌的遗传学研究中。 四分体分析法 由于子囊菌减数分裂所形成的四分体包被在一个子囊里,所以判断两个基因是否连锁,只需计算出各种类型的四分体数(即子囊数)。如果其中一个基因所属的连锁群已经知道,便很容易测定另一基因是否属于同一连锁群。 四分体有三种,即亲代二型(PD)、非亲代二型(NPD)和四型 (T)。如果有关的两个基因是连锁的,即PD是不交换或二线双交换的结果,NPD是四线双交换的结果,T是单交换或三线双交换的结果(见连锁和交换)。如果有关的两个基因是不连锁的,那么双基因杂交子代中所出现的四分体类型要看这两个基因各自和着丝粒之间是否发生交换而定。 根据这些关系,可以得到这样的规律:在双基因杂交子代的四分体类型中如果PD数大大地超出 NPD数而且T多而NPD少,那么这两个基因是连锁的,如果PD数和NPD数接近而且T少而NPD多,那么是不连锁的,一般把NPD/T的比值大于或小于1/4作为判断的标准。 连锁群法 利用近着丝粒距离基因的定位法 如果某一染色体上有一个离着丝粒距离较近的已知基因,另外有一个基因同样离着丝粒很近,可是不知道它是否属于同一染色体。把这样两个突变型品系进行杂交,如果这两个基因属于同一染色体,它们之间的重组频率不应超过两者的着丝粒距离之和;如果它们不属于同一染色体,那么它们的重组频率应是50%(见连锁和交换)。由于这两个基因与着丝粒距离都是较近的,所以增加了这一判断的可靠性。用这一方法曾测得粗糙脉孢菌的连锁群数是7。 同线法 如果一个细胞得到或丢失一条染色体则将同时得到或失去这条染色体上的全部基因。如果其中某些基因是已知的,而另一连锁关系未知的基因恰恰和上述基因同时得到或失去,便可以判定后一基因和前一基因属于同一连锁群。 这一原理曾广泛应用于人的基因定位。仙台病毒或聚乙二醇能促使人的体细胞和啮齿类动物的体细胞相融合(见体细胞遗传学),融合细胞在有丝分裂过程中随机地丢失人的染色体。通过细胞学观察,特别是应用显带染色(见核型)方法,可以选出具有某个或某几个人染色体的融合细胞株,再经组织培养并测定其中是否出现待测基因的表型就可以判断待测基因所属的染色体。 假定有五个人-鼠融合细胞株 A、B、C、D、E,它们分别保留有人染色体1、2、3中的这一个或那一个,例如细胞株A保留染色体2,细胞株D保留1、2、3这三个染色体等。分别测定甲、乙、丙、丁四种表型,如某种酶的活性或某种抗原的存在与否等。已经知道这些特性都是小鼠细胞所没有的,从表2的结果可以看到任何一个细胞株只要测得(或不能测得)甲这一性状时必然同时可以测得(或不能测得)丙这一性状。这一结果说明这两种酶或抗原蛋白的基因属于同一染色体。其次可以看到任何一个细胞株凡是保留染色体 2的必然出现上述性状,可见上述两个基因都在人的2号染色体上。 单元化定位法 在构窠曲霉这一类真菌的准性生殖过程中,杂合二倍体细胞在有丝分裂时常随机地丢失它的染色体。染色体在多次有丝分裂过程中逐条丢失而使二倍体细胞终于转变为单倍体细胞的过程称为单元化。如果一对染色体中带有显性的野生型基因的染色体丢失了,那么同源染色体上隐性基因的性状便得以表现。此外,通过体细胞交换也可以从杂合二倍体得到表现隐性性状的子代细胞。不过一次体细胞交换只能导致着丝粒一侧的隐性基因的性状得以表现,而同一染色体同时发生两次交换的概率极低,因此假如一个染色体的着丝粒两侧的隐性基因的性状都在一个子代细胞中表现,那就说明这是带有显性基因的染色体丢失的结果。另一个待测的隐性突变型如果同时得以表现,这就是它和已知基因有连锁关系的证据。 利用染色体易位的基因定位 直接观察法 易位(见染色体畸变)使染色体上的基因改变连锁关系,所以易位可以用来进行基因定位。如果易位所涉及的染色体是可以被识别的,那就更有利于定位工作。如果在遗传学分析中发现某两个连锁群的连锁关系都发生了改变,同时在显微镜下又可以辨认出有两个染色体发生了相互易位,那么就可以知道两个连锁群和两个染色体的对应关系。例如遗传学分析的结果说明小鼠品系 T1380的相互易位涉及连锁群LGⅡ和LGⅨ。品系RB163H的相互易位涉及连锁群LGⅡ和LGⅫ。细胞学观察说明前者涉及染色体 9和17,后者涉及染色体9和19,因此知道连锁群 LGⅡ属于染色体9,连锁群LGⅨ属于染色体17,连锁群 LGⅫ属于染色体19。 某些生物的染色体具有天然的标记,例如果蝇的唾腺染色体具有容易辨认的横纹,玉米的染色体有容易辨认的巨大的染色粒,所以通过直接的细胞学观察就可以辨认出易位所涉及的染色体,但是对于染色体数较多而又没有天然标记的生物,就需用显带技术鉴定染色体的易位。上述小鼠的连锁群所属的染色体便是应用显带技术鉴定的(见核型)。 假连锁法 相互易位杂合体只有在减数分裂过程中通过交互离开所形成的平衡配子才能够存活,并使非同源染色体上的基因显示假连锁现象(见染色体畸变)。所以把带有属于已知染色体的标记基因的相互易位品系作为测交品系和一个突变型品系杂交,如果发现这一突变基因经常和标记基因的野生型等位基因相连锁,就可以判定突变基因一定在相互易位的两个染色体中的一个上面。例如在粗糙脉孢菌中有一个品系(图1),它的第 Ⅰ染色体上带有白色分生孢子基因(albino,al),第Ⅳ 染色体上带有温度敏感的蔓延菌落基因(colonial temperature sensitive,cot),第Ⅵ染色体上带有黄色分生孢子基因(yellow conidia,ylo),同时它还是染色体Ⅰ-Ⅱ、Ⅳ-Ⅴ和Ⅲ-Ⅵ相互易位品系。用它作为测试菌株和任何一个突变型菌株进行杂交,就可以通过一次杂交大致上测得这一突变型所属的染色体。例如具有这一突变性状的杂交子代菌株总是菌丝蔓延的,就知道它的突变基因属于染色体Ⅳ或Ⅴ。又假如这个突变型和al、cot和ylo都没有连锁关系,那么由于粗糙脉孢菌只有7个染色体,就可以推测这一突变基因在染色体Ⅶ上。 基因在染色体上的位置的测定 根据重组频率的基因定位 同一染色体上两个基因之间的距离愈远,则发生交换的机会愈多,杂交子代中重组体也就愈多。所以测定杂交子代中重组体的多少,就可以知道有关的基因的距离,这是最基本的基因定位方法。A.H.斯特蒂文特把杂交子代中出现 1%重组体的两个基因之间的距离定为一个图距单位,后来又有人称之为一个分摩,用来纪念首先提出交换概念的T.H.摩尔根。同一原理也适用于单倍体微生物的基因定位。 三点测验法 在包括两对基因的杂交中,一次杂交可以测定两个基因之间的距离,通过三次杂交便可以测定三个基因的排列顺序和距离。但是在包括三对基因的一次杂交中,便可以测定三个基因的排列顺序和距离,这就是1913年由斯特蒂文特首创的三点测验方法。例如黑腹果蝇的X染色体上有黄体基因(yellow body,y;野生型灰体,y+)、白眼基因(white eye, w;野生型红眼,w+)和短翅基因 (miniature wing,m;野生型长翅,m+)。将黄体、白眼、短翅雌蝇和野生型雄蝇 (y+w+m+ 即+++)杂交,将得到的雌性杂合体 再和雄性子代ywm杂交,得到子二代个体(表3)。 从表中的数值求得: 基因y和w之间的重组频率=1.3% 基因w和m之间的重组频率=32.8% 基因y和m之间的重组频率 因此这三个基因在染色体上的相对位置如图2。三点测验或者包括更多的基因的杂交还可以用来研究交叉干涉、染色单体干涉等现象。 着丝粒距离法 一个基因与它所属染色体的着丝粒之间的距离称为着丝粒距离。在不同的生物中,可用不同的方法测定着丝粒距离。在粗糙脉孢菌中,着丝粒和基因之间的距离可以根据子囊中子囊孢子的排列顺序来测定,这是1932年美国微生物遗传学家 CC.林德格伦所首创的方法。在同一染色体上两个基因的着丝粒距离都被测定后,这两个基因之间的距离就可以断定为两者之和或者两者之差。 子囊的排列方式有 6种,AAaa和aaAA这两种称为第一次分裂分离,AaAa、aAaA、AaaA、aAAa这四种称为第二次分裂分离。前者基因A(a)和着丝粒之间没有发生交换,后者A(a)和着丝粒之间发生了交换。 所以某一基因和着丝粒之间交换频率愈高,第二次分裂分离子囊愈多。由于每次交换导致半数染色单体成为重组类型,所以 在高等植物如小麦和棉花中,可以利用衍生的端着丝粒染色体进行着丝粒距离测定。例如某一雄性亲本除了有一个正常的具中央着丝粒的染色体以外,还有一个由它的同源染色体衍生来的端着丝粒染色体。如果在正常染色体上有一个待测着丝粒距离的隐性基因,在端着丝粒染色体上有野生型的等位基因,带有端着丝粒染色体的花粉缺少一条染色体臂,使它不能顺利受精,因此大部分受精的配子都带有隐性基因,即带有正常的染色体。只有待测基因和端着丝粒染色体基因之间发生了一次交换,才能得到具有显性野生型基因的配子。因此由这样的雄性亲本和纯合隐性的雌性亲本杂交子代中出现的野生型个体数便可推知交换发生的频率,从而求得隐性基因的着丝粒距离。 体细胞交换法 三点测验和着丝粒距离法中所测定的都是发生在减数分裂中的染色体交换。1936年美国遗传学家C.斯特恩在果蝇中发现体细胞在有丝分裂过程中也可以发生染色体交换(见连锁和交换)。 50年代中G.蓬泰科尔沃等在研究构窠曲霉时发展起来一种利用体细胞交换的系统的基因定位方法。在进行有丝分裂的杂合二倍体细胞中,体细胞交换会导致在子代体细胞中出现隐性基因的纯合体,这一过程称为纯合化。 如果某一个二倍体细胞的某一染色体臂上有若干个基因都呈杂合状态,那么就可根据子代体细胞各个基因纯合化的频率推知它们的相对位置。交换只使比交换位置更远离着丝粒的隐性基因纯合化,所以某个基因纯合化的频率愈高,它离着丝粒的距离就愈远(图3)。 由于体细胞交换频率远远低于减数分裂过程中的交换频率,所以这一方法一般只用于不进行有性生殖的生物如某些真菌等的基因定位。这一方法也曾在衣藻中用来进行叶绿体基因的定位。 根据所测基因在某一已知染色体区段中是否存在的 基因定位 如果染色体的某一区段的位置是已知的,而且测得某一基因的位置在这一区段中,那么这一基因的位置也就被测定了。 缺失定位法 一个细胞中的两个同源染色体中的一个上有一个突变基因,另一染色体上有一小段已知范围的缺失,如果这一突变基因的位置在缺失范围内,便不可能通过重组而得到野生型重组体;如果突变基因不在缺失范围内,那么就可以得到野生型重组体。利用一系列已知缺失位置和范围的缺失突变型,便能测定突变型基因的位置。 标记获救法 这是一种结合物理图谱制作和遗传学分析的基因定位方法,它适用于病毒等基因组较小的生物。以大肠杆菌噬菌体ΦX174为例,把野生型噬菌体的双链复制型 DNA分子用限制性内切酶HindⅡ切为13个片段,把每种片段和突变型 amg的DNA单链在使DNA分子变性并复性的条件下混合保温,然后用各个样品分别转化受体细菌。如果在某一样品处理后的受体细菌中出现了大量的野生型噬菌体,于是就说明这一样品中的HindⅡ片段包含着amg的相应的野生型基因,由于13个HindⅡ片段的位置在物理图谱中全部都是已知的,因此便可以推知amg基因在染色体上的相应位置。用这一方法在ΦX174的环状的染色体图上已经测定了至少19个基因的位置。 根据并发事件的基因定位 位置邻近的基因表现某些相关的行为,所以从这些行为可以推测基因的连锁关系。 共转导法 每一种转导噬菌体有一定的大小,只能携带一定长度的供体细菌的 DNA。例如大肠杆菌噬菌体PI的头部中只能包装大约分子量为5.8×107的DNA,大肠杆菌的染色体DNA的分子量是2.5×109,所以PI所能包装的 DNA至多相当于大肠杆菌的遗传学图上相距两分钟这样一段DNA分子。如果两个基因能同时被转导,这两个基因之间的距离必然较近,而且距离愈近则共转导频率愈高,因此可以由共转导的频率来推算基因间的距离。 其中 d是以分钟计算的供体大肠杆菌两个基因之间的距离,L是以分钟计算的转导DNA的长度,取为两分钟。大肠杆菌遗传学图的大部分位置上的基因都曾用共转导方法定位,这样得来的遗传学图比用中断杂交方法或重组方法测得的图更为精确(见细菌接合)。 共缺失法 缺失带来和基因突变相同的表型。由一次缺失所造成的突变只涉及相邻接的基因,因此可以从缺失所带来的基因突变的分析来测定一些基因的相对位置,这一方法被广泛应用于酵母菌的线粒体基因的定位(见染色体外遗传)。 根据基因行为的定位 基因的某些行为可以反映它们的位置。在细菌接合过程中“雄性”细菌的染色体基因按先后顺序转移到“雌性”细菌中。一些基因组较小的病毒,整个基因组往往作为一个单位转录。因此接合过程中基因转移的先后、转录过程中转录的先后或DNA复制的先后都可以在某些特殊的生物中用来作为基因定位的手段。 中断杂交法 见细菌接合。 转录定位法 许多 RNA病毒的整个基因组往往作为一个单位转录。随着转录的进行,由基因组上各个基因所编码的蛋白质也依序在寄主细胞中出现。当寄主细胞被紫外线照射使本身的蛋白质合成受到抑制时,病毒蛋白的出现更为明显。紫外线照射也起着抑制病毒基因组的转录的作用。紫外线在 RNA分子的某一部位造成损伤后,损伤的部位和它后面的基因的转录都将受到影响,损伤部位以前的基因的转录则不受影响。因为转录沿负链RNA的3′端向5′端进行,所以愈是接近3′端的基因的转录和由它编码的蛋白质在寄主细胞中的合成受到紫外线损伤的影响愈小,而愈是接近 5′端的基因和相应的蛋白质的合成愈容易为紫外线照射所抑制。因此只要先用相同剂量的紫外线照射待测病毒,然后再测出寄主细胞中该病毒编码的各种蛋白质的产量,便可以推知该病毒各个基因的位置。 测定绝对位置的基因定位 细胞学图 通过种种方法可以测得基因之间的距离,但图距并不表示绝对长度,而且在不同的生物中同一图距代表不同的实际长度。通过细胞遗传学的方法可以测定基因的实际位置,这样绘制的基因位置图称为细胞学图,而通过一般遗传学方法绘制的图则称为遗传学图。 在杂合的二倍体生物中,由于显性的野生型基因的存在,隐性的突变基因得不到表现。如果带有野生型基因的这一染色体发生了一个缺失,而缺失部分又正好包括这一野生型基因,那么同源染色体上相应的隐性基因的突变性状便得以表现(见染色体畸变)。果蝇具有便于观察染色体细微结构的唾腺染色体,它上面的横纹缺失可以在光学显微镜下识别。通过一系列的杂交,可以得到某一隐性突变基因和一系列的缺失染色体组合在一起的果蝇,对于这些杂合体果蝇进行染色体分析和性状观察,便可以判断某隐性突变基因在染色体上的真实位置。 从果蝇的X染色体上包括白色复眼(white eye,w)和小糙眼(facet,fa)区域的分析结果(图4)可以看到凡是缺失3C7这一横纹的杂合体都呈现小糙眼突变型性状,说明fa基因位置在唾腺染色体的3C7横纹处。 物理图谱 原核生物 DNA分子上缺乏天然的容易识别的标记,可用限制图谱和部分变性图的测定来弥补这一不足。 各种限制性核酸内切酶具有各自的识别顺序。这些识别顺序可以作为DNA部位的标记,用不同的限制酶处理同一DNA分子,通过对酶切产生的DNA片段的大小和位置的分析,可以绘制出某一 DNA分子的限制图谱。此外,每一个DNA分子上富含A∶T碱基对和富含 G嗈C碱基对的区域的分布各不相同。富含A∶T碱基对的区域比富含G嗈C碱基对的区域更易变性。所以在严格控制的变性条件下每一种 DNA分子具有变性环的特定分布形式,构成部分变性图。 分子杂交法 分子杂交和体细胞遗传学相结合的方法也可以用来测定人的基因的绝对位置。用体细胞遗传学方法,可以得到只含有某一条人类染色体的人-仓鼠杂种细胞的克隆。然后可以进一步取得这一人类染色体发生各种缺失的克隆。把从这一系列缺失克隆中提取出来的 DNA吸附在硝酸纤维素滤膜上。再把人的基因文库中的各个基因的 DNA片段用32P标记制成探针,然后用探针分别与膜上吸附的 DNA进行分子杂交测验,能杂交者表示它的缺失部分不包括这一基因。再结合染色体显带技术便可以测定这一基因在染色体上的绝对位置。缺失克隆的数目愈多,测定的位置就愈精确。 基因精细结构分析 重组频率定位法 原理和在高等动植物中用杂交子代中重组频率的高低来计算两个基因间的距离没有不同。不过在微生物中一个菌落或一个噬菌斑代表一个个体,因而便于通过大量的杂交子代的观察来进行精细结构分析;而且往往采用选择性培养方法淘汰没有发生重组的亲本,使分析的效率和精密度进一步提高。不过精细结构的重组频率容易受到突变位置本身的影响,这就是标记影响。 缺失定位法 原理和基因的缺失定位相同,不过需要具备种类更多而差别更为细微的缺失菌株。在大肠杆菌的 T4噬菌体中曾经获得一系列快速溶菌突变型rⅡ基因部分缺失突变型,利用这些突变型可以迅速测定任何一个 rⅡ点突变在rⅡ基因中的位置。图5中的每一编号标明的横线表示一个缺失突变型的缺失范围。定位分两步进行,首先测定大的范围,然后测定精确的位置。例如有一个点突变型和缺失突变型 A105和638能发生重组而和其余五个不发生重组,就可知它的位置在区域A5中,然后进一步利用A5中三个缺失突变型1605、1589、PB230进行更精确的定位(图5)。可见只要有足够多的缺失突变型,就可使位置测定得十分精确。这一方法在实际操作上很简单,因为只要观察有没有噬菌斑出现,而无须计算噬菌斑的数目。 共转导定位法 原理和基因的共转导定位也没有不同。共转导的精确性较好,而且所需要的只是一个转导噬菌体菌株,所以应用较广,尤期适用于测定一系列属于同一基因的点突变的相对位置。 体细胞重组定位法 原理相同于基因纯合化的定位方法。由于体细胞交换发生得较少,所以常用 X射线处理杂合体使之发生更多的体细胞交换。 基因转变的梯度定位法 一个基因内部的各个点突变的基因转变常呈梯度现象,即在这基因的一端发生基因转变的频率最高,在另一端则最低,在两端之间存在着一个转变频率的梯度。对于任何一个未知位置的点突变,可以通过基因转变频率的测定进行精细结构定位。这一方法的应用限于一次减数分裂产物包被在一个囊里面的子囊菌,而且限于影响子囊孢子颜色和形状的基因。 小结 基因定位既是遗传学研究的基本方法,又随着遗传学研究的不断深入而出现新的方法。长期以来基因定位工作离不开杂交试验,也离不开突变基因,但自从开展了分子遗传学的研究以后,便出现了不必通过杂交也不依赖于突变基因的基因定位方法,例如分子杂交定位等方法。可以预见,随着研究工作的深入,必将出现更为精确的基因定位方法。 参看 医学遗传学/基因定位 | [
"1个分类",
"遗传学"
] | 9,208 | zh-CN |
遗传学 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%AD%A6 | (重定向自基因学) 遗传学(genetics),生物学中研究遗传和变异即研究亲子间的异同的分支学科。这一学科名称是英国遗传学家W.贝特森在1909年首先提出的。 研究范围和分科 遗传学的研究范围包括遗传物质的本质、遗传物质的传递和遗传信息的实现3 个方面。遗传物质的本质包括它的化学本质、它所包含的遗传信息、它的结构、组织和变化等。遗传物质的传递包括遗传物质的复制、染色体的行为、遗传规律和基因在群体中的数量变迁等。遗传信息的实现包括基因的原初功能、基因的相互作用、基因作用的调控以及个体发育中的基因的作用机制等。 遗传学中的亲子概念不限于父母子女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到 DNA脱氧核糖核酸的复制甚至mRNA的转录,这些是分子遗传学研究的课题。一个受精卵通过有丝分裂而产生无数具有相同遗传组成的子细胞,它们怎样分化成为不同的组织是一个遗传学课题,有关这方面的研究属于发生遗传学。由一个受精卵产生的免疫活性细胞能够分别产生各种不同的抗体球蛋白,这也是遗传学的一个课题,它的研究属于免疫遗传学。 从噬菌体到人,生物界有基本一致的遗传和变异规律,所以遗传学原则上不以研究的生物对象划分学科分支。人类遗传学的划分是因为研究人的遗传学与人类的幸福密切相关,而系谱分析和双生儿法等又几乎只限于人类的遗传学研究。微生物遗传学的划分是因为微生物与高等动植物的体制很不相同,因而必须采用特殊方法进行研究。此外,还有因生产意义而出现的以某一类或某一种生物命名的分支学科,如家禽遗传学、棉花遗传学、水稻遗传学等。 更多的遗传学分支学科是按照所研究的问题来划分的。例如细胞遗传学是细胞学和遗传学的结合,主要研究遗传现象和染色体行为之间的关系、染色体畸变以及染色体倍性改变的遗传学效应等。发生遗传学所研究的是个体发育的遗传控制,如在形态建成过程中细胞核和细胞质之间的关系,在个体发育过程中基因如何被阻遏或激活等。行为遗传学研究的是行为的遗传基础,包括细菌的趋性的遗传基础、动物的求偶、筑巢等行为以至于人的性格等的遗传基础。免疫遗传学研究的是免疫机制的遗传基础,包括免疫球蛋白的多样性的来源的研究、免疫反应的遗传基础的研究等。辐射遗传学专门研究辐射的遗传学效应。药物遗传学则专门研究人对药物反应的遗传规律和物质基础等。 从群体角度进行遗传学研究的学科有群体遗传学、生态遗传学、数量遗传学、进化遗传学等。这些学科之间关系紧密,界线较难划分。群体遗传学常用数学方法研究群体中的基因的动态,研究基因突变、自然选择、群体大小、交配体制、迁移和漂变等因素对于群体中的基因频率和基因平衡的影响。生态遗传学研究的是生物与生物以及生物与环境相互适应或影响的遗传学基础,常把野外工作和实验室工作结合起来研究多态现象、拟态等,借以验证群体遗传学研究中得来的结论。进化遗传学的研究内容包括生命起源、遗传物质、遗传密码和遗传机构的演变以及物种形成的遗传基础等。物种形成的研究也和群体遗传学、生态遗传学有密切的关系。 从应用角度看,医学遗传学是人类遗传学的分支学科,它研究遗传性疾病的遗传规律和本质;临床遗传学则研究遗传病的诊断和预防;优生学则是遗传学原理在改良人类遗传素质中的应用。生统遗传学或数量遗传学的主要研究对象是数量性状,而农作物和家畜的经济性状多半是数量性状,因此它们是动植物育种的理论基础。 材料和方法 杂交是遗传学研究的最常用的手段之一,所以生活周期的长短和体形的大小是选择遗传学研究材料常要考虑的因素。昆虫中的果蝇、哺乳动物中的小鼠和种子植物中的拟南芥便是由于生活周期短和体形小而常被用作遗传学研究的材料。秀丽隐杆线虫被用作发生遗传学和行为遗传学的研究材料,除了由于细胞数目少且固定以外,生活周期短和体形小也是重要的因素。大肠杆菌和它的噬菌体更是分子遗传学研究中的常用材料 (见微生物遗传学)。脉纹孢菌属(Neurospora)和粪壳菌(Podospora)的一次减数分裂的产物按一定顺序排列在一个子囊中,这一生物学特性对研究减数分裂中较少发生的事件(例如基因转变有特殊的意义。生物化学方法几乎为任何遗传学分支学科的研究所普遍采用,更为分子遗传学所必需。 分子遗传学中的重组DNA技术或遗传工程技术已逐渐成为遗传学研究中的有力工具。 学科的形成和发展 人类在新石器时代就驯养动物和栽培植物,而后人们逐渐学会了改良动植物品种的方法。西班牙学者L.J.M.科卢梅拉在公元60年左右所写的《论农作物》一书中描述了嫁接技术,还记载了几个小麦品种。533~544年间中国学者贾思勰在所著《齐民要术》一书中论述了各种农作物、蔬菜、果树、竹木的栽培和家畜的饲养,还特别记载了果树的嫁接,树苗的繁殖,家禽、家畜的阉割等技术。改良品种的活动从那时以后从未中断。许多人在这些活动的基础上力图阐明亲代和杂交子代的性状之间的遗传规律都未获成功。直到1866年奥地利学者G.J.孟德尔根据他的豌豆杂交实验结果发表了《植物杂交试验》的论文,揭示了现在称为孟德尔定律的遗传规律,才奠定了遗传学的基础。 孟德尔的工作结果直到20世纪初才受到重视。19世纪末叶在生物学中下述两个方面的成就促进了遗传学的发展:①关于细胞分裂、染色体行为和受精过程等方面的研究,从1875~1884的几年中德国解剖学家和细胞学家W.弗勒明在动物中,德国植物学家和细胞学家E.A.施特拉斯布格在植物中分别发现了有丝分裂、减数分裂、染色体的纵向分裂以及分裂后的趋向两极的行为;比利时动物学家 E.van贝内登还观察到马副蛔虫 (Parasca-ris equorum)的每一个身体细胞中含有等数的染色体;德国动物学家O.赫特维希在动物中,施特拉斯布格在植物中分别发现受精现象;这些发现都为遗传的染色体学说奠定了基础。美国动物学家和细胞学家E.B.威尔逊在1896年发表的《发育和遗传中的细胞》一书总结了这一时期的发现。②对于遗传物质的认识,关于遗传的物质基础历来有所臆测。例如1864年英国哲学家H.斯宾塞称之为活粒;1868年英国生物学家C.R.达尔文称之为微芽;1884年瑞士植物学家C.W.von内格利称之为异胞质;1889年荷兰学者H.德.弗里斯称之为泛生子;1883年德国动物学家A.魏斯曼称之为种质。实际上魏斯曼所说的种质已经不再是单纯的臆测了,他已经指明生殖细胞的染色体便是种质,并且明确地区分种质和体质,认为种质可以影响体质,而体质不能影响种质,在理论上为遗传学的发展开辟了道路。 孟德尔的工作于1900年为德.弗里斯、德国植物遗传学家 C.E.科伦斯和奥地利植物遗传学家E.von切尔马克三位从事植物杂交试验工作的学者所分别发现。1900~1910年除证实了植物中的豌豆、玉米等和动物中的鸡、小鼠、豚鼠等的某些性状的遗传符合孟德尔定律以外,还确立了遗传学的一些基本概念。1909年丹麦植物生理学家和遗传学家W.L.约翰森称孟德尔式遗传中的遗传因子为基因,并且明确区别基因型和表型。同年贝特森还创造了等位基因、杂合体、纯合体等术语,并发表了代表性著作《孟德尔的遗传原理》。 从 1910年到现在遗传学的发展大致可以分为3个时期:细胞遗传学时期、微生物遗传学时期和分子遗传学时期。在这3个时期中上述3个遗传学分支学科分别起着主导作用。 细胞遗传学时期 大致是1910~1940年,从具体的研究工作来看,可从美国遗传学家和发育生物学家T.H.摩尔根在1910年发表关于果蝇的性连锁遗传开始,到1941年美国遗传学家G.W.比德尔和美国生物化学家E.L.塔特姆发表关于链孢霉的营养缺陷型方面的研究结果为止。这一时期通过对遗传学规律和染色体行为的研究确立了遗传的染色体学说。摩尔根在1926年发表的《基因论》和英国细胞遗传学家C.D.达林顿在1932年发表的《细胞学的最新成就》两书是这一时期的代表性著作。由群体遗传学、进化遗传学、古生物学等形成的进传的综合理论在这一时期也有很大发展。它们的代表性著作有:英国统计学家R.A.费希尔的《自然选择中的遗传理论》,美国遗传学家S.赖特的《孟德尔群体的进化》,英国生理学家和遗传学家J.B.S.霍尔丹的《进化的原因》,美国遗传学家T.多布然斯基的《遗传学和物种起源》(1937),美国古生物学家G.G.辛普森的《进化的节奏和型式》。这一时期中虽然在 1927年由美国遗传学家 H.J.马勒和1928 年由L.J.斯塔德勒分别在动植物中发现了X射线的诱变作用,可是对于基因突变机制的研究并没有进展。基因作用机制研究的重要成果则几乎只限于动植物色素的遗传研究方面。 微生物遗传学时期 大致是1940~1960年,从1941年比德尔和塔特姆发表关于脉孢霉属中的研究结果开始,到1960~1961年法国分子遗传学家F.雅各布和J.莫诺发表关于大肠杆菌的操纵子学说为止。在这一时期中,采用微生物作为材料研究基因的原初作用、精细结构、化学本质、突变机制以及细菌的基因重组、基因调控等,取得了已往在高等动植物研究中难以取得的成果,从而丰富了遗传学的基础理论。1900~1910年人们只认识到孟德尔定律广泛适用于高等动植物,微生物遗传学时期的工作成就则使人们认识到遗传学的基本规律适用于包括人和噬菌体在内的一切生物。 分子遗传学时期 从1953年美国分子生物学家J.D.沃森和英国分子生物学家F.H.C.克里克提出 DNA的双螺旋模型开始,但是50年代只在DNA分子结构和复制方面取得了一些成就,而遗传密码、mRNA、tRNA、核糖体的功能等则几乎都是60年代才得以初步阐明。分子遗传学是在微生物遗传学和生物化学的基础上发展起来的。分子遗传学的基础研究工作都以微生物、特别是以大肠杆菌和它的噬菌体作为研究材料;它的一些重要概念如基因和蛋白质的线性对应关系、基因调控等也都来自微生物遗传学的研究。分子遗传学在原核生物领域取得上述许多成就后,才逐渐在真核生物方面开展起来。 正像细胞遗传学研究推动了群体遗传学和进化遗传学的发展一样,分子遗传学也推动了其他遗传学分支学科的发展。遗传工程是在细菌质粒和噬菌体以及限制性内切酶研究的基础上发展起来的,它不但可以应用于工、农、医各个方面,而且还进一步推进分子遗传学和其他遗传学分支学科的研究。免疫学在医学上极为重要,已有相当长的历史。按照一个基因一种酶假设,一个生物为什么能产生无数种类的免疫球蛋白,这本身就是一个分子遗传学问题。自从澳大利亚免疫学家F.M.伯内特在1959年提出了克隆选择学说以后,免疫机制便吸引了许多遗传学家的注意。目前免疫遗传学既是遗传学中比较活跃的领域之一,也是分子遗传学的活跃领域之一。 在分子遗传学时代另外两个迅速发展的遗传学分支是人类遗传学和体细胞遗传学。自从采用了微生物遗传学研究的手段后,遗传学研究可以不通过生殖细胞而通过离体培养的体细胞进行,人类遗传学的研究才得以迅速发展。不论研究的对象是什么,凡是采用组织培养之类方法进行的遗传学研究都属于体细胞遗传学。人类遗传学的研究一方面广泛采用体细胞遗传学方法,另一方面也愈来愈多地应用分子遗传学方法,例如采用遗传工程的方法来建立人的基因文库并从中分离特定基因进行研究等。从此,许多遗传学分支的研究都采用了分子遗传学手段,特别是重组DNA技术。即使是有关群体的遗传学研究也受分子遗传学的影响,进化遗传学研究中的分子进化领域便是一个例子。 与其他生物学学科的关系 遗传学与生物化学的关系最为密切。一方面许多遗传学研究中必须应用生物化学方法和知识,另一方面遗传学研究结果也丰富了生物化学的内容。例如在40年代发现了链孢霉的营养缺陷型,通过营养缺陷型的研究一方面阐明了基因的原初作用,另一方面也揭示了一些氨基酸和核苷酸的生物合成途径,因此一度出现生化遗传学这一名词。 生物大分子DNA和蛋白质的合成机制是生物化学的重要课题。在小分子物质的生物合成得到初步阐明后,人们便转向生物大分子的生物合成的研究。DNA的半保留复制方式的发现对于遗传学和生物化学都有重要意义,而进一步揭示DNA的复制机制则也正在从遗传学和生物化学两个方面进行研究。蛋白质生物合成与遗传密码也和MRNA、TRNA和核糖体等有密切关系,所以了解蛋白质合成机制也离不开遗传学研究。遗传学方法也愈来愈多地应用于研究蛋白质分子的结构和功能的关系。 遗传学和其他许多生物学分支学科之间也有密切关系。例如发生遗传学和发育生物学之间的关系;行为遗传学同行为生物学之间的关系;生态遗传学同生态学之间的关系等。此外,遗传学和分类学之间也有着密切的关系,这不仅因为在分类学中应用了DNA碱基成分和染色体等作为指标,而且还因为物种的实质也必须从遗传学的角度去认识。 各个生物学分支学科所研究的是生物的各个层次上的结构和功能,这些结构和功能无一不是遗传和环境相互作用的结果,所以许多学科在概念和方法上都难于离开遗传学。例如激素的作用机制和免疫反应机制一向被看作是和遗传学没有直接关系的生理学问题,可是现在知道前者和基因的激活有关,后者和身体中不同免疫活性细胞克隆的选择有关。 从生物的个体发育来看,一个受精卵通过胚胎发育而逐渐分化的过程是基因被分别激活或阻遏的过程;生物的进化(种系发育)则是遗传物质逐渐变化的过程。所以个体发育和种系发育的研究也都离不开遗传学。 在遗传学中可以看到生命的多样性,但还可以更多地看到生命的共性。例如人和噬菌体的基因突变和重组机制没有原则上的区别;遗传密码具有统一性等。这一切都说明遗传学在揭示生命本质的研究中具有突出的重要性,是整个生物科学发展的焦点。 实践意义 遗传学是在育种实践基础上发展起来的。在人们进行遗传规律和机制的理论性探讨以前,育种工作只限于选种和杂交。遗传学的理论研究开展以后,育种的手段便随着对遗传和变异的本质的深入了解而增加。美国在20年代中应用杂种优势这一遗传学原理于玉米育种而取得显著的增产效果;中国在70年代把此原理成功地推广应用于水稻生产。多倍体的生长优势同样在中国得到了应用,小黑麦异源多倍体的培育成功便是一例。人工诱变也是广泛应用的育种方法之一。数量遗传学和生物统计遗传学的研究结果,被应用到动、植物选种工作中而使育种效率得以提高。这些主要是细胞遗传学时期研究成果的应用。 40年代初,抗菌素工业的兴起推动了微生物遗传学的发展,微生物遗传学的发展又推动了抗菌素工业以及其他新兴的发酵工业的进步。遗传学的初期应用限于诱变育种。随着微生物遗传学研究的深入,基因调控作用的原理被成功地应用到氨基酸等发酵工业中。此外杂交、转导、转化等技术的采用也增加了育种的手段。 70年代体细胞遗传学的发展进一步增加了育种的手段,包括所谓单倍体育种以及通过体细胞诱变和细胞融合的育种等。这些手段的应用将有可能大大地加速育种工作的进程。特别是遗传工程开辟了遗传学应用于生产实践的新纪元,应用遗传工程方法进行干扰素等生物制剂的生产将使生产成本显著降低。 遗传学研究也同人类本身直接有关。由于人类遗传学研究的开展,特别是应用体细胞遗传学和生化遗传学方法所取得的进展,对于遗传性疾病的种类和原因已经有很多了解;产前诊断和婴儿的遗传性疾病诊断已经逐渐推广;对于某些遗传性疾病的药物治疗也在研究中。加上遗传咨询等措施的运用,遗传性疾病对人类的危害将会日益受到遏制。免疫遗传学是组织移植和输血等医学实践的理论基础。药物遗传学和药物学有密切的关系。毒理遗传学关系到药物的安全使用和环境保护。用遗传工程技术对遗传性疾病进行基因治疗也正在进行探索。人类遗传学研究也是优生学的基础。 遗传学研究为致癌物质的检测提供了一系列的方法(见基因突变、毒理遗传学)。虽然目前治疗癌症还没有十分有效的方法,但在环境污染日益严重的今天能够有效地检测环境中的致癌物质,便是一个重大的进展。癌症患病的倾向性是遗传的,癌症的起因又同DNA损伤修复有关,近年来癌基因的发现进一步说明癌症和遗传的密切关系,所以从长远观点来看,遗传学研究必将为全面控制癌症作出贡献。 参看 家庭诊疗/遗传学 | [
"1个分类",
"生物学"
] | 6,650 | zh-CN |
基因多效性 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%A4%9A%E6%95%88%E6%80%A7 | 也称一因多效.一个基因影响许多性状的现象.例如翻毛鸡的翻毛基因,不仅影响鸡羽的反卷,而且还影响其体温下降,心跳增快,心、脾扩大,生育力降低等.这说明基因通过生理生化过程而影响一系列性状的表现 | [
"3个分类",
"生物",
"基因",
"遗传学"
] | 95 | zh-CN |
基因变异 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%9E%8B%E5%8F%98%E5%BC%82 | (重定向自基因型变异) 基因变异是指基因组DNA分子发生的突然的可遗传的变异。从分子水平上看,基因变异是指基因在结构上发生碱基对组成或排列顺序的改变。根据碱基变化的情况,基因突变一般可分为碱基置换突变(base substitution和移码突变(frameshift mutation)两大类。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种隐定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做变异基因。于是后代的表现中也就突然地出现祖先从未有的新性状。 基因突变的现象 出现变异的原因 很多原因都可以导致基因发生突变,包括物理因素、化学因素、生物因素,这点与疾病相类似。不大严谨而言,疾病几乎都是跟这三大类病因相关。当然,社会心理因素也很有关系。 物理因素:x射线、激光、紫外线、伽马射线等。 化学因素:亚硝酸、黄曲霉素、碱基类似物等。 生物因素:某些病毒和细菌等。 科技进展 位于英国剑桥的桑格研究院(WelcomeTrustSangerInstitute)以及两家来自美国和加拿大的研究机构最近的研究发现,每个人相比其父母一辈,其基因组均出现了多达60处的突变。人类基因组由23对染色体组成。这项研究发现携带父亲染色体的精子和携带母亲染色体的卵子的基因成分都出现了突变,从而在孩子的基因组构成中出现了在父母基因组中都不曾出现的新基因。为了对这种变异的程度和范围进行定量的研究,科学家们选取了两个志愿者家庭,每一个家庭都有父母亲以及他们的一个孩子。为了在孩子的基因组序列中寻找可能出现的变异,科学家们对6000种可能出现的变异可能进行逐一梳理。这样做的结果是,他们很快注意到,在一代人的时间内,子代基因变异的程度约为每1亿个基因编码出现1处变异。研究人员还区分出了哪些变异是源自其父母亲的精子和卵子,而哪些则是孩子出生之后发生的。有关这一研究的论文已经发表在了《自然·遗传学》上,让生物学界惊奇不已。 基因突变 举例 例如英国女王维多利亚家族在她以前没有发现过血友病的病人,但是她的一个儿子患了血友病,成了她家族中第一个患血友病的成员。后来,又在她的外孙中出现了几个血友病病人。很显然,在她的父亲或母亲中产生了一个血友病基因的突变。这个突变基因传给了她,而她是杂合子,所以表现型仍是正常的,但却通过她传给了她的儿子。 基因突变的影响 基因变异的后果除如上所述形成致病基因引起遗传病外,还可造成死胎、自然流产和出生后天折等,称为致死性突变;当然也可能对人体并无影响,仅仅造成正常人体间的遗传学差异;甚至可能给个体的生存带来一定的好处。 基因突变的好处 对于人类来讲,基因突变可以是有用的也可以是有害的。 (1)诱变育种:通过诱发使生物产生大量而多样的基因突变,从而可以根据需要选育出优良品种,这是基因突变的有用的方面。在化学诱变剂发现以前,植物育种工作主要采用辐射作为诱变剂;化学诱变剂发现以后,诱变手段便大大地增加了。在微生物的诱变育种工作中,由于容易在短时间中处理大量的个体,所以一般只是要求诱变剂作用强,也就是说要求它能产生大量的突变。对于难以在短时间内处理大量个体的高等植物来讲,则要求诱变剂的作用较强,效率较高并较为专一。所谓效率较高便是产生更多的基因突变和较少的染色体畸变。所谓专一便是产生特定类型的突变型。以色列培育“彩色青椒”关键技术就是把青椒种子送上太空,使其在完全失重状态下发生基因突变来育种。 (2)害虫防治:用诱变剂处理雄性害虫使之发生致死的或条件致死的突变,然后释放这些雄性害虫,便能使它们和野生的雄性昆虫相竞争而产生致死的或不育的子代。 总结 基因突变有好有坏,很多肿瘤或恶性疾病是跟基因突变有关。但基因突变对人类也是有很大帮助的。正如上述。人类要适应环境,就必须是优胜劣汰,因为存在基因突变,突变后有利于生存的基因就保留了下来,而不利生存的基因个体就灭亡。 参看 基因 染色体 参看 《医学遗传学基础》- 基因突变 | [
"2个分类",
"遗传学",
"生物化学"
] | 1,678 | zh-CN |
基因型 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%9E%8B | genotype 用基因组或互补染色体的碱基序列来定义的生物遗传特征和遗传表现。 基因型是指生物的遗传型,即控制性状的基因组合类型。是生物体从它的亲本获得全部基因的总和。 一个生物体的性状是很多的,那么,控制这些性状的全部基因就称为生物体基因型。但一般是指生物体被研究的性状的有关基因的组成,它是性状表现的内在因素,基因型肉眼看不到,可以通过杂交实验来鉴定。一般用符号来表示。如豌豆高茎的基因型可用DD或Dd表示;矮茎可用dd表示 | [
"4个分类",
"生物",
"生物学",
"分子生物学",
"基因"
] | 215 | zh-CN |
基因图 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%9B%BE | 人类基因图谱的完成,是医学上一场革命的开始,但这场革命的成功将需要更长的时间。中国科学家承担了这个工程1%的工作量。 人类基因图谱的绘制完成,给即将广泛推行的全新基因医疗手段打下了坚实的基础,它使人类向真正的“个性化医疗”时代又迈进一步。今后,遗传疾病或是疑难杂症,只要根据患者个人的基因图谱“逮住”其中出了问题的基因,用最直接的办法使基因恢复正常状态,人体就会作出相应调整,从而治愈疾病。人类大约有3万个基因,比科研人员原本预料的少了许多。通过了解人类基因的遗传成分,科研人员就可为个人量身制作预防性疗法并且制造各种新药物,父母也可以检查腹中胎儿是否有遗传缺陷。而有朝一日,像糖尿病、癌症、早老性痴呆症、精神病等过去无法根治的病症,也能根治了。 人类基因图的意义 人类基因组序列图是一个了不起的成就,是当代世界最先进的生物、信息等多种学科技术的有机集成。人类基因组计划开始于1990年,来自6国的一大批科研机构先后参与了这一纷繁复杂的工程。在研究项目启动之初,要完全确认一个碱基对需要花费10美元,一名经过严格训练的技术人员一天只能完成1万个碱基对的测序,而随着技术的突飞猛进,目前确认一个碱基对的成本降到了5美分,利用机器人测序,其效率是每秒钟1万个碱基对。在各国专家的精诚合作下,人类基因组计划2000年6月完成了人类基因组序列的“工作框架图”,2002年2月又公布了“精细图”,此次又推出了“完成图”。从“框架图”到“完成图”,人类基因组测序范围从90%提高到了99%,以碱基对为基础的误差率从1/1000降到了1/10000。科学家发现,人类基因数目约为3.4万至3.5万个,仅比果蝇多2万个,远小于原先10万个基因的估计。基因是生命遗传的基本单位,人类基因组包含30亿个碱基对,绘制出人类基因组序列图就意味着掌握了探索人类“生命迷宫”的路标。 人类基因组序列图的完成具有许多重要意义和实用价值。首先,它为人类了解自身提供了一个十分重要的平台。通过研究基因序列可以进一步分辨出人与人之间、族群与族群之间在生理上有何异同。专家称,人类基因组研究的下一个目标是人类基因组单体型图计划,目前美国、英国、日本、加拿大和中国科学家已在着手进行这一工程。人类基因组单体型图计划旨在分析各主要人类群体的差异,并在此基础上进一步分析所有与疾病相关的序列差异,为21世纪的“个人医学”奠定基础。 其次,它会引起生物学研究的“彻底革命”。在基因时代之前,大学生物学系的研究生们几十人花几年时间分析一种基因的功能,而如今只要点击几下电脑键盘,同样的信息即可展现眼前。自从人类基因组计划开始以来,被确定引起人类疾病的基因数量发生了“爆炸”,从1990年的不足100个猛升到了今天的1400多个。 第三,它可能会促使人类社会进入“生物制药的新时代”,为治愈许多疑难病症提供一条捷径。科学家认为,通过对个体病人DNA的分析,将来有可能会设计出不引起副作用的专门药物或是疫苗,从而达到百分之百的对症下药。在不远的将来,基因工程药物、基因治疗、生物芯片诊断技术等都会有极其广阔的应用前景。目前,美国正在这方面加大力度争占制高点,根据基因研究而推出的新药已有350种投入了生产。 第四,它还有利于能源开发和环境保护。美国能源部正在利用人类基因组计划的成果加紧研究单细胞生物的各种功能。比如,利用先进的电脑测序技术寻找某些微生物,看其能否帮助清理核废料,能否让汽油燃烧更彻底,或者干脆让其替代成为产生燃料氢的来源体。 基因图: 早在1990年,美国政府就开始了“人类基因组图谱计划”。2001年2月12日,中、美、日、德、法、英等6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。作为现代生命科学和基因组科学的权威,在沃森(James Watson)等人的推动下,人类基因组计划在过去10多年里成功得以实施。 尽管有了全人类的基因组图谱,但是每个人的基因组仍有不同之处。人们何时能有自己的基因组图谱?答案是2007年。5月30日,时年79岁的沃森成为世界上首位获得自己基因组图谱的个人。此次破译过程发现的人类遗传变异的数量比之前人们所设想的要“丰富”得多。同时,生物科学界的“怪人”文特尔的私人生物技术公司也制作完成了他本人的个人基因组图谱。 1953年3月,沃森与弗朗西斯.克里克发现了DNA的双链分子结构,从此为人类探索生命遗传秘密开辟了道路。沃森因此被称为“DNA之父”。57年后,美国一家基因技术公司交给沃森一张光盘,上面记录有数万个人类基因中30亿个碱基对在沃森细胞内DNA双链上的排列位置。这便是沃森的个人基因组图谱。 而目前哈佛大学的乔治.丘吉尔更是宣布,要在近期内为10位志愿者做他们各自的个人基因组图谱。看来,基因组图谱的个体化正在一步步地扩散。 事实上有了个人基因组图谱,科学家便可以依据其基因排列顺序推断,这个人是否害羞、会不会患上精神疾病等等与基因遗传有关的表象特征。看来,绘制个人基因组图谱有着无比的检测优势。 而除去价格因素,绘制个人基因组图谱与传统的遗传检测相比还有其他方面的优势。美国贝勒大学(Baylor University)遗传学专家理查德.吉布斯就认为,遗传检测针对性和局限性较大,只能确认被检测基因是否是人类已知的基因变异种类之一。如果绘制个人基因组图谱,则能够以之与人类基因组图谱基准相比较,可以发现任何异常。 事实上,沃森、文特尔个人基因组图谱的诞生,意味着普通人不久也能拥有属于自己的基因组图谱,届时关于你的一切,与天性甚或与环境相连的每个基本问题,过去的、现在的、未来的,都将在基因中得到解答,一个个性化、具体化的基因组学时代即将来临。 - 观点 关注0.1%的差异 在科学家完成人类基因组图谱后,个体化的基因组图谱便成为一个的目标。毕竟人类基因组图谱是很多人的,有参照基因,但没有个体的具体信息。地球上所有人的基因组99.9%的部分都是相同的,这份基因组图我们称为参考序列。但是影响个体的也许就在0.1%的差异中。 由此,2007年基因学界最大的突破不是在技术上,而是在个体化上。去年科学家完成的是从概念中的人到具体化个体的突进。这样,就可以有针对性地预防、治疗疾病等。类似沃森基因组图谱公布后,我们就可以知道沃森有患老年痴呆症的可能。这样就可以提早做准备,做些预防。 尽管现在获得个人基因组图谱的个体还极少,但这已经给我们预示了一个向,对于我们每个人的信息都将一一得到对应。而且以后,基因组测序的技术也在不断得到提高,费用在不断减少。 现在中国人也有了自己的个人基因组图谱,那就是“炎黄一号”。“炎黄一号”尽管没有对外声称具体到哪个中国人个体,但是华大基因院www.genomics.org.cn已经有技术和能力做到一个个体的基因组图谱。 ———白玉杰(浙江大学迪诺遗传与基因组医学研究中心教授) - 备选 首张亚洲人全基因序列图谱 2007年10月11日,深圳华大基因研究院召开新闻发布会,宣布他们成功绘制出第一幅完整的中国人基因组图谱,又称“炎黄一号”。这是第一个亚洲人全基因序列图谱。 此前,我国科学家承担了国际人类基因组计划1%的任务、国际人类单体型图谱10%的任务。而近年来随着测序技术新的进步,极大加速了解码生命的进程,成本降低了几个数量级,时间也大为缩短。在此前提下,该合作研究团队提出了“炎黄计划”,即绘制中国人基因组序列图谱和多态性图谱的研究设想。 在研究人员看来,不同族群的基因图谱必不可少。因为遗传保证了生命的延续,而突变产生了不同物种以及人与人之间的差异。不同族群便有着各自独特的遗传背景,对不同病的易感性也可能不一样。只有真正了解基因与疾病的关系,才能根据每个个体的基因进行疾病预测和检测,及早做出预防方案或进行针对性治疗。 由此,到2007年10月初,科学研究人员用新一代测序技术独立完成了第一个100%中国人基因组图谱。专家表示,这项在基因组科学领域里程碑式的科学成果,对于中国乃至亚洲人的DNA、隐形疾病基因、流行病预测等领域的研究具有重要作用。而科学研究人员也规划好了下一步研究工作,将是进行上百个乃至更多的个体基因组分析,发现亚洲人基因组多态性的规律。 小鼠H-2基因图 MHC指某一物种的某一号染色体(如人HLA在第6号染色体,小鼠H-2在17号染色体)上一组密切连锁的基因,它在主要组织相容性抗原识别以及清除外来和内在抗原起重要作用。人的MHC称为HLA,在小鼠称为H-2。其余灵长类和某些非灵长类动物的MHC有了新的命名规定与建议,原MHC的后两个字母HC改为小写,即Mhc。 各种动物MHC的作用基本相似,包括:(1)MHC编码的抗原广泛分布于淋巴细胞和其它有核细胞的表面,与同种内移植排斥有关,也是刺激混合淋巴细胞反应(MLR)和移植物抗宿主反应 (GVHR)的主要刺激抗原;(2)控制机体对抗原的免疫应答或免疫抑制, 以及免疫活性细胞之间相互作用;(3)编码补体系统中的某些组分;(4) MHC中某些抗原出现的频率与对某些疾病的易感性有关。 小鼠的组织相容性抗原有几十种以上,由常染色体H-1、H-2、H-3……、H-30等基因编码(H表示组织相容性histocompatibility),此外,还受小鼠性染色体基因(雄性为XY,雌性为XX)控制。其中H-2抗原为小鼠主要组织相容性抗原系统,而其他抗原均系次要组织相容性抗原系统。MHC在小鼠即为H-2,目前对H-2系统研究得较为清楚,位于第17对染色体内, 长度约占0.5分摩。H-2抗原具有高度多态性。用血清学方法检出H-2Ⅰ类抗原特异性在100个以上,可分为私有抗原(private antigen)和公有抗原(public antigen)。 私有抗原是某一近交系(inbred strain)小鼠特有的抗原标志,在某一特定近交系小鼠只能检出一个K区和一个D区的私有抗原。公有抗原是在不同品系小鼠中都可检出的一些交叉抗原, 每一品系小鼠通常都可检出多个公有抗原特异性。根据血清学检定抗原的反应格局,可将近交系小鼠分为不同单体型的品系,用H-2右上方小写的英文字母表示,如H-2x、H-2d和H-2b等。 H-2基因群中可分为K、I、S和D四个区,I区又可分为I-A、I-E等亚区。按其编码抗原结构和功能不同,又可将H-2复合体分为三类基因:(1)Ⅰ类基因,位于K区和D区,包括K、 D基因座,最近又增加了K2、L和L2(?)新的基因座;(2)Ⅱ类基因,位于I区,包括Aβ、Aα、Eβ和Eα等基因座;(3)Ⅲ类基因,包括补体C4、C2、Bf和编码雄性激素结合蛋白性限蛋白 (sex limited protein, Slp)基因座(图6-1)。由于小鼠H-2基因群含有Ⅰ(罗马字)类基因,不同区中有I(英文大写)区,应注意鉴别,切勿混淆。此外,H-2中有些基因位于Qa和TL区,可能参与H-2多态性的形成以及TCRγδ T细胞识别抗原时的遗传限制。 人HLA基因图及其遗传特征 在人类MHC称为HLA(human leucocyte antigen), 是迄今为止所知的人类最复杂的基因族。除成熟的红细胞外,HLA抗原几乎分布于人体的各种有核细胞以及血小板。 由于此组抗原首先在人外周血白细胞上发现,同时表达抗原水平较高,目前多采用外周血淋巴细胞来检测这类抗原的型别,故称为人类白细胞抗原(HLA)。 (一)HLA基因定位 至1991年底,HLA基因座位已确定近60个,正式命名的等位基因278个。这些基因分类的方式主要有以下两种。(1)传统的分类法,即把HLA分为与小鼠H-2相似的Ⅰ类、Ⅱ类和Ⅲ 类基因,(2)1991年Bodmer建议将它重新划分的三类: 第一类包括传统分类中的HLA-Ⅰ类和Ⅱ类,还包括一对DMA和DMB;第二类称为免疫功能相关基因,包括C4、Bf、C2、TNFA、TNFB、HSP70、TAP1、TAP2、LMP2和LMP7等;第三类是一些与上述无关的基因。 本章仍按传统分类法进行讨论。 HLA占第6号染色体很窄的一个区带, 估计占人体整个基因组的1/3000,长约3500kb。 利用交换率越大基因座位距离越远,交换率越小基因座位距离越近的原理,可以通过交换率的计算作基因图,经过家谱分析和交换率的计算作基因图,A-B座位的交换率为0.8分摩 (centi Morgan, cM。是基因交换率在基因图上的图距单位,重组频率在1%的两个连锁基因之间的距离为1cM),A-C为0.6cM,B-C为0.2cM,B-D为0.8cM,HLA基因群全长距离约为4cM。 自1964年以来,每隔3~4年召开一次国际组织相容性工作讨论会(International Histocompatibility Workshop, IHW), 最近一次于1991年11月在日本横滨召开,并预定于1995年在法国召开第12次IHW。经过这些会议陆续报告了HLA的许多基因及大量的等位基因。现知在HLA-Ⅰ类基因区中,除已知的HLA-A、-B、-C座位外,还发现了-E、-F、-G,-H和-J,新发现的这些Ⅰ类基因座位大多数为伪基因。现在A座位已发现等位基因41个,B座位61个, C座位18个,E座位4个。在HLA-A与-E之间可能存在着重组热点。在HLA-Ⅱ类基因中,已发现了近30个基因座位,等位基因更多,其中DR、DQ、DP均由一条A链与一条B链组成异源二聚体分子(参后述),而A链基因与B链基因及其等位基因为数甚多,后者如DRB1座位60个,DRB3座位4个,DRB5座位4个,DRB6座位3个;DQA1座位14个,DQB1座位19个;DPA1座位8个,DPB1座位38等等。 DRA编码DRα链;DRB1编码β1链,决定的特异性为DR1、DR2、DR3、DR4、DR5等; DRB2为伪基因;DRB3编码DRβ3链,决定DR52及Dw24、Dw25、Dw26等特异性;DRB4编码DRβ4链,决定DR53特异性;DRB5编码DRβ5链,决定DR51特异性; DRB6、B7、B8、B9均为伪基因。 DQA1编码DQα链;DQB1编码DQβ链;DQA2、B2尚未得知其表达; DQB3为伪基因。DOB编码DOβ链。DMA编码DMα链;DMB编码DMβ链。DNA编码DNα链、DPA1编码DPα链;DPB1编码DPβ链;DPA2和DPB2为伪基因。此外与肽运转至内质网有关的基因TAP1(transporter of antigen peptides)、TAP2和与抗原加工有关的基因称之为低分子量多肽或称大的多功能蛋白酶LMP2 (low molecular weight polypeptides or large multifunctional protease-2)、LMP7也位于Ⅱ类基因区。Ⅲ类基因区包括补体C2、C4、B因子,此外, 21羟化酶A与B、HSP70(heat shock protein70, 热休克蛋白70)和肿瘤坏死因子α、β基因也在这里。21A是假基因,21B具有编码21羟化酶功能。21羟化酶是肾上腺皮质合成皮质醇和醛固醇必不可少的酶,如此酶缺乏,可导致先天性肾上腺皮质增生症。 HLA和H-2基因的比较见图6-5。小鼠H-2的Tla为存在于胸腺细胞和某些胸腺白血病细胞上的抗原(thymus-leukemia antigen); Tla与H-2D之间还有Qa区。Qa区中有17个Qa基因,还有12个Qa基因在Tla区,但大部分Qa基因是静息基因(silent gene)。目前已测得6个Q基因有表达,其中Qa2、Qa3、Qa4、Qa5由Qa区基因编码,Qa1和Qa6由Tla区编码。 (二)HLA血清学抗原的命名 目前已确定的HLA血清学抗原共有161个,其中A有27个,B有59个,C有10个,D有26个, DR有24个,DQ有9个,DP有6个。C座位上的抗原编号是公认的,为了避免与补体C相混淆特标以“W”。某些抗原数字后带有括号的抗原编号, 表示括号前的抗原为括号内抗原的裂解产物,如A23和A24是A9抗原的裂解产物(表6-4)。 (三)HLA的家系遗传及多态性 1.HLA的家系遗传 HLA单体型可作为一个单位遗传给子代。a、b、c、d是双亲或子代HLA单体型的代号;1、2、3是HLA-A抗原,?为未检出HLA-A抗原;5、7、8、12是HLA-B抗原。 基因频率和基因平衡定律 基因频率指在群体中某一等位基因出现的机率与该群体全部等位基因 之比。基因平衡定律指如果群体足够大又是随机交配,在没有新的突变和自然选择的情况下,基因频率 可以世代维持不变。HLA基因频率亦符合这一定律。在群体中,一个抗原频率反映了控制这一抗原的基因频率。 HLA 中的基因之间也有一定的交换和重组机率,一般取决于两个基因之间的距离。但HLA多基因座组成的单体型并非完全随机,有些基因比其它基因更多地连锁在一起,称为连锁不平衡(linkage disequilibrium)。换句话说,实际观察到的两个或更多基因出现在同一条单倍体上的频率大于按照独立分配规律所预期的频率。如在白种人中A1的基因频率为0.12,B8的基因频率为0.17, A1和B8基因出现在同一条单倍体上的预期频率为0.12×0.17=0.02, 但实际观察到的频率为0.09。HLA 的连锁不平衡与对某些疾病的易感有关。 已被检出的众多的HLA抗原在不同人种甚至不同地区的人群中的分布存在着很大的差别。如白种人HLA-A1、A3、D8检出率较高;黄种人以A24、B46、B54的检出率较高,黑种人以HLA-A36、A43、B53检出率最高。在单体型的检出率也同样有差别,如北欧人以HLA-A1、B8,HLA-A8、B7两个单体型最常见,黄种人以HLA-A9、B15和HLA-A2、B空白抗原的单体型较常见,我国汉族人以HLA-A2、B46,HLA-A11、B40和HLA-A2、B40单体型最常见。 在研究HLA系统与疾病之间的关系时必须与所研究同一地区正常人群作为对照。 2.HLA的多态性(polymorphism)现象 多态性指在同一相互交配的群体中, 同一基因座可编两种以上的基因产物。HLA的多态性主要是由于复等位基因和共显性所致: (1)复等位基因(multiple alleles),位于一对同源染色体上对应位置的一对基因叫等位基因。由于群体的突变,同一基因座的基因系列称为复等位基因,对某一个体来说一个基因座只有一对等位基因,复等位基因是群体的概念。HLA存在为数众多的复等位基因。(2)共显性(codominant),共显性状态就是每一世代中无论是纯合状态还是杂合状态, 这一对等位基因所控制的性状都能表现出来,HLA每个基因座上的等位基因都是共显性的 | [
"2个分类",
"生物",
"基因"
] | 7,716 | zh-CN |
启动子 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%90%AF%E5%8A%A8%E5%AD%90 | (重定向自基因启动子) RNA聚合酶特异性识别和结合的DNA序列。 启动子是基因(gene)的一个组成部分,控制基因表达(转录)的起始时间和表达的程度。启动子(Promoters)就像“开关”,决定基因的活动。既然基因是成序列的核苷酸(nucleotides),那么启动子也应由核苷酸组成。启动子本身并不控制基因活动,而是通过与称为转录(transcription)因子的这种蛋白质(proteins)结合而控制基因活动的。转录因子就像一面“旗子”,指挥着酶(enzymes)(RNA聚合酶polymerases) 的活动。这种酶指导着RNA复制。基因的启动子部分发生改变(突变),则会导致基因表达的调节障碍。这种变化常见于恶性肿瘤。 启动子区 许多原核生物都含有这两个重要的启动子区: 启动子是位于结构基因5ˊ端上游的一段DNA序列,能够指导全酶(holoenzyme)同模板正确结合,活化RNA聚合酶,启动基因转录。全酶是指酶蛋白及其辅酶构成的有功能的复合物。RNA聚合酶的核心酶虽可合成RNA,但不能找到模板DNA上的转录起始位点,只有带σ因子的全酶才能专一地同启动子结合。RNA聚合酶沿着模板前进,直到终止子,转录产生一条RNA链。通常把基因转录起点前面即5’端的序列称为上游(upstream),起点后面即3’端的序列称为下游(downstream)。并把起点的位置记为十1,下游的核苷酸依次记为+2,+3,……,上游方向依次记为—1,—2,—3,……。 RNA聚合酶同启动子结合的区域称为启动子区。将各种原核基因同RNA聚合酶全酶结合后,用DNase水解DNA,最后得到与RNA聚合酶结合而未被水解的DNA片段,这些片段有一个由5个核苷酸(TATAA)组成的共同序列,以其发现者的名字命名为Pribnow框(Pribnowbox),这个框的中央位于起点上游10bp处,所以又称—10序列(—10 sequence),后来在—35 bp处又找到另一个共同序列(TTGACA)。Hogness等在真核基因中又发现了类似Pribnow框的共同序列,即位于—25~—30 bp处的TATAAAAG,也称TATA框(TATAbox)。TATA框上游的保守序列称为上游启动子元件(upstream promoter element,UPE)或上游激活序列(uptreamactivatingsequence,UAS)。另外在—70~—78 bp处还有一段共同序列CCAAT,称为CAAT框(CAAT box) 原核生物中—10区同—35区之间核苷酸数目的变动会影响基因转录活性的高低,强启动子一般为17±1 bp,当间距小于15 bp或大于20 bp时都会降低启动子的活性。 在真核基因中,有少数基因没有TATA框。没有TATA框的真核基因启动子序列中,有的富集GC,即有GC框;有的则没有GC框。GC框位于—80~—110bp处的GCCACACCC或GGGCGGG序列。 TATA框的主要作用是使转录精确地起始;CAAT框和GC框则主要是控制转录起始的频率,特别是CAAT框对转录起始频率的作用更大。如在TATA框同相邻的UPE之间插入核苷酸,也会影响转录使之减弱。 为什么RNA聚合酶能够仅在启动子处结合呢?显然启动子处的核苷酸顺序具有特异的形状以便与RNA聚合酶结合,就好像酶与其底物的结构相恰恰适合一样。将100个以上启动子的顺序进行了比较,发现在RNA合成开始位点的上游大约10bp和35bp处有两个共同的顺序,称为-10和-35序列。这两个序列的共同顺序如下,-35区“AATGTGTGGAAT”,-10区“TTGACATATATT”。大多数启动子均有共同顺序(consensus sequence),只有少数几个核苷酸的差别。 -10序列又称为Pribnow盒(原核生物)。在真核生物中相应的序列位于-35bp处,称为TATA盒,又称为Goldberg-Hognessbox,是RNA聚合酶Ⅱ的结合部位。-10和-35这两个部位都很重要: [1]RNA聚合酶能和-35和-10序列中的碱基和DNA主链中的磷酸基相接触; [2]离开共同顺序较远的启动子的活性亦较弱; [3]最重要的是,破坏启动子功能的突变中有75%都是改变了共同顺序中的碱基,其余25%亦为离共同顺序较近的。-35和-10序列相距约20bp,即大致是双螺旋绕两圈的长度。因为这两个结合区是在DNA分子的同一侧面,可见此酶是结合在双螺旋的一面。可以想像,它能"感觉到每个结合区的沟底中碱基所产生的特异形状。" 原核生物亦有少数启动子缺乏这两个序列(-35和-10)之一。在这种情况下,RNA聚合酶往往不能单独识别这种启动子,而需要有辅助蛋白质的帮助。可能是这些蛋白质因子与邻近序列的反应可以弥补启动子的这个缺陷。 在真核生物中,在转录起始位点上游70-80bp处有CAAT顺序,也称为CAAT盒。这一顺序也是比较保守的共同顺序:GCCTCAATCT。RNA聚合酶Ⅱ可以识别一顺序。近年来在对家兔β珠蛋白基因CAAT顺序的研究中发现,用人工方法诱导CAAT顺序发生突变使家兔β珠蛋白基因的转录水平降低。 启动子中的-10和-35序列是RNA聚合酶所结合和作用必需的顺序。但是附近其他DNA顺序也能影响启动子的功能。例如,在核糖体RNA合成的起始位点的上游50到150核苷酸之间的顺序就是对启动子的完全活性所必需的。如果这一段DNA顺序缺失并由其他外来DNA所取代(例如克隆在质粒DNA中的rRNA基因),则转录起始的频率将降低10倍。同样,在其他情况下,远隔部位的富有AT的DNA顺序被认为能增进转录起始的频率。有时候上游顺序可以是某些能直接激活RNA聚合酶的"激活蛋白"的结合部位。但是,上游顺序往往有另外的功能。例如上游顺序可以吸引拓扑异构酶,后者可导致结合的局部产生有利于转录起始的超螺旋状态。上游顺序所引起的DNA结构的微细变化可能在双螺旋上被传导到相当远的距离,因此上游顺序的变化可以影响到-10和-35区的DNA结构细节。 参看 《生物化学与分子生物学》- 启动子 | [
"3个分类",
"生物化学",
"生物",
"化学"
] | 2,526 | zh-CN |
基因变异 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%8F%98%E5%BC%82 | 基因变异是指基因组DNA分子发生的突然的可遗传的变异。从分子水平上看,基因变异是指基因在结构上发生碱基对组成或排列顺序的改变。根据碱基变化的情况,基因突变一般可分为碱基置换突变(base substitution和移码突变(frameshift mutation)两大类。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种隐定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做变异基因。于是后代的表现中也就突然地出现祖先从未有的新性状。 基因突变的现象 出现变异的原因 很多原因都可以导致基因发生突变,包括物理因素、化学因素、生物因素,这点与疾病相类似。不大严谨而言,疾病几乎都是跟这三大类病因相关。当然,社会心理因素也很有关系。 物理因素:x射线、激光、紫外线、伽马射线等。 化学因素:亚硝酸、黄曲霉素、碱基类似物等。 生物因素:某些病毒和细菌等。 科技进展 位于英国剑桥的桑格研究院(WelcomeTrustSangerInstitute)以及两家来自美国和加拿大的研究机构最近的研究发现,每个人相比其父母一辈,其基因组均出现了多达60处的突变。人类基因组由23对染色体组成。这项研究发现携带父亲染色体的精子和携带母亲染色体的卵子的基因成分都出现了突变,从而在孩子的基因组构成中出现了在父母基因组中都不曾出现的新基因。为了对这种变异的程度和范围进行定量的研究,科学家们选取了两个志愿者家庭,每一个家庭都有父母亲以及他们的一个孩子。为了在孩子的基因组序列中寻找可能出现的变异,科学家们对6000种可能出现的变异可能进行逐一梳理。这样做的结果是,他们很快注意到,在一代人的时间内,子代基因变异的程度约为每1亿个基因编码出现1处变异。研究人员还区分出了哪些变异是源自其父母亲的精子和卵子,而哪些则是孩子出生之后发生的。有关这一研究的论文已经发表在了《自然·遗传学》上,让生物学界惊奇不已。 基因突变 举例 例如英国女王维多利亚家族在她以前没有发现过血友病的病人,但是她的一个儿子患了血友病,成了她家族中第一个患血友病的成员。后来,又在她的外孙中出现了几个血友病病人。很显然,在她的父亲或母亲中产生了一个血友病基因的突变。这个突变基因传给了她,而她是杂合子,所以表现型仍是正常的,但却通过她传给了她的儿子。 基因突变的影响 基因变异的后果除如上所述形成致病基因引起遗传病外,还可造成死胎、自然流产和出生后天折等,称为致死性突变;当然也可能对人体并无影响,仅仅造成正常人体间的遗传学差异;甚至可能给个体的生存带来一定的好处。 基因突变的好处 对于人类来讲,基因突变可以是有用的也可以是有害的。 (1)诱变育种:通过诱发使生物产生大量而多样的基因突变,从而可以根据需要选育出优良品种,这是基因突变的有用的方面。在化学诱变剂发现以前,植物育种工作主要采用辐射作为诱变剂;化学诱变剂发现以后,诱变手段便大大地增加了。在微生物的诱变育种工作中,由于容易在短时间中处理大量的个体,所以一般只是要求诱变剂作用强,也就是说要求它能产生大量的突变。对于难以在短时间内处理大量个体的高等植物来讲,则要求诱变剂的作用较强,效率较高并较为专一。所谓效率较高便是产生更多的基因突变和较少的染色体畸变。所谓专一便是产生特定类型的突变型。以色列培育“彩色青椒”关键技术就是把青椒种子送上太空,使其在完全失重状态下发生基因突变来育种。 (2)害虫防治:用诱变剂处理雄性害虫使之发生致死的或条件致死的突变,然后释放这些雄性害虫,便能使它们和野生的雄性昆虫相竞争而产生致死的或不育的子代。 总结 基因突变有好有坏,很多肿瘤或恶性疾病是跟基因突变有关。但基因突变对人类也是有很大帮助的。正如上述。人类要适应环境,就必须是优胜劣汰,因为存在基因突变,突变后有利于生存的基因就保留了下来,而不利生存的基因个体就灭亡。 参看 基因 染色体 参看 《医学遗传学基础》- 基因突变 | [
"2个分类",
"遗传学",
"生物化学"
] | 1,666 | zh-CN |
基因治疗 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%8C%BB%E7%96%97 | (重定向自基因医疗) 基因治疗是用正常的基因整合入细胞,以校正和置换致病基因的一种治疗方法。从广义上来讲,将某种遗传物质转移到患者细胞内,使其体内发挥作用,以达到治疗疾病目的方法,也谓之基因治疗。 基因治疗所采用的方法基本上可分为以下几种: DNA矫正。DNA矫正指将致病DNA链的异常碱基进行纠正,而正常部分予以保留。 DNA置换。DNA置换就是用正常DNA通过体内DNA同源重组,原位替换病变细胞内的致病DNA,使细胞内的DNA完全恢复正常状态。 DNA增补。DNA增补指将目的DNA导入病变细胞或其他细胞,不去除异常DNA,而是通过目的DNA的非定点整合,使其表达产物补偿缺陷DNA的功能或使原有的功能得到加强。DNA治疗多采用此种方式。这种方法增补的是显性DNA多用于治疗隐性病。 DNA失活。早期一般是指反义核酸技术。它是将特定的反义核酸,包括反义RNA,反义DNA和核酶导入细胞,在翻译和转录水平阻断某些基因的异常表达。近年来又有反基因策略、肽核酸、DNA去除和RNA干扰技术。 参看 《医学遗传学基础》- 基因治疗 《临床生物化学》- 基因治疗 | [
"1个分类",
"治疗方法"
] | 479 | zh-CN |
基因治疗 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%8C%BB%E5%AD%A6 | (重定向自基因医学) 基因治疗是用正常的基因整合入细胞,以校正和置换致病基因的一种治疗方法。从广义上来讲,将某种遗传物质转移到患者细胞内,使其体内发挥作用,以达到治疗疾病目的方法,也谓之基因治疗。 基因治疗所采用的方法基本上可分为以下几种: DNA矫正。DNA矫正指将致病DNA链的异常碱基进行纠正,而正常部分予以保留。 DNA置换。DNA置换就是用正常DNA通过体内DNA同源重组,原位替换病变细胞内的致病DNA,使细胞内的DNA完全恢复正常状态。 DNA增补。DNA增补指将目的DNA导入病变细胞或其他细胞,不去除异常DNA,而是通过目的DNA的非定点整合,使其表达产物补偿缺陷DNA的功能或使原有的功能得到加强。DNA治疗多采用此种方式。这种方法增补的是显性DNA多用于治疗隐性病。 DNA失活。早期一般是指反义核酸技术。它是将特定的反义核酸,包括反义RNA,反义DNA和核酶导入细胞,在翻译和转录水平阻断某些基因的异常表达。近年来又有反基因策略、肽核酸、DNA去除和RNA干扰技术。 参看 《医学遗传学基础》- 基因治疗 《临床生物化学》- 基因治疗 | [
"1个分类",
"治疗方法"
] | 479 | zh-CN |
基因内互补 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E5%86%85%E4%BA%92%E8%A1%A5 | 基因内互补 intragenic complementation 指带有处于反式(即相斥)状态的两个拟等位基因的个体呈现接近正常表型的现象。可能是由于两个突变基因所产生的失活产物结合而成为具有活性的蛋白质的结果。如果将两个有关的同质结合子的抽提物混合时可以看到互补现象,叫离体互补。 | [
"1个分类",
"基因"
] | 142 | zh-CN |
基因水平转移 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E4%BE%A7%E5%90%91%E8%BD%AC%E7%A7%BB | (重定向自基因侧向转移) 水平基因转移(horizontal gene transfer, HGT),又称侧向基因转移(lateral gene transfer, LGT),是指在差异生物个体之间,或单个细胞内部细胞器之间所进行的遗传物质的交流。差异生物个体可以是同种但含有不同的遗传信息的生物个体,也可以是远缘的,甚至没有亲缘关系的生物个体。单个细胞内部细胞器主要指的是叶绿体、线粒体及细胞核。水平基因转移是相对于垂直基因转移(亲代传递给子代)而提出的,它打破了亲缘关系的界限,使基因流动的可能变得更为复杂。 1959年,一系列的文章报道了大肠杆菌(Escherichia coli)的高频转导(Hfr)菌株可以将遗传信息传递给特定的鼠伤寒沙门氏菌(Salmonella typhimurium)突变菌株。同年,Tomochiro Akiba和Kunitaro Ochiai发现病原菌中的抗性质粒,而这一发现直接导致了携带抗性的质粒可以在不同菌种间转移现象的发现,这实际上就宣告了野生型菌株间存在着水平基因转移。然而,水平基因转移作为一种概念,并不是一开始就伴随着其现象的发现而出现的。直到20世纪90年代,由于下列原因,人们才逐步使用水平基因转移的概念来解释所遇到的水平基因转移现象,并形成研究热点。 基因工程生物,特别是基因工程微生物(gene engineered organisms, GEOs, or gene engineered microorganisms, GEMs)的应用,及被释放到环境中后的安全性问题。抗药性病原菌的大量出现,许多药物,特别是抗生素已经不能抑制或杀死原来敏感的病原菌,这已不仅仅是基因突变可解释的,可能与抗药性基因的水平转移有关。已发现基因的转移不仅仅是发生在细菌之间,而且也发生在细菌与高等生物之间,甚至是高等生物之间。 1 由质粒或病毒等介导的水平基因转移 质粒和病毒是在各生物间进行遗传物质传递的重要媒介。细菌中以F质粒为媒介的接合作用和以病毒(噬菌体)为媒介的转导作用是最普通的水平基因转移,而且这种转移还不只是发生在细菌之间,还发生在细菌与高等生物之间,例如在土壤微生物中,存在于根癌土壤杆菌(Agrobacterium tumefaciens)中的200kb Ti质粒上的T-DNA基因片段可整合进植物细胞的基因组中。即:根癌土壤杆菌中的T-DNA可转移到植物细胞核内。T-DNA还可以携带一定的外源基因,在植物基因工程中被广泛地用做基因转移载体[8]。此外,Ri质粒也可以协助遗传物质在细菌与植物间进行水平基因转移。 有关细菌与动物细胞间的水平基因转移,在1991年,Falkow综合论述了有些特定的细菌属可以入侵哺乳动物细胞的详细情况。Patrice Courvalin研究表明,弗氏志贺菌(Shigella flexneri)及E. coli的入侵型菌株以携带质粒进入哺乳动物细胞,质粒并可以整合进基因组中稳定地在子代细胞中表达。 2 基因的“直接”水平转移 水平基因转移除了通过质粒和病毒为媒介以外,目前大量发现的是不需要媒介的“直接”转移。1996年,Baur发现在从自然环境中采集的含一定离子的天然水样中,大肠杆菌可通过其内在调节机制建立自然感受态[12]。能够在自然环境中“直接”摄取外源DNA,这对原本认为大肠杆菌是不能建立自然感受态的传统概念是一种挑战。此外,枯草芽孢杆菌建立自然感受态的能力也早已得到人们的肯定,其基因组上有10多个基因与感受态的建立有关。随着环境中具有转化活性的DNA分子及感受态细胞的发现,自然转化在水平基因转移中的作用成为人们关注的焦点。所谓自然遗传转化是不需要任何媒介的“裸露”DNA分子与自然感受态细胞间相互作用的一种基因转移方式,可以发生在细菌之间,也可以发生在细菌与其它真核生物之间。因为自然遗传转化不需要致育质粒和噬菌体作为媒介,甚至不受时空的限制,可以发生在不同的生物之间,所以被认为很可能是水平基因转移的重要途径。在这一途径中,一种新的现象已引起人们的极大兴趣,即细菌细胞能主动分泌DNA到环境中,并具有转化活性,这不仅对传统的不涉及供体的自然转化概念提出了新的挑战,而且也为水平基因转移的深入研究提供了新的内容。特别近来有报道表明,细菌在逆境条件下形成生物膜(biofilm)的机制与细菌分泌到胞外的DNA密切相关,更引起人们广泛的关注。 由前可知,无论是在正常条件下,还是在逆境条件下,尤其是后者,细菌主动分泌DNA到环境中和从环境中摄取DNA都得到了有力的证明。如果能够在逆境条件下,找到细菌主动分泌及摄取DNA的结合点,有利于进一步揭示水平基因转移的机理。 3 基因组序列分析和水平基因转移 随着基因工程的深入开展,人类及其它生物基因组测序工作相继完成,人们发现不同物种之间,甚至亲缘关系很远的生物之间基因组上有大量同源基因存在。 在三域系统的基因组相互比对中,发现大量存在水平基因转移现象。海栖热袍菌MSB8(Thermotoga maritima MSB8)是一种属于细菌域的嗜热细菌,在其基因组中含有1872个预测的编码区,其中有1014个(54%)功能已知。在与古生菌的比对中,发现有24%的基因与古生菌基因相近,即有近1/4的基因来源于古生菌,成为古菌与细菌之间进行侧向基因转移的有力证据。 细菌基因组上含有来自高等生物的基因也有不少报道。如耐放射异常球菌(Deinococcus radiodurans)含有几个只有在植物中才有的基因;结核分枝杆菌(Mycobacterium tuberculosis)的基因组上至少含有8个来自人类的基因,而且这些基因编码的蛋白质能帮助细菌逃避宿主的防御系统,显然这是结核分枝杆菌通过某种方式从宿主那儿获得了这些基因为自己的生存服务。 人类基因组测序工作的完成也进一步证实了水平基因转移的普遍性和远缘性。在人类基因组上已发现了223个来源于细菌的基因,这些基因无疑是通过水平基因转移机制获得的[21]。但在基因转移的时间上,目前还存在争议。 除了基因组比对外,人们还对部分蛋白质序列做了比对分析,发现有许多水平基因转移存在的证据。在细胞色素c的序列比对中认为长须银柴胡(Stellaria longipes)和鼠耳芥(Arabidopsis thaliana)很有可能与噬菌体之间发生过水平基因转移[23]。铜绿假单胞菌(Pseudomonas aeruginosa)中类似真核的磷酸脂酶D(PLDS)的遗传学和生化分析指出,编码该酶的基因pldA是通过来自真核的水平基因转移获得的。 4 水平基因转移与进化 由前可知,水平基因转移实际上已被引入了分子进化及宏观进化领域,被认为是推动进化的重要动力。在这个意义上,水平基因转移不仅仅是一个基因转移的过程,实际上它是一个复杂的多步骤过程。Jonathan将此大致分为6个步骤。首先要被转移的遗传物质在供体中进化。当达到某一点时,遗传物质通过载体(如病毒)或者直接(如接合)或者间接(如转化)地进行转移。这些遗传物质必须获取能够在受体中长期存在的形式。不同的转移和存留方式决定了不同的水平基因转移类型。被受体接受的遗传物质在受体群落中广泛传播,即使这些遗传物质的传播是符合中性法则的,但是自然选择的压力会有可能促进这一传播过程(如抗生素抗性的选择)。而这一过程对供体和受体的进化都具有影响,最终有可能会产生一个的品系,这被称之为“改良(amelioration)”过程。 这一过程实际上是漫长而复杂的。这种基因转移到底发生在什么时候,目前有两种观点。一种认为水平基因转移发生在远古时候的早期生命,即单一的共同细胞祖先产生了所有的现代生物;另一种观点则认为,除了早期生命在进化过程中进行了大量水平基因转移外,现在的生命,即在物种形成清晰的谱系之后仍能毫无困难地交换基因。水平基因转移在历史上的大量证据,使人们有必要对生物进化理论进行重新审视。Doolittle认为许多原本在生物进化理论中基础的概念都需要经过重新审视。传统的简单分支的系统发育树不能成为表现众多生物亲缘关系的最佳方式,而网络性的或类网状的系统发育模式才能给予它们恰当的描述。同时,水平基因转移在微生物进化中还是被认为是一种重要的推动力量。 随着转基因生物的商业化过程,转基因工程的生物安全性逐步受到人们的重视。有研究认为距今20亿年至10亿年间,发生了大量水平基因转移的事实。假设这是正确的话,在人为介入水平基因转移之后,大量穿梭载体及特异人工遗传物质的出现并释放到实验室之外后,是否会出现水平基因转移的第二次大爆发呢? 在距今20亿年至10亿年间,三域生物之间发生了大量的水平基因转移事件。认为现代真核生物的核(nu)来自于古细菌,线粒体(mi)和叶绿体(ch)来自真细菌。同时还发生了许多其它对现代生物影响深远的水平基因转移事件(源自Michael Syvanen, 2002)。 近年来,发现自然环境中存在大量具有转化活性的DNA分子以及能主动摄取外源DNA的感受态细胞,使得人们对环境中发生的水平基因转移有了新的认识,也必然引起人们对GEMs使用安全性的更深层次的思考。如果说自然环境微生物之间遗传物质的交流是一种正常的生态平衡系统,或者说是一种极其缓慢的优胜劣汰的进化过程,那么为了提高农业生产,甚至革新整个农业生产面貌,或治理环境污染,或其它方面的应用,人为地向环境中加入大量的人工构建的GEMs或其它的GEOs,也许是一种加速进化的“人工进化”过程,这个过程的结果是喜是忧?还是二者兼有?目前仍是未解决的问题,也是颇具争议的问题。水平基因转移及其产生的生态效应的深入研究,将有助于对GEOs做出新的评价,使得基因工程技术及转基因生物的应用发挥更辉煌的作用 | [] | 4,023 | zh-CN |
基因组学 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E4%BD%93%E5%AD%A6 | (重定向自基因体学) 排序基因的专用电脑 基因组学,或基因体学,是研究生物基因组和如何利用基因的一门学问。该学科提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题。 基因组学能为一些疾病提供新的诊断,治疗方法。例如,对刚诊断为乳腺癌的女性,一个名为“Oncotype DX”的基因组测试,能用来评估病人乳腺癌复发的个体危险率以及化疗效果,这有助于医生获得更多的治疗信息并进行个性化医疗。基因组学还被用于食品与农业部门。 基因组学的主要工具和方法包括: 生物信息学,遗传分析,基因表达测量和基因功能鉴定。 发展史 基因组学出现于1980年代,1990年代随着几个物种基因组计划的启动,基因组学取得长足发展。 相关领域是遗传学,其研究基因以及在遗传中的功能。 1980年,噬菌体 Φ-X174;(5,368 碱基对)完全测序,成为第一个测定的基因组。 1995年,嗜血流感菌(Haemophilus influenzae,1.8Mb)测序完成,是第一个测定的自由生活物种。从这时起,基因组测序工作迅速展开。 2001年,人类基因组计划公布了人类基因组草图,为基因组学研究揭开新的一页。 “组学”的增长 “组”在基因组一词中,意指一个物种的“全部”遗传组成。由于诸如基因组测序这样的大规模定量生物项目的成功,“组”的这个意义的使用已经扩展到其他相关领域。例如,蛋白质组指的是一个物种,组织或细胞内的全部蛋白质(表达的基因这里指被翻译成蛋白质)。蛋白质组学现在已经作为研究蛋白质组的专业术语。 请参见: 组学主题列表(生物学) 比较基因组学 基因组间的相互比较已经导致一些惊人的生物学发现。如果某特定的DNA序列或DNA基序在某进化树分支上所有的物种都出现,则称该序列在这些物种间是保守的。某DNA序列的进化保守性提示拥有这些序列的物种具有相应的自然选择优势。同时也提示,其具有重要功能。这可能是蛋白编码序列或调控区域。对这些序列的实验研究表明,其中一部分被转录成小RNA,而这些小RNA的功能尚未研究清楚. 在两个进化树上距离较远,相关而又不处于同一进化分支中的物种间鉴定出相似序列(包括许多基因),促成了新理论的产生,该理论认为这些序列是通过水平基因转移而获得的。尽管这些基因看起来是从古细菌向真细菌进行转移,而这种现象在细菌间尤其显著。同时还注意到,细菌基因在真核生物核基因组中出现,而这些基因通常用来编码线粒体和叶绿体蛋白,这种现象也支持细胞器起源的内共生学说。该理论认为动物和植物基因组中发现的线粒体和叶绿体最初是自由生活的细菌,由祖先真核细胞吸收而来,后来逐步变成真核细胞的有机组成部分。 结构基因组学 结构基因组学( St ructural Genomics) 是基因组学的一个重要组成部分和研究领域, 它是一门通过基因作图、核苷酸序列分析确定基因组成、基因定位的科学。 功能基因组学 功能基因组学( Funct ional genomics) 的研究又往往被称为后基因组学( Postgenomics) 研究, 它是利用结构基因组学提供的信息和产物,通过在基因组或系统水平上全面分析基因的功能, 营养基因组学 营养基因组学的研究方面是检测和操纵植物中的微量营养代谢途径, 遗传相似性 学界常用某特定物种的DNA序列共享人类序列的百分比来表示相似性。该数字显示了两物种之间碱基对相同的百分比。这里所列的是相对于人类的遗传相似性,并列出了数据来源。 这些数据来源于不同的二级数据源,并用不同的方法获得(例如杂交|DNA-DNA杂交或序列比对),这可能导致相同物种间的比较得到不同的结果。因此,这些数据应该仅仅用作大致相似性。 参考 DNA基序 基因治疗 基因工程 化学基因组学 结构基因组学 组学列表(生物学) 网络资源与外部链接 PLoS引物: 比较基因组学 "人类基因组专刊" 自然, 2001年2月15日, no. 6822 搜索人类基因信息数据库 - http://www.medicalcomputing.net/cgi-bin/query_human_gene_info, 医学计算,网络 基因组学在线数据库 - http://wit.integratedgenomics.com/GOLD 基因研究最新进展 联会基因组学会 基因组研究中心(TIGR) - http://www.tigr.org 桑格中心 - http://www.sanger.ac.uk 美国国家生物技术信息中心(NCBI) - http://www.ncbi.nlm.nih.gov http://www.dbbm.fiocruz.br/genomics/genomics.html http://www.dbbm.fiocruz.br/genome/tcruzi/tcruzi.html (Chagas' Disease and Trypanosoma cruzi genome project) Translational Genomics Research Institute International Genomics Consortium Functional Annotation of the Mouse database Dengueinfo.org - Dengue Virus full genome database - http://www.dengueinfo.org/ 参考来源 维基百科-基因組學 | [
"1个分类",
"基因组学"
] | 2,272 | zh-CN |
基因组 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E4%BD%93 | (重定向自基因体) 基因组,Genome,一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说的更确切些,核基因组是单倍体细胞核内的全部 DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。 详细内容 《遗传学名词》第二版对“基因组”的释义: 单倍体细胞核、细胞器或病毒粒子所含的全部DNA分子或RNA分子。 现代遗传学家认为,基因是DNA(脱氧核糖核酸)分子上具有遗传效应的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因位于染色体上,并在染色体上呈线性排列。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等不同,是基因差异所致。 基因是生命遗传的基本单位,由30亿个碱基对组成的人类基因组,蕴藏着生命的奥秘。始于1990年的国际人类基因组计划,被誉为生命科学的“登月”计划,原计划于2005年完成。各国所承担工作比例约为美国54%,英国33%,日本7%,法国2.8%,德国2.2%,中国1%。此前,人类基因组“工作框架图”已于2000年6月完成,科学家发现人类基因数目约为2.5万个,远少于原先10万个基因的估计。 人类基因组是全人类的共同财富。国内外专家普遍认为,基因组序列图首次在分子层面上为人类提供了一份生命“说明书”,不仅奠定了人类认识自我的基石,推动了生命与医学科学的革命性进展,而且为全人类的健康带来了福音。 理论发展 人类只有一个基因组,大约有2.5万个基因。人类基因组计划是美国科学家于1985年率先提出的,旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。计划于1990年正式启动,这一价值30亿美元的计划的目标是,为30亿个碱基对构成的人类基因组精确测序,从而最终弄清楚每种基因制造的蛋白质及其作用。打个比方,这一过程就好像以步行的方式画出从北京到上海的路线图,并标明沿途的每一座山峰与山谷。虽然很慢,但非常精确。 应用实例 随着人类基因组逐渐被破译,一张生命之图将被绘就,人们的生活也将发生巨大变化。基因药物已经走进人们的生活,利用基因治疗更多的疾病不再是一个奢望。因为随着我们对人类 本身的了解迈上新的台阶,很多疾病的病因将被揭开,药物就会设计得更好些,治疗方案就能“对因下药”,生活起居、饮食习惯有可能根据基因情况进行调整,人类的整体健康状 况将会提高,二十一世纪的医学基础将由此奠定。 利用基因,人们可以改良果蔬品种,提高农作物的品质,更多的转基因植物和动物、食品将问世,人类可能在新世纪里培育出超级物作。通过控制人体的生化特性,人类将能够恢复或修复人体细胞和器官的功能,甚至改变人类的进化过程 | [
"3个分类",
"生物",
"分子生物学",
"基因"
] | 1,272 | zh-CN |
基因位点 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E4%BD%8D%E7%82%B9 | 基因位点 基因位点 genetic locus 基因在染色体上占有的特定位置叫基因位点。基因为数很多,而染色体的数目较少,因而一条染色体上含有许多基因。基因在染色体上呈单行直线排列 | [
"1个分类",
"基因"
] | 90 | zh-CN |
基因传递 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E4%BC%A0%E9%80%92 | 基因传递是指代与代(亲本到子代)之间遗传信息的传递,与遗传基本同义[1],或者是从细胞的一个地点传递到另一个地点。 基因传递不应与染色体易位混淆,后者是指非同源染色体的片段重新排列组合。 参考文献 ↑ medical-dictionary.thefreedictionary.com --> heredity 参考来源 维基百科-基因传递 | [
"1个分类",
"遗传学"
] | 169 | zh-CN |
基因产物 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0%E4%BA%A7%E7%89%A9 | 基因产物(Gene Product):基因表达过程中形成的RNA或蛋白质。基因表达产物的多少常用来衡量一个基因的表达活性 长期以来,人们一直认为,基因产物只包含三种RNA(mRNA,rRNA,tRNA)以及mRNA的转录产物蛋白质。近些年来,随着RNAi( RNA干扰)的发现,大量的小RNA(MicroRNA)被发现对于基因的表达起着重要的调控作用,这些小RNA也是基因产物。 随着基因组学的发展,特别是多种动物、植物、微生物的基因组序列测定完成,在真核生物的基因组中发现了大量的“无用”碱基序列,而且,越是高等的生物中,“垃圾”碱基序列越多。相关实验发现,敲除了一段被认为是垃圾序列的假基因的小鼠不能正常发育,发育过程中死亡;然而,这些小鼠题内起着正常功能的“真基因”并未缺失。那一段假基因与真基因的碱基组成相似,只是短得多,不具有真基因的功能,但很可能对真基因起着至关重要的调控和保护作用。由此科学家推测,在高等生物中发现的大量“无用”DNA片段很有可能起着相似的重要作用 | [
"2个分类",
"生物",
"遗传学"
] | 439 | zh-CN |
基因 | http://www.a-hospital.com/w/%E5%9F%BA%E5%9B%A0 | 基因(Gene), 也称为遗传因子, 是指携带有遗传信息的DNA序列,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。一般来说,生物体中的每个细胞都含有相同的基因,但并不是每个细胞中的每个基因所携带的遗传信息都会被表达出来。细胞类型的不同只是由于基因表达不同而已。 基因有两个特点,一是能忠实地复制自己,以保持生物的基本特征;二是基因能够“突变”,突变大绝大多数会导致疾病,另外的一小部分是非致病突变。非致病突变给自然选择带来了原始材料,使生物可以在自然选择中被选择出最适合自然的个体。 历史 1909年丹麦约翰逊首先提出了基因这一概念。 基因性质 除某些病毒的基因由RNA(核糖核酸)构成以外,多数生物的基因由DNA(脱氧核糖核酸)构成,并在染色体上作线状排列。基因一词通常指染色体基因。在真核生物中,由于染色体都在细胞核内,所以又称为核基因。位于线粒体和叶绿体等细胞器中的基因则称为染色体外基因、核外基因或细胞质基因,也可以分别称为线粒体基因、基因质粒和叶绿体基因。在核基因或细胞质基因中都储存着遗传信息。 在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体称为染色体组或基因组,一个基因组中包含一整套基因。相应的全部细胞质基因构成一个细胞质基因组,其中包括线粒体基因组和叶绿体基因组等。原核生物的基因组是一个单纯的DNA或RNA分子,因此又称为基因带,通常也称为它的染色体。染色体在体细胞中是成对存在的,每条染色体上都带有一定数量的基因。人类约有两万至两万五千个基因。 基因在染色体上的位置称为座位,每个基因都有自己特定的座位。凡是在同源染色体上占据相同座位的基因都称为等位基因。在自然群体中往往有一种占多数的(因此常被视为正常的)等位基因,称为野生型基因';同一座位上的其他等位基因一般都直接或间接地由野生型基因通过突变产生,相对于野生型基因,称它们为突变型基因。在二倍体的细胞或个体内有两个同源染色体,所以每一个座位上有两个等位基因。如果这两个等位基因是相同的,那么就这个基因座位来讲,这种细胞或个体称为纯合体;如果这两个等位基因是不同的,就称为杂合体。在杂合体中,两个不同的等位基因往往只表现一个基因的性状,这个基因称为显性基因,另一个基因则称为隐性基因。在二倍体的生物群体中等位基因往往不止两个,两个以上的等位基因称为复等位基因。不过有一部分早期认为是属于复等位基因的基因,实际上并不是真正的等位,而是在功能上密切相关、在位置上又邻接的几个基因,所以把它们另称为拟等位基因。某些表型效应差异极少的复等位基因的存在很容易被忽视,通过特殊的遗传学分析可以分辨出存在于野生群体中的几个等位基因。这种从性状上难以区分的复等位基因称为同等位基因。许多编码同工酶的基因也是同等位基因。 属于同一染色体的基因构成一个连锁群(见连锁和交换)。基因在染色体上的位置一般并不反映它们在生理功能上的性质和关系,但它们的位置和排列也不完全是随机的。在细菌中编码同一生物合成途径中有关酶的一系列基因常排列在一起,构成一个操纵子;在人、果蝇和小鼠等不同的生物中,也常发现在作用上有关的几个基因排列在一起,构成一个基因复合体或基因簇或者称为一个拟等位基因系列或复合基因。 现在,人们已经从分子水平上认识到基因是一段能够编码一条肽链氨基酸顺序的DNA。在大多数真核生物基因中,基因顺序是断裂的,编码一条肽链的顺序被非编码顺序分事成好几段。在少数情况下,一个基因能编码几个不同的蛋白质。在某些噬菌体基因中,在同一段DNA顺序上,可以编码不同的蛋白质,这可能是由于在同一段DNA顺序上,不同的基因可以互相重叠的原因。基因也并不都编码蛋白质,所以一个细胞中的基因数目不等于这一细胞中蛋白质种类的数目。如有一些基因在转录RNA后不再翻译成蛋白质(rRNA基因,tRNA基因);还有一些基因虽然也是DNA分子上的一个特定区段,但它并不作为蛋白质合成的模板,而是对其他基因的表达起调节或辨认的作用。 基因突变 基因突变是指一个基因内部可以遗传的结构的改变。又称为点突变,通常可引起一定的表型变化 。广义的突变包括染色体畸变。狭义的突变专指点突变。实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的个体。 基因破译 目前,由多国科学家参与的“人类基因组计划”,正力图在21世纪初绘制出完整的人类染色体排列图。染色体是DNA的载体,基因是DNA上有遗传效应的片段,构成DNA的基本单位是四种碱基。由于每个人拥有30亿对碱基,破译所有DNA的碱基排列顺序无疑是一项巨型工程。 基因科学应用 人们对生物的基因的结构、功能和表达等过程的深入了解,能更准确、更全面地揭示生物遗传变异的客观规律,并在实际中得以应用。如把基因的分离、提取和人工合成基因的成功经验应用于基因工程,生产人类需要的蛋白质药物或培育动植物新品种;在医学上制备基因探针,进行基因诊断,对一些遗传病进行基因治疗。 参看 《医学遗传学基础》- 基因 | [
"2个分类",
"遗传学",
"分子生物学"
] | 2,124 | zh-CN |
基准物质 | http://www.a-hospital.com/w/%E5%9F%BA%E5%87%86%E7%89%A9%E8%B4%A8 | 基准物质(standard chemicals),又称标准物质,是一种用来直接配制或标定容量分析中的标准溶液的物质。标准溶液是一种已知准确浓度的溶液,可在容量分析中作滴定剂,也可在仪器分析中用以制作校正曲线的试样。 基准物质应该符合以下要求:①组成与它的化学式完全相符;②纯度足够高;③应该非常稳定;④参加反应时,按反应式定量地进行,不发生副反应;⑤最好有较大的式量。在配制标准溶液时可以称取较多的量,以减少称量误差。 常用的基准物质有银、铜、锌、铝、铁等纯金属及氧化物、重铬酸钾、碳酸钠、邻苯二甲酸氢钾、硼砂等纯化合物。20世纪50年代以来,不少人考虑到电量(库仑数)可以准确测量,建议用库仑作为一种实用的基准物质,代替一些纯的化学试剂 | [
"1个分类",
"化学"
] | 319 | zh-CN |
基准物质 | http://www.a-hospital.com/w/%E5%9F%BA%E5%87%86%E7%89%A9 | (重定向自基准物) 基准物质(standard chemicals),又称标准物质,是一种用来直接配制或标定容量分析中的标准溶液的物质。标准溶液是一种已知准确浓度的溶液,可在容量分析中作滴定剂,也可在仪器分析中用以制作校正曲线的试样。 基准物质应该符合以下要求:①组成与它的化学式完全相符;②纯度足够高;③应该非常稳定;④参加反应时,按反应式定量地进行,不发生副反应;⑤最好有较大的式量。在配制标准溶液时可以称取较多的量,以减少称量误差。 常用的基准物质有银、铜、锌、铝、铁等纯金属及氧化物、重铬酸钾、碳酸钠、邻苯二甲酸氢钾、硼砂等纯化合物。20世纪50年代以来,不少人考虑到电量(库仑数)可以准确测量,建议用库仑作为一种实用的基准物质,代替一些纯的化学试剂 | [
"1个分类",
"化学"
] | 329 | zh-CN |
基体 | http://www.a-hospital.com/w/%E5%9F%BA%E4%BD%93 | 基体(kinetosome),又称毛基体,真核细胞的纤毛或鞭毛基底部由微管及其相关蛋白质构成的短筒状结构。与中心粒的结构十分相似,负责轴丝的生长和鞭毛与纤毛的合成。 结构 9个外围纤维在进入细胞质内形成一筒状结构,每根外围纤维变成3个亚纤维,成车轮状排列。而中心纤维在进入细胞质之前终止。基体向细胞内伸出纤维称为根丝体,终止在细胞核或其附近。基体的结构与中心粒相似,在细胞分裂时,基体也可起中心粒的作用。纤毛由于数量很多,在基体之间都有动纤丝相联,构成一个下纤列系统进行纤毛间的协调动作。 不同生物种类的基体 原生生物鞭毛及纤毛基端的膨大部分成圆筒形,构造基本与鞭毛或纤毛本身近似,但基本不包被细胞膜,无中央两条微管。 眼虫等鞭毛虫类的基体常以根丝体与胞核相连,可见鞭毛的活动受核的控制。某些种类在核分裂时,基体起着中心体的作用。 纤毛虫类的基体常称为动体。每一基体发出一条纤毛,在表膜下,基体整齐排列成行,相互间以原生特化形成的纤丝联系,传导冲动,协调纤毛的活动。 其他某些多细胞动物也有这种结构。 参考来源 维基百科-基体 | [
"1个分类",
"细胞生物学"
] | 463 | zh-CN |
培高利特甲磺酸盐 | http://www.a-hospital.com/w/%E5%9F%B9%E9%AB%98%E5%88%A9%E7%89%B9%E7%94%B2%E7%A3%BA%E9%85%B8%E7%9B%90 | 培高利特甲磺酸盐(Celance),商品名协良行。PM用于甲基多巴治疗帕金森氏病症的辅助治疗,是多巴胺D1和D2受体的激动剂。 本药品被归类到帕金森等药品分类。 培高利特甲磺酸盐的副作用(不良反应) 在安慰剂对照研究中观察到的下列不良反应,其发生率1%或更高,而且与安慰剂组比较有显著高的发生率(P<0.05),按系统的不良反应发生率顺序排列如下: 全身:疼痛,腹痛 消化系统:恶心,消化不良 神经系统:运动障碍,幻觉,嗜睡 呼吸系统:鼻炎,呼吸困难 感觉器官:复视 其它报告的不良反应包括:失眠,精神错乱,便秘,腹泻,低血压,房性早搏和窦性心律失常。 引起药物治疗中止的较普遍原因是与神经系统有关的副作用,主要是幻觉和精神错乱。 服用培高利特甲磺酸盐须注意的事项 室温储存。 培高利特甲磺酸盐的用法用量 注意:同种药品可由于不同的包装规格有不同的用法或用量。本文只供参考。如果不确定,请参看药品随带的说明书或向医生询问。 仅供成人口服 最初二天应人每日50mgPM开始,其后12天每隔2天每日增加100或150mg,然后每隔2天每日增加250mg至理想的治疗剂量。 PM通常每日分3次服用,在调整剂量期间,同时服用的左旋多巴剂量应小心地降低。 临床研究中PM的平均日剂量为3mg/日(300mg/日),同时服用的左旋多巴/卡比多巴剂量(以左旋多巴汁)为650mg/日左右,超过5mg/日(5000mg/日)剂量时PM的效果尚未作系统评价。 本药对儿童的安全性和效果尚未确立。 主要经肾排出。 培高利特甲磺酸盐药物相作用 多巴胺拮抗剂,如抗精神病药(吩噻嗪类,丁酰苯类,硫杂蒽类)和胃复安,通常不应与PM同时服用(PM是多巴胺激动剂),这些药可降低PM的作用。 因为PM 90%与蛋白结合,如本药与其它已知的影响蛋白结合的药物同时使用,应予注意。 还没有进行PM和华法令同时应用的研究,当这两个药同时被处方时,应仔细鉴别抗凝情况,必要时调整剂量。 因为服用PM的病人有体位性和/或持久性低血压,如有抗高血压药物同时使用应注意。 培高利特甲磺酸盐贮藏方法 室温储存。 市场上的培高利特甲磺酸盐 协良行 包装规格:铝箔包装50mg,30片/盒 铝箔包装250mg,30片/盒 铝箔包装1000mg,30片/盒 参看 治疗帕金森的药品列表 | [
"1个分类",
"药品"
] | 966 | zh-CN |
培高利特 | http://www.a-hospital.com/w/%E5%9F%B9%E9%AB%98%E5%88%A9%E7%89%B9 | 培高利特 药物名称: 培高利特 药物别名: 硫丙麦角林 英文名称: Pergolide 药物说明: 片剂:0.05mg;0.25mg;1.0mg。 主要成分: 暂无 性状特征: 暂无 功能主治: 多巴胺D1,D2受体激动剂,作用强,时间久,常与左旋多巴合用。 用法用量: 每日mg,连用2日,然后每隔3日,每日增加0.1~0.15mg,可用12日,而后每日增加0.25mg(间隔3日)直至效果满意。平均剂量3mg/日 不良反应: 暂无 注意事项: 常见不良反应:有不自主运动、幻觉、体位性低血压、困倦、意识模糊 | [
"3个分类",
"药理学",
"中枢神经系统用药",
"抗震颤麻痹药"
] | 255 | zh-CN |
培达 | http://www.a-hospital.com/w/%E5%9F%B9%E8%BE%BE | 主要成分:西洛他唑。 性状:片剂。 功能主治:改善由于慢性动脉闭塞症引起的缺血性症状如溃疡、肢痛、发冷及间歇性跛行。 用法及用量:成人 100mg2次/日。 不良反应和注意:偶见下列症状:过敏反应如发疹、瘙痒、心跳、脉频、发热、血压下降、头痛、头重、眼花、眩晕、失眠、发麻、困倦、消化功能异常。 规格:片剂 50mgx12片,16片,24片。 生产厂家: 是否医保用药:非医保 是否非处方药:处方 其它:出血患者如血友病、毛细血管脆弱症、上消化道出血、尿路出血、咳血、玻璃体出血、妊娠或有可能妊娠的妇女禁用。月经期患者、有出血倾向患者、严重肝、肾功能障碍者慎用。哺乳期妇女服药期间应避免授乳 | [
"3个分类",
"药品",
"西药",
"处方药"
] | 295 | zh-CN |
培菲康 | http://www.a-hospital.com/w/%E5%9F%B9%E8%8F%B2%E5%BA%B7 | 药物简介 医保甲类OTC乙类药品,上海信谊制药总厂生产,获得五个国家的技术专利,专业补充益生菌调理肠胃, 无副作用,效果好,得到广大百姓的信赖的药品 有胶囊和散剂两种剂型 胶囊说明书摘录: 药品名称:口服双歧杆菌、嗜酸乳杆菌、肠球菌三联活菌胶囊 商品名:培菲康 药理作用 本品可直接补充人体正常生理细菌,调整肠道菌群平衡, 抑制并清除肠道中致病菌,减少肠源性毒素的产生,促进机体对营 养物的消化,合成机体所需的维生素,激发机体免疫力。 药代动力学:本品服用后,所含三种有益菌可迅速地到达肠道,能在 其中定植。第二天,可从服用者粪便中检查出目的菌。第三、四天菌 量达到高峰,第八天维持正常。 适应症:主治因肠道菌群失调引起的急慢性腹泻;也可用于治疗轻、 中型急性腹泻,慢性腹泻及消化不良、便秘,腹胀。 用法用量:饭后半小时温水服用,一日2次,一次~4粒,重症加倍。 儿童用药酌减,婴幼儿服用时可将胶囊内药粉用温开水或牛奶冲服。 注意事项 1、适宜于冷藏保存。 2、宜用冷、温开水送服。 孕妇及哺乳期妇女用药:尚不明确。 药物相互作用:尚不明确。 规格:每粒胶囊含药粉210mg,含活菌数分别不低于1.0×10000000CFU. 贮藏:于2~8℃避光保存。 包装:12粒,20粒,24粒,30粒,60粒;聚乙烯塑料瓶。 有效期:2年 专利号: ZL 98 1 10623.4 | [] | 586 | zh-CN |
培脾舒肝汤 | http://www.a-hospital.com/w/%E5%9F%B9%E8%84%BE%E8%88%92%E8%82%9D%E6%B1%A4 | 【处方】 于术9克 生黄耆9克 陈皮6克 川厚朴6克 桂枝尖4.5克 柴胡4.5克 生麦芽6克 生杭芍12克 生姜6克 【功效与作用】 培脾舒肝,升清降浊。治肝气不舒,木郁克土,致脾胃之气不能升降,胸中满闷,常常短气。 【用法用量】 水煎服。 【备注】 脾主升清,所以运津液上达;胃主降浊,所以运糟粕下行。白术、黄耆,为补脾胃之正药,同桂枝、柴胡,能助脾气之升;同陈皮、厚朴,能助胃气之降;清升浊降,满闷自去,无事专理肝气,而肝气自理。况桂枝、柴胡与麦芽,又皆为舒肝之妙品。用芍药者,收敛肝胆之气,以防上升,且可解黄耆、桂枝之热。用生姜辛散温通之性,以助肝脾之气化。众药合用,则有培脾舒肝之功。 【摘录】 《医学衷中参西录》上册 中药方专题 参看中药方剂主页面。 按功效分类的常用方剂 解表剂、清热剂、泻下剂、祛风湿剂、祛湿利水剂、温里剂、理气剂、消导剂、驱虫剂、止血剂、活血剂、化痰止咳平喘剂、安神剂、熄风剂、开窍剂、补益剂、固涩剂 中药方大全 按拼音查询 点击字母查看完整药方列表: A: 安宫牛黄丸 阿魏化痞膏 安神丸 安肾丸 艾汤 安神定志丸 艾醋汤 艾附暖宫丸 安神补心丸 阿魏丸 安神膏 艾叶粥 安冲汤 B: 补中益气汤 白芥子 白汤 白虎汤 八珍汤 白蔹 八味丸 冰硼散 保和丸 白药 薄荷汤 八仙过海 补阳还五汤 八正散 C: 赤水玄珠 承气汤 柴胡疏肝散 穿心莲片 沉香化滞丸 刺五加浸膏 柴胡桂枝汤 柴胡汤 锉散 柴胡桂枝干姜汤 除湿汤 D: 胆南星 导赤散 颠茄流浸膏 大承气汤 独参汤 大补阴丸 当归补血汤 大柴胡汤 点药 导痰汤 点眼药 地黄丸 当归散 E: 二陈汤 二妙散 二仙汤 二至丸 二妙丸 鹅膏 耳聋左慈丸 二陈汤加味 二陈丸 鹅黄散 阿胶散 二十五味珍珠丸 阿胶汤 F: 防风通圣散 复方丹参片 附子理中汤 痱子粉 复元活血汤 防己黄芪汤 发表散 肥儿丸 复方丹参滴丸 附子理中丸 附子汤 G: 感冒退热颗粒 桂枝汤 归脾汤 龟龄集 归脾丸 甘草汤 感冒清热颗粒 公丁香 甘草流浸膏 葛根汤 桂枝茯苓丸 甘草水 H: 活血散 滑石粉 黄连解毒汤 黄连膏 黄芩汤 藿香正气散 化症回生片 黄汤 黄连阿胶汤 红粉 胡麻油 海金砂 黑膏药 J: 解毒剂 金不换 解毒散 金丹 解散 鸡蛋黄 金黄散 粳米粥 接骨丹 加味逍遥散 荆防败毒散 解毒汤 金铃子散 桔梗汤 K: 苦参汤 控涎丹 坎离砂 开郁散 开胃散 苦参丸 苦参煎 枯痔液 苦酒汤 咳血方 枯痔散 抗癌汤 开郁种玉汤 开关散 L: 六味地黄丸 龙胆泻肝汤 理中汤 六神丸 六君子汤 鹿角霜 绿豆汤 凉膈散 炉甘石洗剂 雷丸 六一散 龙胆泻肝汤加减 M: 麻黄汤 麦门冬汤 麦味地黄丸 明目地黄丸 牡蛎散 妙香散 麻黄杏仁薏苡甘草汤 梅花点舌丹 麻仁润肠丸 礞石滚痰丸 N: 牛黄解毒丸 牛黄清心丸 牛黄散 牛黄上清丸 暖肝煎 牛黄丸 脑立清丸 内疏黄连汤 女金丹 牛黄降压丸 牛黄镇惊丸 O: 藕羹 藕汁膏 藕汁饮 呕吐散 P: 平胃散 枇杷清肺饮 枇杷膏 排石汤 枇杷叶膏 蒲黄散 排气饮 蒲公英粥 蒲灰散 枇杷叶露 排脓散 排石颗粒 平补镇心丹 Q: 清胃散 千柏鼻炎片 清营汤 杞菊地黄丸 七厘散 清瘟败毒饮 青黛散 清暑益气汤 清燥救肺汤 羌活胜湿汤 七制香附丸 R: 如意金黄散 人参汤 人参养荣汤 润肠丸 肉桂粉 人参固本丸 人参健脾丸 润肌膏 人参养荣丸 人参败毒散 人参酒 人参粥 S: 四物汤 四君子汤 生脉散 四逆汤 参苏丸 十全大补汤 苏合香丸 肾气丸 参附汤 疏风散 参苓白术散 生肌散 参灵丸 T: 天王补心丹 桃仁承气汤 痛泻要方 调胃承气汤 涤痰汤 托里消毒散 通窍活血汤 通脉四逆汤 天麻丸 通宣理肺丸 透脓散 W: 威灵仙 五苓散 五味消毒饮 温胆汤 乌梅丸 乌鸡白凤丸 五积散 胃苓汤 吴茱萸汤 五福化毒丸 乌鸡汤 温经汤 乌梅汤 X: 消肿散 小柴胡汤 犀角地黄汤 逍遥散 消风散 泻白散 泻心汤 血府逐瘀汤 小青龙汤 锡类散 西瓜霜 小承气汤 小米粥 Y: 盐汤 银翘散 玉屏风散 右归丸 茵陈蒿汤 一贯煎 养阴清肺汤 异功散 越鞠丸 益元散 玉女煎 药线 阳和汤 羊肉汤 Z: 止痛药 知柏地黄丸 知柏地黄汤 左归丸 真武汤 至宝丹 枣汤 竹叶石膏汤 朱砂安神丸 左金丸 左归饮 炙甘草汤 增液汤 附:中药材大全 A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z 相关页面 中药百科、中医百科、药品、中成药 本草图书 《本草纲目》 《神农本草经》 中药相关电子书 方药古籍 《中药基本理论知识》 《中药学》 | [
"2个分类",
"中药",
"方剂"
] | 1,985 | zh-CN |
匹莫林 | http://www.a-hospital.com/w/%E5%9F%B9%E8%84%91%E7%81%B5 | (重定向自培脑灵) 性状:片剂。 功能主治:本品多用于:1.治疗轻微脑功能失调。2.治疗轻度抑郁症及发作性睡眠病。3.治疗遗传过敏性皮炎。 用法及用量:1.轻度脑功能失调:口服:每日晨1次服20mg,一般剂量不超过60mg。另据国外报道,本品有效剂量一般为每日mg,最大剂量为每日mg,低于50mg往往无效。一般生效时间在用药后第3-4周。但国内应用本品发现,6岁以上儿童每晨一次服用40mg左右,常在2-3日即生效。2.遗传过敏性皮炎:从每日服1片(20mg)开始,每2-3日递增1片,直至止痒或日剂量达4片为止。每周用6日,停用1日,共2周。 不良反应和注意:1.失眠为最常见的不良反应,多在治疗初期尚未出现疗效之前发生。大多数为一时性,继续用药或减量可自行消失。为避免失眠,通常午餐后不再服药。2.治疗开始数周内可出现食欲减低,并伴有体重减轻,但多数为一过性的。3.为避免耐药,每周最好仅服药5-6日。4.对儿童进行短期治疗时,不失为安全有效的药物,但对6岁以下儿童的安全性,尚无足够资料证实,因此,通常应避免用于6岁以下儿童。长期用药对儿童的影响,尚需积累更多临床资料。5.肝、肾有明显损害者,应慎用本品。一般在治疗前应检查肝功能,治疗过程中应注意复查。6.其他不良反应有眼球震颤及运动障碍,偶有头痛、头昏、恶心、胃痛、皮疹、嗜睡、烦躁不安、易激动及轻度抑郁等,减量或停药即可消失。 规格:片剂:每片20mg。 生产厂家: 是否医保用药:非医保 是否非处方药:处方 其它:根据实验证明,大鼠使用本品后死胎发生率增加,而幼鼠出生后成活率降低。临床虽尚无引起畸胎的报道,但孕妇及乳母使用时应慎重 | [
"4个分类",
"药理学",
"中枢神经系统用药",
"抗精神病药",
"抗抑郁症药"
] | 699 | zh-CN |
培美曲塞二钠 | http://www.a-hospital.com/w/%E5%9F%B9%E7%BE%8E%E6%9B%B2%E5%A1%9E%E4%BA%8C%E9%92%A0 | 通 用 名: 注射用培美曲塞 商 品 名: 英文: ALIMTA 中文:力比泰 英 文 名: Pemetrexed disodium for Injection 汉语拼音: Zhu She Yong Pei Mei Qu Sai Er Na 本品主要成分为培美曲塞二钠,其化学名称为: l ? 谷氨酸, N -[4-[2-(2- 氨基 -4,7- 二氢 -4- 氧 -1H- 吡咯并 [2,3-d] 嘧啶 -5- 烷基 ) 乙基 ] 苯甲酰基 ]- , 二钠盐, 七水合物 其结构式为: 分子式: C 20H 19N 5Na 2O 6?7H 2O 分子量: 597.49 [ 性状 ] 本品为白色至淡黄色或绿黄色的冷冻干燥固体。 [ 药理毒理 ] 药理作用: 培美曲塞是一种结构上含有核心为吡咯嘧啶基团的抗叶酸制剂, 通过破坏细胞内叶酸依赖性的正常代谢过程,抑制细胞复制,从而抑制肿瘤的生长 。体外研究显示,培美曲塞能够抑制 胸苷酸合成酶、二氢叶酸还原酶和甘氨酰胺核苷酸甲酰转移酶的活性,这些酶都是合成叶酸所必需的酶,参与胸腺嘧啶核苷酸和嘌呤核苷酸的生物再合成过程。培美曲塞通过运载叶酸的载体和细胞膜上的叶酸结合蛋白运输系统进入细胞内。一旦培美曲塞进入细胞内,它就在叶酰多谷氨酸合成酶的作用下转化为多谷氨酸的形式 。多谷氨酸存留于细胞内成为 胸苷酸合成酶和甘氨酰胺核苷酸甲酰转移酶的抑制剂。多谷氨酸化在肿瘤细胞内呈现时间 - 浓度依赖性过程,而在正常组织内浓度很低。多谷氨酸化代谢物在肿瘤细胞内的半衰期延长,从而也就延长了药物在肿瘤细胞内的作用时间。 临床前研究显示培美曲塞体外可抑制间皮瘤细胞系 (MSTO?211H, NCI?H2052) 的生长。间皮瘤细胞系 MSTO?211H 的研究显示出培美曲塞与顺铂联合有协同作用。 人群药效学分析采用的指标是绝对中性粒细胞计数,此时人群接受的为单药培美曲塞,未接受叶酸和维生素 B 12 的补充治疗。通过观察粒细胞最低值来判断血液学毒性发生的严重程度,结果发现其与本品全身给药剂量呈负相关关系。研究中也发现如果患者基线检查时胱硫醚或高半胱氨酸浓度高,那么其绝对粒细胞计数下降的会更为严重。叶酸和维生素 B 12 可以降低胱硫醚或高半胱氨酸这两种底物的浓度。经过培美曲塞多周期治疗,未见对中性粒细胞的累积毒性。 培美曲塞全身给药后( AUC 38.3- 316.8 m g?hr/mL ),中性粒细胞下降至最低点的时间约为 8 - 9.6 天,经过最低点后,中性粒细胞计数恢复至基线水平的时间为 4.2 -7.5 天。 毒理研究 遗传毒性: 小鼠骨髓体内微核测定显示培美曲塞是断裂剂,但体外的多个实验研究( Ames 测定, CHO 细胞测定)均未显示致突变作用。 生殖毒性: 培美曲塞按照 0.1 mg/kg/ 日或更大剂量(相当于人类推荐用量的 1/1666 )给予雄性小鼠,可导致生育能力下降、 精液过少和睾丸萎缩。 致癌作用: 未进行培美曲塞致癌作用的研究。 [ 药代动力学 ] 培美曲塞药代动力学评价在 426 例多种肿瘤类型的患者中进行,采用单药治疗,剂量为0.2-838 mg/m 2 ,10 分钟静脉内给药。培美曲塞主要以原药形式从尿路排泄,在给药后的24 小时内,70%-90% 的培美曲塞还原成原药的形式从尿中排出。培美曲塞总体清除率为 91.8 mL/min( 肌酐清除率是90 mL/min) ,对于肾功能正常的患者,体内半衰期为 3.5 小时。随着肾功能降低,清除率会降低,但体内剂量会增加。随着培美曲塞剂量的增加,曲线下面积AUC 和最高血浆浓度(C max) 会成比例增加。多周期治疗并未改变培美曲塞的药代动力学参数。培美曲塞呈现一稳态分布容积为 16.1 升。体外研究显示,培美曲塞的血浆蛋白结合率约为81% ,且不受肾功能影响。 特殊人群 培美曲塞 特殊人群中的药代动力学研究为在总计 400 例患者的单组研究。 老年人 — 对于年龄为 26—80 岁的人群,培美曲塞药代动力学无明显变化。 儿童 — 临床研究中未纳入儿童患者。 性别 — 男性患者与女性患者相比,培美曲塞药代动力学无差别。 种族 — 高加索裔和非洲裔患者,培美曲塞的药代动力学相似。曾有试验对日本患者的药代动力学进行研究,虽然没有日本患者和西方患者之间药代动力学参数规范的统计学对照报告,但仍可说明两者的绝对剂量参数值是基本相似的,而且没有显著的临床差异。 肝脏功能不全 — 谷草转氨酶( AST 、 SGOT )、谷丙转氨酶( ALT 、 SGPT )和总胆红素升高,不影响培美曲塞的药代动力学。但是,未进行肝损害患者的药代动力学研究。 ( 参见 [ 注意事项 ] 项下 “肝功能不全的患者”部分 ) 。 肾功能不全 — 总计 127 例肾功能不全患者进行了培美曲塞药代动力学研究。 如果同时合并有顺铂治疗,随着肾功能降低,培美曲塞的血浆清除率降低,而全身暴露剂量增加。将培美曲塞全身总暴露量( AUC )与 100 mL/min 的肌酐清除率比较,当肌酐清除率分别为 45 、 50 和 80 mL/min 时,全身总暴露量( AUC )增加 65% 、 54% 和 13% 。 ( 参见 [ 用法用量 ] 和 [ 注意事项 ] 项下“警告”部分 ) [ 临床研究资料] 恶性胸膜间皮瘤 — 本品联合顺铂一线治疗恶性胸膜间皮瘤的疗效及安全性 随机临床研究 : 一项单盲、随机、多中心的临床研究,比较 本品 联合顺铂与单药顺铂治疗恶性胸膜间皮瘤的生存期。总计 448 例患者入组, 本品 500mg/m 2 ,10 分钟静脉内给药,于 本品给药 30 分钟后给予 顺铂 75mg/m 2 ,输注至少2 小时 。两药均在每周期第一天给药,每 21 天 1 周期。 117 例患者入组后,出现白细胞及胃肠道不良反应,遂改变方案,同时给予全部患者叶酸和维生素 B12 的补充治疗。 所有随机并且接受了治疗的患者纳入主要研究终点的分析,同时还分析整个研究过程中接受了叶酸和维生素 B12 补充治疗(补充治疗是推荐方案,见用法及用量部分)的患者。所有患者 与那些接受了全量补充治疗患者的研究结果相似。全部患者的一般情况见表 1 , 仅有 67% 的患者经独立委员会评价后有恶性胸膜间皮瘤的组织学诊断 b 卡氏体能状态评分 表 2 显示了所有随机并接受了治疗患者以及从入组即接受维生素补充治疗患者的生存结果。 p 值比较的是两个治疗组。 总计 303 例患者经组织学证实为恶性胸膜间皮瘤,结果分析与上述相似。 65 岁以上年龄组与 65 岁以下组,一般情况分析无明显差别。由于入组的非白人患者很少,研究中无法看到种族差异。女性患者联合用药组与单药组中位生存期差别( 15.7 月 vs. 7.5 月)较男性患者大( 11 月 联合用药组 vs. 9.4 月 单药组)。其他分析的差别无法断定是真有差别还是客观原因造成的。 评价药物治疗恶性胸膜间皮瘤的疗效很困难,到目前为止还没有一个被普遍接受的标准。但是,按照现有的评价标准,本品联合顺铂治疗恶性胸膜间皮瘤的有效率好于单药顺铂,同时联合治疗较单药组也能更好地改善肺功能。 进一步分析接受了全量叶酸和维生素 B12 补充治疗患者对治疗的耐受性。可以看到,本品联合顺铂组( 168 例)接受的中位治疗周期为 6 个,而顺铂单药组( 163 例)为 4 个周期。但与未接受全量叶酸和维生素 B12 补充治疗的患者相比,后者无论是联合治疗组( 32 例)还是单药组( 38 例),中位治疗周期均为 2 个周期。接受了全量补充治疗的联合治疗组患者,本品给药的相对剂量强度为 93% (与方案要求剂量相比),顺铂给药的相对剂量强度为 94% ;而顺铂单药组的剂量强度为 96% 。 非小细胞肺癌 - 培美曲塞单一药物治疗经化疗后的局限晚期或转移( III 期或 IV 期)性的非小细胞肺癌的安全性和有效性。 随机临床研究 : 一项国际多中心、随机、开放的三期临床研究比较培美曲塞与多烯紫杉醇治疗后的总生存期。培美曲塞的给药剂量为 500mg /m 2, 10 分钟内静脉输注;多烯紫杉醇剂量为 75mg/m 2 , 1 小时内静脉输注。两种药物均在 21 天一个疗程的第 1 天给药。所有接受培美曲塞治疗的患者均接受叶酸和维生素 B 12 的补充治疗。试验旨在获得培美曲塞组的总生存期优于或非劣于多烯紫杉醇组。入组患者的一般情况数据见下表 3 。 表 3 非小细胞肺癌临床研究中患者的特征摘要 主要终点指标为总生存期。培美曲塞治疗组的中位生存期是 8.3 个月,多烯紫杉醇为 7.9 个月,风险比( HR )为 0.99 (见表 4 )。研究未显示出培美曲塞治疗组获得更高的总生存期。培美曲塞组疗效不劣于多烯紫杉醇组也未予以证实,因为无法用既往研究的数据来进行非劣性评估多烯紫杉醇治疗的可靠、持续的生存影响,而且在疾病进展中采取的交叉治疗也可能影响到患者的生存期。根据肿瘤治疗的缓解率(已经证实的替代终点指标)得出结论,培美曲塞对生存期的影响与多烯紫杉醇是一致的。 对入组病人的疾病特点进行分析,结果显示培美曲塞对 65 岁或以上年龄患者的生存期的影响与多烯紫杉醇无显著差异。仅有非常少的非白色人种患者参与评估可能存在的人种差异。经预兆因子校正后,发现不同性别间培美曲塞组的生存期与多烯紫杉醇组无差异。 研究中第二终点指标包括客观缓解率、无进展生存期( PFS )和疾病进展时间( TTPD )。研究显示培美曲塞与多烯紫杉醇在客观缓解率、无进展生存期和疾病进展时间上无统计学差异。 表 4: 比较培美曲塞与多烯紫杉醇对非小细胞肺癌 - ITT 人群的治疗作用 a 无显著统计学差异 b 合格病例数,培美曲塞组( N=264 ),多烯紫杉醇组( N=274 ) [ 适应症 ] 本品联合顺铂用于治疗无法手术的恶性胸膜间皮瘤。 [ 用法用量 ] 本品 应该在有抗肿瘤化疗应用经验的合格医师的指导下使用。 本品只能用于静脉滴注,其溶液的配制必须按照“ 静脉滴注准备”的说明进行。 恶性胸膜间皮瘤: 本品 联合顺铂用于治疗恶性胸膜间皮瘤的推荐剂量为每 21 天500mg/m 2 滴注 本品 超过 10 分钟,顺铂的推荐剂量为75mg/m 2 滴注超过2 小时,应在 本品 给药结束 30 分钟后再给予顺铂滴注。接受顺铂治疗要有水化方案。具体可参见顺铂说明书。 预服药物: 皮质类固醇 — 未预服皮质类固醇药物的患者,应用本品皮疹发生率较高。 预服地塞米松 ( 或相似药物 ) 可以降低皮肤反应的发生率及其严重程度。给药方法 :地塞米松 4mg 口服 每日 2 次,本品给药前 1 天、给药当天和给药后 1 天连服 3 天。 维生素补充 — 为了减少毒性反应,本品治疗必须同时服用低剂量叶酸或其他含有叶酸的复合维生素制剂。 服用时间:第一次给予本品治疗开始前 7 天至少服用 5 次日剂量的叶酸,一直服用整个治疗周期,在最后 1 次本品给药后 21 天可停服。患者还需在第一次本品给药前 7 天内肌肉注射维生素 B 12 一次,以后每 3 个周期肌注一次,以后的维生素 B 12 给药可与 本品用药在同一天进行。叶酸给药剂量: 350-1000 m g, 常用剂量是 400 m g ;维生素 B 12 剂量 1000 m g. 。 ( 参见 [ 注意事项 ] 项下的“警告” 部分 ) 。 实验室检查监测和推荐的剂量调整方法: 监测 — 所有准备接受本品治疗的患者,用药前需完成包括血小板计数在内的血细胞检查,给药后需监测 血细胞最低点及恢复情况,临床研究时每周期的开始、第 8 天和第 15 天需检查上述项目。患者必须在中性粒细胞 3 1500 /mm 3 ,血小板 3 100,000 cells/mm 3 、肌酐清除率 3 45 mL/min 时,才能开始本品治疗。每周期治疗需进行肝功能和肾功能的生化检查。 推荐剂量调整方法 — 根据既往周期血细胞最低计数和最严重的非血液学毒性进行剂量调整。患者如果 21 天周期仍未从不良反应中恢复,治疗应延迟进行。等待患者恢复后,按照表 1, 表 2 ,表 3 的要求进行治疗。 如果患者发生 3 3 度的非血液学毒性(不包括神经毒性)时(不包括 3 度转氨酶上升),应停止本品治疗,直至恢复到疗前水平或稍低于疗前水平。再次开始治 疗,按照表 2 的要求进行治疗。 a NCI 的 CTC 标准. b 不包括神经毒性 c 不包括 3 度转氨酶升高 出现神经毒性,本品和顺铂的剂量调整见表 3 。如果出现 3 度或 4 度神经毒性,应停止治疗。 如果患者经历 2 次剂量调整后,再次出现 3/4 度血液学或非血液学毒性(不包括 3 度转氨酶升高 ) ,应停止本品治疗,如果出现 3 度或 4 度神经毒性,应立即停止治疗。 老年患者 — 年龄 3 65 岁的患者除上述的剂量调整方案外无需特殊调整。 儿童 — 本品不推荐儿童应用,儿童用药的安全性和有效性尚未确定。 肾功能不全患者 — 只要患者肌酐清除率 3 45 mL/min ,按照所有患者的剂量调整方法进行,无特殊剂量调整方法。肌酐清除率低于 45 mL/min 的剂量调整方法尚未确定。因此,当按照 Cockcroft - Gault 公式计算或用 Tc99m?DPTA 血清清除方法计算肾小球滤过率后算得的肌酐清除率 <45 mL/min ,不应给予本品治疗。 肌酐清除率 <80 mL/min 的患者,如果本品同时合并非甾体类抗炎药应用应提高警惕密切监测。 ( 参见 [ 药物相互作用 ] ) 。 肝功能不全患者 — 本品不经肝脏代谢。肝功能不全的剂量调整参见表 2 。 ( 参见 [ 注意事项 ] 项下 “肝功能不全的患者”部分 ) 。 配药及给药注意事项: 本品是一种抗肿瘤药物,与其他有潜在毒性的抗肿瘤药一样,处置与配置本品时要特别小心。建议使用手套。如果 本品注射液接触到皮肤,立即用肥皂和水彻底清洗。如果 本品注射液接触到粘膜,用水彻底清洗。处置抗癌药目前没有统一的推荐标准。 本品不是糜烂剂,无特效解毒剂。到目前为止,有几例本品注射液外渗的报告,但研究者均认为并不严重。本品外渗处理可按照当地对非糜烂剂处理的常规方法进行。 静脉滴注准备: 1. 配置过程应无菌操作。 2. 计算本品用药剂量及用药支数。每支药含有 500mg 本品培美曲塞。每支瓶中实际所含本品大于 500mg 以保证静脉滴注时能达到标示量。 3. 每支 500mg 药品用 20 mL 0.9% 的氯化钠注射液(不含防腐剂)溶解成浓度为 25 mg/mL 的本品溶液,慢慢旋转直至粉末完全溶解。完全溶解后的溶液澄清,颜色为无色至黄色或黄绿色都是正常的。本品溶液的 pH 值为 6.6-7.8 。 且溶液 需要进一步稀释。 静脉滴注前观察药液有无沉淀及颜色变化;如果有异样,不能滴注。 本品溶液配好后应用 0.9% 氯化钠注射液(不含防腐剂)稀释至 100mL ,静脉滴注超过 10 分钟 。 配好的本品溶液,置于冰箱冷藏或置于室温( 15-30 ° ) ,无需避光,其物理及化学特性 24 小时内保持稳定。按照上述方法配制的本品溶液,不含抗菌防腐剂。不用部分丢弃。本品只建议用 0.9% 的氯化钠注射液 ( 不含防腐剂 ) 溶解稀释。本品不能溶于含有钙的稀释剂,包括美国药典林格氏乳酸盐注射液和美国药典林格氏注射液。其他稀释液和其他药物与本品能否混合尚未确定,因此不推荐使用。 [ 不良反应 ] 下表列出了在临床研究中随机接受培美曲塞和顺铂联合治疗的 168 名恶性胸膜间皮瘤患者及接受顺铂单药治疗的163 名恶性胸膜间皮瘤患者中大于5 %的不良反应的发生频率和严重程度的统计结果,在这两个试验组中之前未经化疗的患者均补充了充足的叶酸和维生素B 12 。 不良反应分级参见NCI CTC 2.0 版。 “非常常见”指 3 10 %;“常见”指 > 5 % 和 < 10 %。(本表中列出的所有不良反应发生率均被减少5 %以排除研究者主观认为可能与培美曲塞和顺铂相关)。 随机接受培美曲塞和顺铂治疗的患者,发生率在 1 %和5 %之间(包括5 %)的临床相关的毒性反应包括:AST , ALT 和GGT 升高,感染,发热,中性粒细胞减少性发热,肾衰竭,胸痛和荨麻疹;发生率 £ 1 %的临床相关的毒性反应包括心率失常和运动神经元病。 下表列出了在临床研究中随机接受培美曲塞单药治疗并且补充叶酸和维生素 B 12 的265 名患者及接受多烯紫杉醇单药治疗的276 名患者中大于5 %的不良反应的发生频率和严重程度的统计结果,在这两个试验组中患者均被诊断为 局部晚期或转移性非小细胞肺癌,并已经过前期化疗 。 不良反应分级参见NCI CTC 2.0 版。 “非常常见”指 3 10 %;“常见”指 > 5 % 和 < 10 %。(本表中列出的所有不良反应发生率均被减少5 %以排除研究者主观认为可能与培美曲塞相关)。 随机接受培美曲塞治疗的患者,发生率在 1 %和5 %之间(包括5 %)的临床相关的毒性反应包括: 神经障碍、运动神经元病、腹痛、肌酐升高、中性粒细胞减少性发热、无中性粒细胞减少性感染、变态反应/ 过敏和多型红斑;发生率 £ 1 %的临床相关的毒性反应包括室上性心率失常。 三个经整合的培美曲塞单独给药的 2 期临床研究(n=164 )中3 度和4 度试验室毒性反应的发生率与上面所列出的培美曲塞单独给药的3 期临床研究基本相似,除了中性粒细胞减少的发生率(分别为12.8% 和5.3% )和丙氨酸转氨酶升高的发生率(分别为15.2% 和1.9% )不同,主要是由受试人群不同造成的,因为在2 期研究中包含那些有肝脏转移和/ 或异常肝功能基线异常的乳腺癌患者,这些患者中有些之前未经过化疗而有些已经过多次化疗。 上市后临床应用中,罕见有结肠炎的报告。 [ 禁忌 ] 本品 禁用于对培美曲塞或药品其他成分有严重过敏史的患者。 [ 注意事项 ] 警告 肾功能减低的患者 本品主要通过尿路以原药形式排除体外。如果患者肌酐清除率 3 45 mL/min ,本品 ò 无需剂量调整。对于肌酐清除率 <45 mL/min 的患者,无足够患者的研究资料来给予推荐剂量。因此,对于肌酐清除率 <45 mL/min 的患者,不应给予本品治疗。 ( 参见 [ 用法用量 ] 中的“推荐剂量调整方法” ) 。 临床研究中,曾有一位严重肾功能不全(肌酐清除率 19 ml/min ) 的患者,未接受叶酸和维生素 B 12 补充治疗,接受单药本品治疗后,死于药物相关毒性。 骨髓抑制 本品可以引起骨髓抑制,包括中性粒细胞、 血小板减少、贫血(或各类血细胞减少)(参见 [ 不良反应 ] )。骨髓抑制是常见的剂量限制性毒性。应根据既往治疗周期中出现的最低中性粒细胞、血小板值和最严重非血液学毒性来进行剂量调整 。 ( 参见 [ 用法用量 ] 中的“推荐剂量调整方法” ) 。 叶酸及维生素 B 12 的补充治疗 接受本品治疗同时应接受叶酸和维生素 B 12 的补充治疗,可以预防或减少治疗相关的血液学或胃肠道不良反应。 ( 参加 [ 用法用量 ] 部分 ) 。临床研究显示, 给予叶酸和维生素 B 12 补充治疗的患者,接受本品治疗时总的不良反应发生率降低,包括 3/4 度的血液学毒性以及非血液学毒性,例如中性粒细胞减少、粒细胞减少性发热和 3/4 度粒细胞减少性感染。 注意事项 一般注意事项 本品应在有抗肿瘤药物应用经验的合格医师指导下使用。应在有足够诊断与治疗技术的医疗机构进行本品治疗,这也可以保证并发症的及时处理。临床研究中看到的治疗相关不良反应均是可以恢复的。给药前未给予类皮质激素预处理的患者易出现皮疹。地塞米松(或相似药物)预处理可以降低皮肤反应的发生率及严重程度。 ( 参见 [ 用法用量 ] 部分 ) 本品是否导致体液储留例如胸水或腹水还不清楚。对于临床有明显症状的体液储留患者,可以考虑本品用药前进行体腔积液引流。 实验室检查 所有准备接受本品治疗的患者,用药前需完成包括血小板计数在内的血细胞检查和血生化检查,给药后需监测 血细胞最低点及恢复情况,临床研究时每周期的开始、第 8 天和第 15 天需检查上述项目。患者需在中性粒细胞 3 1500 /mm 3 ,血小板 3 100,000 cells/mm 3 、肌酐清除率 3 45 ml/min. 时,才能开始本品治疗。 肝功能不全的患者 胆红素 > 1.5 倍正常上限的患者不纳入本品临床研究;无肝转移的患者,如果转氨酶 >3.0 倍正常上限,不纳入本品临床研究;有肝转移的患者,如果转氨酶在 3.0 和 5.0 倍正常上限之间,纳入本品临床研究。 肝功能不全患者的剂量调整见表 2 。 ( 参见 [ 药代动力学 ] 项下 的“特殊人群”部分 ) 。 肾功能不全患者 本品主要通过肾脏排泄。与肾功能正常患者相比,肾功能不全患者的总体清除率下降, AUC 增加。 有中度肾功能不全患者,顺铂与本品联合用药的安全性尚未确定 ( 参见 [ 药代动力学 ] 项下 的“特殊人群”部分 ) 。 药物与实验室检查的相互作用 尚未确定。 尚没有研究证明服用本品是否对患者驾驶和操作机器造成影响,然而研究证明本品可能导致疲劳,如果有这种情况发生,患者应被告知小心驾驶和操作机器。 [ 孕妇及哺乳期妇女用药 ] 妊娠: 妊娠妇女接受本品治疗可能对胎儿有害。妊娠 6 天 —15 天的小鼠,静脉予以 0.2 mg/kg (0.6 mg/m 2) 或 5 mg/kg (15 mg/m 2) 培美曲塞,有胎儿毒性并能致畸。给予小鼠 0.2 mg/kg 剂量 ( 大约为人类推荐剂量的 1/833) 培美曲塞即可引起胎儿畸形 ( 距骨和头颅骨的不完全骨化 ) , 5 mg/kg 时可导致腭裂 ( 相当于人类推荐剂量的 1/33) 。 胚胎毒性主要表现于胚胎死亡率增加,同时胚胎发育迟缓。没有有关妊娠妇女接受 本品治疗的研究,因为建议患者避孕。如果在妊娠期间使用了 本品或患者在使用本品期间怀孕,应告之可能对胎儿的潜在危险。 哺乳: 本品或其代谢产物是否能从乳汁中分泌尚未确定。但是本品可能对吃奶的婴儿有潜在严重危害,接受本品治疗的母亲应停止哺乳。 [ 儿童用药 ] 儿童用药的安全性和有效性尚未确定。 [ 老年患者用药 ] 按照所有患者的剂量调整方法进行,无需特殊方案 ( 参见 [ 药代动力学 ] 中特殊人群部分 ) 。 [ 药物相互作用 ] 化疗药物 — 顺铂不改变培美曲塞的药代动力学, 培美曲塞也对所有铂类药物的药代动力学无影响。 维生素 — 同时给予口服叶酸和肌注维生素 B 12 不改变培美曲塞的药代动力学。 细胞色素 P450 酶对药物代谢 — 体外肝脏微球蛋白预测研究结果显示,培美曲塞未导致通过 CYP3A 酶 , CYP2D6 酶 , CYP2C9 酶 和 CYP1A2 酶代谢的药物清除率降低。没有进行研究观察培美曲塞对细胞色素 P450 同工酶的影响。因为,如果按照推荐的给药日程(每 21 天 1 次), 本品对任何酶均无明显诱导作用。 阿司匹林 — 给予低到中等剂量 ( 每 6 小时 325 mg ) 的阿司匹林,未影响培美曲塞的药代动力学。 高剂量的阿司匹林对培美曲塞药代动力学影响目前还不清楚。 布洛芬 — 肾功能正常患者,布洛芬每日剂量为 400mg , 4 次 / 日时,可使培美曲塞的清除率降低 20% ( AUC 增加 20% )。更高剂量的布洛芬对 培美曲塞 药代动力学影响目前还不清楚。 本品主要通过肾小球的过滤和肾小管的排泄作用,以原药形式从尿路排出体外。同时给予对肾脏有危害的药物会延迟本品的清除,同时给予增加肾小管负担的其他药物(例如丙磺舒)也可能延迟本品的清除。 对于肾脏功能正常(肌酐清除率的患者 3 80 ml/min )的患者,本品可以和布洛芬同时用药 (400mg,4 次 / 日 ) ,但是对于有轻到中度肾功能不全(肌酐清除率在 45 到 79 ml/min 之间)的患者,本品与布洛芬同时使用要小心。有轻到中度肾功能不全的患者,在应用本品治疗前 2 天、用药当天和用药后 2 天,不要使用半衰期短的非甾体类抗炎药。 长半衰期的非甾体类抗炎药与本品潜在相互作用,目前还不确定。但在应用本品治疗前 5 天、用药当天和用药后 2 天,也要中断非甾体类抗炎药的治疗。如果一定要应用非甾体类抗炎药,一定要密切监测毒性反应,特别是骨髓抑制、肾脏及胃肠道的毒性。 [ 药物过量 ] 仅有几例本品药物过量的报告。报告的主要不良反应为中性粒细胞减少、贫血、血小板减少、粘膜炎和皮疹。可预料到的药物过量并发症主要有骨髓抑制,表现为中性粒细胞减少、血小板减少和贫血。另外,也可能出现伴随或不伴随发热的感染、腹泻和粘膜炎。一旦发生药物过量,应立即在医生指导下采取合适医疗措施。 临床研究中,如果出现 3 天以上 4 度白细胞减少或 3 天以上 4 度中性粒细胞减少,可以使用甲酰四氢叶酸,如果出现 4 度血小板减少或 3 度血小板减少相关的出血或 3/4 度粘膜炎,应立即使用甲酰四氢叶酸。甲酰四氢叶酸的推荐使用剂量和方法是:静脉给药,第 1 次剂量 100 mg/m 2, 以后 50 mg/m 2, 每 6 小时 1 次,连用 8 天。 通过透析解除本品过量的作用尚未确定。 [ 规格 ] 500 毫克/ 瓶 100毫克/瓶 [ 贮藏 ] 本品应室温保存( 15-30 ° C ) 。 按照上述方法配制的本品溶液,不含抗菌防腐剂,从微生物的角度应该立即使用,不用部分丢弃。如果没有一次用完,配好的本品溶液可置于冰箱冷藏( 2 - 8 ° C )或室温保存( 15-30 ° C ) ,无需避光,其物理、化学特性在 24 小时内保持稳定。 本品没有光敏性。 [ 包装 ] 玻璃瓶装, 1 瓶 / 盒 [ 有效期 ] 24 个月。 相关信息 (一)有关于该品的相关信息和介绍: 1、2004年2月5日----FDA宣布批准Alimta((pemetrexed disodium)与顺铂联用治疗一种罕见的癌症----恶性胸膜间皮瘤。Alimta早先已被FDA指定为治疗此适应症的罕见病用药,它也是得到FDA批准的第一种治疗此症的药物。 2、Alimta是一种新的、多靶位叶酸拮抗剂,它能在叶酸盐通道中,阻断癌细胞在分开和生长过程中所需要的多种酶,当一种或一种以上的酶被阻断时,癌细胞就不能生长繁殖。在当前已被批准的叶酸拮抗剂中,还不能达到以三种不同的酶作为靶,如此前批准治疗晚期直肠癌的雷替曲塞,仅作用二氢叶酸还原酶一个靶点,影响胸腺嘧啶的合成。而Alimta可以作用于三个靶点酶,影响胸腺嘧啶和腺嘌呤的合成,因此Alimta 较其他叶酸拮抗剂作用时间长。 3、美国的一个医学专家认为,礼来公司的抗癌药Alimta比Aventis SA公司的泰索帝(紫杉萜)更安全,因此应得到政府的批准来治疗某种常见肺癌 .FDA的专家组以13-0的投票结果一致向FDA建议,它们应批准这种注射型药物用于化疗后的非小细胞肺癌病人。但这些专家也指出,礼来公司的资料没有证明Alimta(已被批准治疗石棉有关的胸膜间皮瘤)能比泰索帝更有效地帮助肺癌病人存活更长时间,因此他们建议FDA要求礼来公司进行更多研究,在该公司收集这些资料时病人仍可购买此药。FDA通常会采纳该小组的提议。 4、继2004年2月份美国食品药品管理局(FDA)批准了Alimta(PemetrexedDisodium,培美曲塞二钠)与顺铂(Cisplatin)联用治疗恶性胸膜间皮瘤之后,10月FDA又以快速审批途径批准将Alimta作为局部晚期肺癌或转移性非小细胞肺癌的二线治疗药物,FDA的专家组投票结果为13-0的投票。 FDA快速批准Alimta用于肺癌治疗,是基于一项到目前为止国际上最大规模的肺癌二线治疗的Ⅲ期临床研究--“Alimta二线肺癌治疗III期临床实验”的结果。 该研究是于2001年3月~2002年2月间在美国、加拿大、澳大利亚、日本等20个国家和地区的临床中心共同完成的。此项研究将Alimta与泰素帝(Taxotere)进行疗效比较,结果显示,Alimta在缩小肿瘤方面与泰素帝效果相当,而Alimta所导致的粒细胞减少(白细胞异常下降)、粒细胞缺少性发热需住院治疗病例以及脱发等副作用的发生率明显低于泰素帝。 5、培美曲塞(pemetrexet alimta)是一个新的多靶点叶酸拮抗剂,可抑制胸苷酸合酶(TS)、二氢叶酸还原酶(DHFR)和甘氨酰胺核苷酸转甲酰酶(GARFT),从而阻断肿瘤DNA复制、细胞分裂所需的酶,抑制了肿瘤的生长,在Ⅱ期临床试验中显示对复发性NSCLC有较好疗效。Hanna等报告一组多中心、随机对照Ⅲ期临床试验,571例患者随机分组接受pemetrexet 500mg/m2静脉输注,第1天伴B12、叶酸、地塞米松注射,另一组为泰索帝75mg/m2,静脉输注,第1天,每21天为一疗程,有效率均为7.9%,SD43%,中位疾病无进展期为3个月。另57例临床试验证明,在含铂或TAX方案治疗失败后的患者中应用pemetrexet或泰索帝,RR分别为9.1%及8.8%,中位生存期达8.3月及7.9月。Pemetrexet虽有一定的副反应,但临床耐受性较好,故有可能替代泰索帝成为晚期NSCLC的二线治疗药物。 6、ALIMTA VL SD 500MG PEMETREXED DISODIUM FOR IV SOL 1EA 2995$。也有网站介绍为800英镑/瓶。 (二)抗肿瘤药物分类: 参考《2005国家基本医疗保险和工伤保险药品目录》抗肿瘤药物分类如下: 1、细胞毒药物 1.1作用于DNA化学结构的药物: 代表药为:白消安、环磷酰胺、铂类、尼莫司汀、吡柔比星等 1.2影响核酸合成的药物 代表药为:氟尿嘧啶、甲氨蝶呤、吉西他滨、卡培他滨等,正在做临床试验的雷替曲塞以及培美曲塞均属该类 1.3作用于核酸转录的药物 代表药物为:放线菌素、平阳霉素等 1.4作用于DNA复制的拓扑异构酶Ⅰ抑制剂 代表药为:美法仑、拓扑替康等,新近上市的该类药有治疗晚期结肠癌的伊立替康(艾力)。 1.5作用于微管蛋白合成的药物 代表药为:羟喜树碱、依托泊苷、长春瑞宾、多西他赛、紫杉醇等 1.6其他细胞毒药物 代表药有:门冬酰胺酶(L-门冬酰胺酶) 2、激素类及抗激素类抗肿瘤药 代表药有:他莫昔芬、阿那曲唑、来曲唑、托瑞米芬 、依西美坦等 3、其他及辅助用药 代表药有:靛玉红、维A酸、亚叶酸钙、托烷司琼等。 (三)抗肿瘤药的临床应用原则 临床抗肿瘤药物的应用,并不是机械的按照说明书使用,往往是根据肿瘤细胞的增殖动力学判断病人的情况参照抗肿瘤药的作用机制,来合理设计肿瘤的治疗方案。因而新肿瘤药上市后,在临床应用时不一定只应用于说明书上的适应症,有时还依据其作用机理将其应用于其它肿瘤。例如铂类抗肿瘤药属细胞周期非特异性药物,开始上市用于睾丸癌,但随后广泛用于多种肿瘤的治疗。再如抗代谢肿瘤药吉西他滨,现的在临床也不仅仅是限用于其所批的非小细胞肺癌及腺腺癌两项适应症。培美曲塞作用靶点多,决定了其在临床抗肿瘤应用上有很大的潜力。 辅助用药并无抗肿瘤活性,只是用来降低抗肿瘤药物的毒副作用或具有增敏作用,必须配合抗肿瘤药用于肿瘤治疗。 (四)抗肿瘤药市场资料 1、我国肿瘤谱情况 排名 男性 女性 肿瘤名称 死亡人数 新发人数 肿瘤名称 死亡人数 新发人数 1 肺癌 124,122 131,128 肺癌 61,379 64,351 2 胃癌 52,380 85,636 乳腺癌 18,095 60,626 3 肝癌 69,967 64,381 胃癌 25,856 39,205 4 直肠癌 25,563 39,244 直肠癌 21,443 36,500 5 食道癌 27,220 32,332 肝癌 26,233 22,840 6 白血病 8,923 9,166 白血病 6,874 6,753 注:非小细胞肺癌占肺癌总数的80%以上。 1、常用治疗非小细胞肺癌的抗肿瘤药情况 名称 剂型 规格 零售价 生产厂家 日均治疗费 多西他赛 粉针 20mg/支 1993元/支 安万特医药 约664元/日 长春瑞宾 注射液 10mg/1ml 340.2 /支 连云港豪森制药有限公司 约260元/日 紫杉醇 注射液 30mg/5ml 980元/支 四川太极制药有限公司 约373元/日 吉西他滨 粉针 1g/瓶 2464/瓶 法国礼莱 约704元/日 吉西他滨 粉针 1g/瓶 1606/瓶 江苏豪森药业股份有限公司 约460元/日 顺铂 冻干粉针 10mg/支 26元/支 齐鲁制药厂 约20元/日 卡铂 注射液 150mg/15ml 158.8 /支 上海华联制药有限公司 约30元/日 | [
"1个分类",
"原料药"
] | 13,610 | zh-CN |
酚丙喘定 | http://www.a-hospital.com/w/%E5%9F%B9%E7%BD%97%E5%9D%A6%E5%85%8B | (重定向自 ) 跳转到: , 页面 讨论 阅读 繁体/正体 编辑修改 修订历史 动作 | [] | 42 | zh-CN |
甲磺酸二氢麦角碱缓释胶囊 | http://www.a-hospital.com/w/%E5%9F%B9%E7%A3%8A%E8%83%BD | (重定向自培磊能) 甲磺酸二氢麦角碱缓释胶囊(Ergoloid Mesylate Sustained Release Capsules),商品名培磊能。脑动脉硬化症、脑震荡后遗症、脑中风后遗症及老年性痴呆等。 本药品被归类到其它心脑血管类等药品分类。 甲磺酸二氢麦角碱缓释胶囊贮藏方法 密闭保存。 市场上的甲磺酸二氢麦角碱缓释胶囊 培磊能 生产企业:杭州赛诺菲安万特民生制药有限公司 批准字号:国药准字H20041355 包装规格:2.5mg 参看 其它治疗心脑血管疾病的药品列表 | [
"1个分类",
"药品"
] | 240 | zh-CN |
培氟沙星 | http://www.a-hospital.com/w/%E5%9F%B9%E6%B0%9F%E6%B2%99%E6%98%9F | 培氟沙星,英文名Pefloxacin,中文别名:氟哌喹酸、甲氟哌酸、甲磺酸培氟沙星、培氟根、培氟哌酸、哌氟沙星,英文别名:PefloxacinMesylate,西医药物。 药理作用 本品属氟喹诺酮类,其体外抗菌作用及作用机制参见诺氟沙星。本 DNA旋转酶 品是一种新的氟代喹诺酮类抗菌药物,对G-及G+菌,包括肠细菌科、绿脓杆菌、不动杆菌属、嗜血杆菌属,奈瑟氏球菌属及葡萄球菌属(包括耐甲氧西林的菌株)具有广谱活性。其抗金葡菌性能和万古霉素相仿,但抗绿脓杆菌不及环丙氟哌酸和噻甲羧肟头孢菌素(Cetazidine),对一些多价耐药菌株和甲氧青霉素(Methicillin)耐药菌也有效。 培氟沙星口服或静脉注射400mg后,稳态血浆浓度为8~10mg/L,在组织内浓度也较高,细菌对本品的MIC90≤2mg/L被认为是敏感的;>2~4mg/L被认为是中度敏感。对青霉素G、苯唑青霉素等耐药的金黄色葡萄球菌,培氟沙星对之一般均敏感,据文献报道的MIC90为0.12~8mg/L;对表皮葡萄球菌则为中度敏感,MIC90为0.5~6.3mg/L;对链球菌(包括粪链球菌、肺炎链球菌)的MIC90为3.1~32mg/L;对结核杆菌为0.3~25mg/L。对厌氧菌的抗菌活性较低。本品和其他氟喹诺酮类药物相似,均为杀菌剂。其杀菌机理为抑制DNA旋转酶的活性,从而抑制细菌DNA的复制。 细菌对培氟沙星的耐药性是由于细菌的染色体突变所致。突变使细菌DNA旋转酶发生改变,或影响细胞膜的通透性。后者也可影响其他抗生素的透入,故可和其他抗生素发生交叉耐药。动物实验表明,培氟沙星在治疗小鼠金黄色葡萄球菌脓肿时,优于其他抗生素(包括环丙沙星、头孢噻吩、万古霉素等);在治疗粒细胞减少的豚鼠脓绿杆菌感染中,存活率可达100%。 动力学 本品可口服和静注,蛋白结合率约30%。在体内可代谢成活性产物脱 肝脏的代谢作用 甲基衍生物以及无活性的N-氧化物。t1/2都在10~12小时左右。胃肠道吸收良好,口服后药时曲线下面积与静注给药相似。在体内分布广泛,脑脊液、扁桃体、支气管、骨骼与肌肉、前列腺及腹膜液中都达到有效浓度。本品主要通过肾及肝脏消除,约50%;另外从胆汁中排出。本品特点为既可口服又可注射,吸收良好,血和组织浓度高于氟哌酸,可通过血脑屏障。健康人口服或静注本品200~800mg,其血药浓度与剂量成正比。据文献报道,口服本品200~400mg后,60~90分钟达血峰浓度。口服及静脉注射后,血峰浓度分别为3.84~6.6mg/L和5.8~8.2mg/L。多剂量口服或静脉注射后,峰浓度为7.9~10mg/L。 应用本品后48小时达稳态浓度。药时曲线下面积(AUC)在口服和静脉注射后均相同,表示生物利用度高。本品的分布容积为1.7~1.9L/kg,提示药物易于在组织和体液中达到较高浓度,且分布良好。在心、肝、肺、肾、肌肉及软组织中的浓度为血浓度的3~5倍。此外,由于本品在心肌组织中的浓度高,其通过血脑屏障能力强,故对心内膜炎和脑膜炎也有良好疗效,这与本品亲脂性较高有关。培氟沙星在体内代谢后,主要产生N-去甲基培氟沙星和培氟沙星N-氧化物,再进一步代谢为其他产物,经肾脏、胆汁等排泄,以碳-14标记培氟沙星,应用后7天内70%放射活性于尿中排泄,25%于粪中排泄。本品消除半衰期为7.2~13小时,而肝硬化病人的消除半衰期则延长。在肾功能减退时,本品的药代动力学参数变化不大。 适应症 临床适应证参见诺氟沙星。静脉给药尚可用于肺部感染的较重病例,也可用于革兰阴性杆菌败血症,治疗败血症时常需与具有协同作用的抗菌药物联合应用。用于成人G-菌和葡萄球菌严重感染如败血症,心内膜炎,菌性脑膜炎,呼吸道、尿道、肾、耳鼻喉科感染,妇科疾病,腹部、肝胆、骨关节炎及皮肤感染等。 用法用量 不可用生理盐水稀释 口服,一次g,一日2次首剂可加倍.静滴一次g,一日2次溶于等渗葡萄糖注射液中.滴注不可太快,一小时滴完.本品口服及静脉给药剂量成人均为每次mg,每12h1次,尿路感染及其他较轻感染剂量酌减。每次静脉滴注本品400mg时,需以5%葡萄糖液250ml稀释后缓慢避光静滴,滴注时间至少1h,不可用生理盐水或其他含氯溶液稀释,以防沉淀。腹水和黄疸患者,每二日用药一次。 不良反应 可引起胃肠道刺激或不适,烧心,恶心,呕吐,食欲不振。有轻度神经系统反应。眩晕,思睡,头痛,震颤,不安。停药后症状消失(恢复正常)。 培氟沙星注射液 过敏反应:皮疹,搔痒,心悸,胸闷,颜面或皮肤潮红,结膜充血。可引起肝损害,停药后症状消失(恢复正常)。可引起肾损害,尿素氮升高,也可有白细胞及血小板减少,嗜酸性粒细胞增多。有引关节和肌肉痛的报道。参见诺氟沙星。 由本品所致的消化道反应较诺氟沙星、氧氟沙星和依诺沙星为多见,光感性皮炎亦较多见,约占皮疹发生者的半数。诺氟沙星的不良反应主要有: 1、恶心、呕吐、上腹不适、腹泻、纳减等消化道反应。 2、头晕、头痛、情绪不安、失眠等神经系统反应,此类反应的发生率低于消化道反应。 3、皮疹、皮肤瘙痒、血管神经性水肿、光感皮炎等过敏反应,偶可发生过敏性休克。 4、少数患者可发生肌肉疼痛、无力、关节肿痛、心悸等。 5、实验室检查可发生一过性白细胞减少,血清转氨酶、血尿素氮和肌酐等的轻度增高,亦为可逆性。 上述不良反应多轻微,大多患者可耐受。然而诺氟沙星等氟喹诺酮类偶可致严重不良反应,包括: 1、神志改变、袖搐、癫痫样发作。 2、短暂性幻觉、幻视、复视等。 3、结晶尿,发生于大剂量用药时。 禁忌 药物抑制DNA合成 肾功能不全者慎用.本品在轻度肾功能减退者应用时不需减量,但肝功能损害者宜慎用并减量应用。诺氟沙星等氟喹诺酮类药物的作用机制为抑制DNA的合成,在幼鼠中发现该类药物对软骨的损害,故此类药物不宜用于小儿、孕妇,乳妇应用时需暂停哺乳,因药物可分泌至乳汁中。原有癫痫等中枢神经疾患者,应避免应用本品等氟喹诺酮类,因易发生严重中枢神经系统反应。严重肾功能减退者亦宜避免应用,因可发生抽搐等不良反应。 相互作用 参见诺氟沙星。其与茶碱类等的相互作用明显,宜避免同用,或测定茶碱类血药浓度后调整剂量应用。本品与双香豆素合用,可延长凝血酶原时间,故应加强监测。诺氟沙星等喹诺酮类可抑制茶碱类、咖啡因和口服抗凝剂(华法林)在肝脏的代谢,使上述药物因代谢减少而血药浓度升高,致不良反应易于发生,应避免同用。必须合用时,应监测茶碱类血药浓度或凝血酶元时间,并据以调整剂量。制酸剂可减少本品等喹诺酮类口服制剂的肠道吸收,不宜同用。 胶囊制剂 药理作用 本品具广谱抗菌作用,对下列细菌具良好抗菌作用:肠杆菌科的大 培氟沙星胶囊 部分细菌,包括大肠埃希菌、克雷伯菌属、变形杆菌属、志贺菌属、伤寒及沙门菌属等以及流感嗜血杆菌、奈瑟菌属等。对铜绿假单胞菌和金黄色葡萄球菌也有一定的抗菌作用。对肺炎球菌、各组链球菌和肠球菌仅具轻度作用。此外对麻风杆菌也有抗菌活性。甲磺酸培氟沙星为杀菌剂,通过作用于细菌DNA螺旋酶的A亚单位,抑制DNA的合成和复制而导致细菌死亡。本品为胶囊剂,内容物为白色或微黄色结晶性粉末或颗粒。 动力学 口服吸收迅速而完全,单剂量口服0.4g后,血药峰浓度(Cmax)约为5~6mg/L。有效血浓度可维持8小时。血消除半衰期(t1/2β)较长,约为10~13小时。本品吸收后广泛分布至各组织、体液,组织中的浓度都能达到有效浓度。本品主要在肝内代谢,约20%~40%自肾排泄,尿液中的有效浓度可维持24小时以上。 适应症 由培氟沙星敏感菌所致的各种感染:尿路感染;呼吸道感染;耳、鼻、喉感染;妇科、生殖系统感染;腹部和肝、胆系统感染;骨和关节感染;皮肤感染;败血症和心内膜炎;脑膜炎。 用法用量 口服。成人一日~0.4g,一日2次。 不良反应 1.胃肠道反应较为常见,可表现为腹部不适 过敏-红斑 或疼痛、腹泻、恶心或呕吐。 2.中枢神经系统反应可有头昏、头痛、嗜睡或失眠。 3.过敏反应:皮疹、皮肤瘙痒,偶可发生渗出性多形性红斑及血管神经性水肿。少数患者有光敏反应。 4.偶可发生:(1)癫痫发作、精神异常、烦躁不安、意识混乱、幻觉、震颤。(2)血尿、发热、皮疹等间质性肾炎表现。(3)结晶尿,多见于高剂量应用时。(4)关节疼痛。 5.少数患者可发生血清氨基转移酶升高、血尿素氮增高及周围血象白细胞降低,多属轻度,并呈一过性。 禁忌 对本品及氟喹诺酮类药过敏患者禁用。 注意事项 1.由于目前大肠埃希菌对氟喹诺酮类药物耐药者多见,应在给药前留取尿培养标本,参考细菌药敏结果调整用药。 2.本品大剂量应用或尿pH值在7以上时可发生结晶尿。为避免结晶尿的发生,宜多饮水,保持24小时排尿量在1200ml以上。 3.肾功能减退者,需根据肾功能调整给药剂量。 4.应用氟喹诺酮类药物可发生中、重度光敏反应。应用本品时应避免过度暴露于阳光,如发生光敏反应需停药。 肾功能监测 5.肝功能减退时,如属重度(肝硬化腹水)可减少药物消除,血药浓度增高,肝、肾功能均减退者尤为明显,均需权衡利弊后应用,并调整剂量。 6.原有中枢神经系统疾患者,例如癫痫及癫痫病史者均应避免应用,有指征时需仔细权衡利弊后应用。本品在婴幼儿及18岁以下青少年的安全性尚未确定。但本品用于数种幼龄动物时,可致关节病变。因此不宜用于18岁以下的小儿及青少年。动物实验未证实喹诺酮类药物有致畸作用,但对孕妇用药进行的研究尚无明确结论。鉴于本药可引起未成年动物关节病变,故孕妇禁用,哺乳期妇女应用本品时应暂停哺乳。老年患者常有肾功能减退,因本品部分经肾排出,需减量应用。 相互作用 . 与华法林合用慎用 1.尿碱化剂可减低本品在尿中的溶解度,导致结晶尿和肾毒性。 2.本品与茶碱类合用时可能由于与细胞色素P450结合部位的竞争性抑制,导致茶碱类的肝消除明显减少,血消除半衰期(t1/2β)延长,血药浓度升高,出现茶碱中毒症状,如恶心、呕吐、震颤、不安、激动、抽搐、心悸等,应避免合用,不能避免时应测定茶碱类血药浓度并调整剂量。 3.环孢素与本品合用时,其血药浓度升高,必须监测环孢素血浓度,并调整剂量。 4.本品与抗凝药华法林同用时可增强后者的抗凝作用,合用时应严密监测患者凝血酶原时间,并调整剂量。 5.丙磺舒可减少本品自肾小管分泌约50%,合用时可因本品血浓度增高而产生毒性。 6.本品干扰咖啡因的代谢,从而导致咖啡因消除减少,血消除半衰期(t1/2β)延长,并可能产生中枢神经系统毒性,合用时应严密监测患者咖啡因的血药浓度并调整剂量。 7.含铝、镁的制酸药可减少本品的口服吸收,不宜合用。 针剂制品 适应症 由培氟沙星敏感菌所致的各种感染:尿路感染;呼吸道 培氟沙星针剂 感染;耳、鼻、喉感染;妇科、生殖系统感染;腹部和肝、胆系统感染;骨和关节感染;皮肤感染;败血症和心内膜炎;脑膜炎。 性状 无色或微黄色、微黄绿色的澄明液体。 药理毒理 甲磺酸培氟沙星为喹诺酮类抗菌药,作用机理为抑制细菌DNA螺旋酶,具有广谱抗菌作用,对肠杆菌属细菌如大肠杆菌、克雷伯菌属、变形杆菌属、志贺菌属、伤寒沙门菌属等以及流感杆菌、奈瑟菌属等具有强大抗菌活性,对金黄色葡萄球菌和铜绿假单胞菌亦具有一定抗菌作用。对肺炎球菌、各组链球菌和肠球菌仅具轻度作用。 药代动力学 据资料介绍,本品0.4g静脉滴注后,原药血浓度为5.8mg/L,与人体血浆蛋白结合率为20%~30%,半衰期(t1/2)较长,约10~13小时,体内分布广泛,在支气管、肺、肝、肾、肌肉、前列腺等组织和胆汁、胸、腹腔液中均能达有效浓度。此外尚可通过炎症脑膜进入脑脊液中,脑脊液中浓度约为血药浓度的60%左右。主要在肝内进行代谢,主要代谢产物为N-去甲基物和N-氧化代谢物,其中N-去甲基物同培氟沙星具有同样的体外抗菌作用。本品及其代谢物主要经肾排泄,约占给药剂量的58.9%。 用法用量 静脉滴注:成人常用量,一次g,加入5%葡萄糖溶液250ml中缓慢静脉滴入,每12小时一次。患有黄疸的病人,每天用药一次;患有腹水的病人每36小时用药一次;患有黄疸和腹水的病人,每48小时用药一次。或遵医嘱。 不良反应 少数病人可出现: 1.胃肠道反应,如恶心、呕吐、食欲减退、腹泻等。 2.光敏反应、神经系统反应,如头昏、眩晕、头痛、震颤、失眠等。 3.皮疹、血清天门冬氨酸氨基转移酶、丙氨酸氨基转移酶上升、白细胞减低等。 4.偶见注射局部刺激症状。上述反应均属轻中度反应,停药后即可消失。 (1)中枢神经系统反应可有头昏、头痛、嗜睡或失眠。 (2)过敏反应:皮疹、皮肤瘙痒,偶可发生渗出性、多形性红斑及血管神经性水肿。少数患者有光敏反应。 (3)偶可发生: ①癫痫发作、精神异常、烦躁不安、意识混乱、幻觉、震颤; ②血尿、发热、皮疹等间质性肾炎表现; ③结晶尿,多见于高剂量应用时; ④关节疼痛。 (4)少数患者可发生血清氨基转移酶升高、血尿素氮增高及周围血像白细胞降低,多属轻度,并呈一过性。 禁忌症 对本品或其它喹诺酮类药物过敏者、6-磷酸葡萄糖脱氢酶不足者禁用。 注意事项 1.有中枢神经系统疾患者慎用。 2.有严重肝脏、肾脏功能损害者剂量宜酌减或慎用。 3.用药期间避免紫外光照射及日光曝晒。 4.静滴时间不少于60分钟。 孕妇及哺乳期妇女用药 孕妇及哺乳期妇女禁用。 儿童用药 18岁以下患者禁用。 药物相互作用 1.避免同时服用茶碱、含镁或氢氧化铝抗酸剂。 2.稀释液不能用氯化钠溶液或其它含氯离子的溶液。 规格 [1]、2ml:0.2g [2]、5ml:0.4g [3]、55ml:0.4g(按培氟沙星计) 参看 甲磺酸培氟沙星葡萄糖注射液 甲磺酸培氟沙星软膏 甲磺酸培氟沙星胶囊 甲磺酸培氟沙星片 甲磺酸培氟沙星注射液 甲磺酸培氟沙星 注射用甲磺酸培氟沙星 | [
"3个分类",
"喹诺酮类",
"药理学",
"抗微生物药"
] | 5,688 | zh-CN |
硝酸异山梨酯喷雾剂 | http://www.a-hospital.com/w/%E5%9F%B9%E6%AC%A3 | (重定向自培欣) 硝酸异山梨酯喷雾剂(Isosorbide Dinitrate Spray),商品名培欣、异舒吉。用于治疗及预防心绞痛发作,及对于急性心肌梗塞合并左心衰和肺水肿的病人在入院前作为紧急治疗用。 本药品被归类到心绞痛等药品分类。 硝酸异山梨酯喷雾剂的副作用(不良反应) 敏感病人会有头痛、头晕、一过性皮疹和恶心的感觉,这些症状可在数天内消失。个别病人会出现血压降低及心率增快。 硝酸异山梨酯喷雾剂禁忌症 此药禁用于休克、严重低血压状态(收缩<100mm汞柱)、低灌注量的急性心肌梗塞及对本品过敏者。 服用硝酸异山梨酯喷雾剂须注意的事项 1 轻度血压偏低者、妊娠3个月内的孕妇和哺乳期妇女需要在内科医生指导下,权衡利弊后慎用。 2 应用本品的患者应避免饮酒。 3 本品过量应用会发生危险。 4 此药含有90.0%容量的酒精,喷雾时有轻微灼热感,应用时应注意。 硝酸异山梨酯喷雾剂的用法用量 注意:同种药品可由于不同的包装规格有不同的用法或用量。本文只供参考。如果不确定,请参看药品随带的说明书或向医生询问。 首次使用时,揭开保护盖,按压喷射活门数下至喷出均匀喷雾,方可使用。使用时应垂直药瓶。随后则可即按即用。但若停用时间较长(如几日上)则需再次按压活门至喷出均匀喷雾后才使用。用后盖好瓶盖。除非有特殊处方,否则一般在心绞痛发作时或运动前(预料运动会促使心绞痛发作)喷用易顺脉口腔喷雾剂于口腔1至3次便可,每次相隔30秒。喷用时屏住呼吸,因此喷剂经鼻吸入。急性心梗或急性心衰 开始时用1-3喷,在5分钟内无反应时,可以再喷1次。如在10分钟内没有改善,在严密血压监测下也可继续喷入。导管引起的冠状动脉痉挛 在插入导管操作之前喷1-2 次。参阅说明书。 硝酸异山梨酯喷雾剂药物相作用 降压药、钙拮抗剂、其它静脉扩张剂、三环抗忧郁药、精神抑制药或酒精可增强本药的降血压作用。同时使用双氢麦角胺可增加双氢麦角胺的血药浓度。 硝酸异山梨酯喷雾剂成分或处方 本品主要成分为硝酸异山梨酯。 硝酸异山梨酯喷雾剂药理作用 如同时服用抗高血压药,其它血管扩张剂,三环类抗抑郁药和酒精,可增加此药之降低血压的作用。 硝酸异山梨酯喷雾剂贮藏方法 遮光,密闭,20℃室温保存。有效期:暂定二年。 市场上的硝酸异山梨酯喷雾剂 培欣 生产企业:包头中药有限责任公司 批准字号:国药准字H20000653 包装规格:20ml:0.25g 异舒吉 批准字号:国药准字J20080057 包装规格:16g:0.471g(1.25mg/喷) 参看 治疗心绞痛的药品列表 | [
"1个分类",
"药品"
] | 1,071 | zh-CN |
培植牛黄 | http://www.a-hospital.com/w/%E5%9F%B9%E6%A4%8D%E7%89%9B%E9%BB%84 | 培植牛黄 拼音名:Peizhiniuhuang 英文名:CULTURAL CALCULUS BOVIS 书页号:X7-36 标准编号:WS2-C2-0001-94(Z) 批准文号:(90)卫药准字Z-16号 本品为牛科动物牛Bos taurus domesticus Gmelin的活体胆囊中培植的干燥胆结石。手术或宰杀时,带核取出,除去胆汁及粘液,干燥,去核。 【性状】 本品为不规则片块或粉末,棕黄色或黄褐色。质较疏松,间有少量灰白色疏松状物和乌黑硬块。气微腥,味微苦而后甘,有清凉感,嚼之易碎,不粘牙。 【鉴别】 (1)取本品少量,加清水调和,涂于指甲上,能将指甲染成黄色,习称“挂甲”。 (2)取本品少量,加氯仿1ml,摇匀,再加硫酸与浓过氧化氢溶液(30%)各2滴,振摇, 即显绿色。 (3)取本品粉末0.1g,加甲醇5ml,超声处理10分钟,静置,取上清液作为供试品溶 液。另取胆酸、去氧胆酸、鹅去氧胆酸对照品,加甲醇制成每1ml中含1mg的混合溶液,作为对照品溶液。照薄层色谱法(中国药典1990年版一部附录57页)试验,吸取上述供试品溶液5μl,对照品溶液3μl,分别点于同一硅胶G薄层板上,以异辛烷-正丁醇-冰醋酸(8:5:5)为展开剂,展开,取出,晾干,喷以10%硫酸乙醇溶液,在110℃烘约5分钟,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的荧光斑点。 (4)取牛胆粉对照药材,加甲醇制成每1ml中含4mg的溶液,作为对照药材溶液。照薄层色谱法(中国药典1990年版一部附录57页)试验,吸取鉴别(3)项下的供试品溶液5μl与上述对照药材溶液3μl,分别点于同一硅胶G薄层板上,以冰醋酸-甲苯-水(33:25:1)为展开剂,展开,取出,晾干,喷以10%硫酸乙醇溶液,在110℃烘约5分钟,置紫外光灯(365nm)下检视。供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色的荧光斑 点(自下而上:牛磺胆酸→牛磺去氧胆酸→甘氨胆酸→甘氨去氧胆酸)。 【检查】 水分 照水分测定法(中国药典1990年版一部附录30页烘干法)测定,不得过9.0%。 游离胆红素 取本品细粉10mg,加氯仿使成5ml,微温,振摇。滤过,弃去初滤液,取续滤液适量,照分光光度法(中国药典1990年版一部附录51页),在453nm的波长处测定吸收度,不得过0.70。 【含量测定】 (1)胆酸 对照品溶液的制备 取在105℃干燥至恒重的胆酸对照品12.5mg,精密称定,置25ml量瓶中,加60%醋酸溶液溶解,并稀释至刻度,摇匀,即得(每1ml中含胆酸0.5mg)。 标准曲线的制备 精密量取对照品溶液0.2、0.4、0.6、0.8与1.0ml,分别置具塞试管中,各管精密加入60%醋酸溶液使成1ml,再分别精密加入新制的糠醛溶液(1→100)1ml 在冰浴中放置5分钟,加硫酸溶液(取硫酸50ml,加水65ml混合)13.0ml混匀,在70℃水浴中加热10分钟,迅速移至冰浴中放2分钟,以相应的试剂为空白,照分光光度法(中国药典1990年版一部附录51页)在605nm的波长处测定吸收度,以吸收度为纵座标,浓度为横座标,绘制标准曲线。 测定法 取本品约0.15g,精密称定,加60%醋酸溶液适量,充分搅拌,移入50ml量瓶中,残渣再用60%醋酸溶液搅拌,全部移入量瓶中,并用60%醋酸溶液稀释至刻度,摇匀,滤过,弃去初滤液,精密量取续滤液各1ml,分别置甲、乙两个试管中。于甲管中加新制的糠醛溶液1ml,乙管中加水1ml作空白,照标准曲线的制备项下的方法自“在冰浴中放置5分钟”起,依法测定吸收度。从标准曲线上读出供试品溶液中胆酸的含量,即得。 本品按干燥品计算,含胆酸应为7.0~13.0%。 (2)胆红素 对照品溶液的制备 取胆红素对照品约14mg,精密称定,置100ml棕色量瓶中,加氯 仿溶解并稀释至刻度,摇匀,精密量取5ml置50ml棕色量瓶中,加乙醇稀释至刻度,摇匀,即得(每1ml含胆红素0.014mg)。 标准曲线的制备 精密量取对照品溶液1.0、2.0、3.0、4.0、5.0ml,置具塞试管中,分别加乙醇稀释至9ml,各精密加重氮化溶液1ml,摇匀,于15~20℃暗处放置1小时,以相应的试剂作空白,照分光光度法(中国药典1990年版一部附录51页),在533nm的波长处测定吸收度,以吸收度为纵座标,浓度为横座标,绘制标准曲线。 测定法 取本品细粉适量(约相当于胆红素7mg),精密称定,置锥形瓶中,加氯仿和乙醇(7:3)的混合溶液60ml,盐酸1滴,摇匀,置水浴上加热回流约30分钟,放冷,移至100ml棕色量瓶中。容器用少量混合溶液洗涤,并入量瓶中,用上述混合溶液稀释至刻度,摇匀。精密量取上清液10ml,置50ml棕色量瓶中,加乙醇稀释至刻度,摇匀。精密量取3ml,置具塞试管中,照标准曲线的制备项下的方法自“加乙醇稀释至9ml”起,依法测定吸收度,从标准曲线上读出供试品溶液中胆红素的含量,即得。 本品按干燥品计算,含胆红素不得少于35.0%。 【注】 重氮化溶液配制法 甲液 取对氨基苯磺酸0.1g,加盐酸1.5ml,溶解后,加水至100ml。 乙液 取亚硝酸钠0.5g,加水至100ml,冰箱中保存。 临用前取甲液10ml,乙液0.3ml,混匀后使用。 【性味与归经】 甘,凉。归心、肝经。 【功能与主治】 清心,豁痰,开窍,凉肝,息风,解毒。用于热病神昏,中风痰迷,惊痫抽搐,癫痫发狂,咽喉肿痛,口舌生疮,痈肿疔疮。 【用法与用量】 0.15~0.35g,多入丸散用;外用适量,研末敷患处。 【贮藏】 置阴凉干燥处,遮光,密闭保存,防潮、防压 | [
"1个分类",
"中成药"
] | 2,359 | zh-CN |
盐酸丙哌维林片 | http://www.a-hospital.com/w/%E5%9F%B9%E5%AE%81 | (重定向自培宁) 盐酸丙哌维林片(Propiverine Hydrochloride Tablets),商品名华克、培宁。本品对化学物亚硝酸盐、硝酸盐、苯胺、硝基苯、三硝基甲苯、苯醌、苯肼等和含有或产生芳香胺的药物(乙酰苯胺、对乙酰氨基酚、非那西丁、苯佐卡因等)引起的高铁血红蛋白血症有效。对先天性还原型二磷酸吡啶核苷高铁血红蛋白还原酶缺乏引起的高铁血红蛋白血症效果较差。对异常血红蛋白M伴有高铁血红蛋白血症无效。对急性氰化物中毒、能暂时延迟其毒性。 本药品被归类到血液疾病类等药品分类。 盐酸丙哌维林片的副作用(不良反应) 本品静脉注射过速,可引起头晕、恶心、呕吐、胸闷、腹痛、剂量过大,除上述症状加剧外,还出现头痛、血压降低、心率增快伴心率失常、大汗淋漓和意识障碍。用药后尿呈蓝色,排尿时可有尿道口刺痛。 盐酸丙哌维林片禁忌症 本品不能皮下、肌肉或鞘内注射,前者引起坏死,后者引起瘫痪。6-磷酸-葡萄糖脱氢酶缺乏患者和小儿应用本品剂量过大可引起溶血。对肾功能不全患者应慎用。本品为1%溶液,应用时需用25%葡萄糖注射液40ml稀释,静脉缓慢注射(10分钟注射完毕)。对化学物和药物引起的高铁血红蛋白白血症,若30~60分钟皮肤黏膜紫绀不消退,可重复用药。先天性还原型二磷酸吡啶核苷高铁血红蛋白还原酶缺陷引起的高铁血红蛋白血症,每日口服300mg和大剂量维生素C。 服用盐酸丙哌维林片须注意的事项 1 氰化物中毒:每次10mg/kg,加5%葡萄糖注射液20~40ml,缓慢静注。至口周发绀消失,再给硫代硫酸钠; 2 硝酸、亚硝酸盐中毒:每次1~2mg/kg,缓慢静注(5~10分以上); 3 静脉注射量过大(500mg)时,可致头痛、头晕、心前区痛、出汗、神志不清、T波低平或倒置。 盐酸丙哌维林片的用法用量 注意:同种药品可由于不同的包装规格有不同的用法或用量。本文只供参考。如果不确定,请参看药品随带的说明书或向医生询问。 静脉注射。亚硝酸盐中毒,一次按体重1~2mg/kg,氰化物中毒,一次按体重5~10mg/kg,最大剂量为20mg/kg。 盐酸丙哌维林片药物相作用 作用机制可抑制乙酰胆、氯化钙对离体膀胱的收缩作用,对肌蛋白受体有亲和性,可抑制阿托品无法抑制的因电刺激引起的收缩。而且可抑制刺激切断的盆神经末梢引起的膀胱收缩,表明本药可直接作用于膀胱平滑肌。 盐酸丙哌维林片成分或处方 本品主要成份为盐酸丙哌维林。其化学名称为:1-甲基]-4-哌啶基二苯氧基丙氧乙酸酯盐酸盐。 分子式:C23H29NO3.HCl 分子量:403.95 盐酸丙哌维林片药理作用 1 对在体膀胱排尿运动的抑制作用: (1) 增加膀胱容量膀胱内压测定表明,本药可增加麻醉的大鼠和狗的最大膀胱容量,以及除脑狗的最大膀胱容量和有效膀胱容量,但未观察到残留尿量的显著增加; (2) 抑制排尿运动本药可减少麻醉的大鼠和狗膀胱充盈时的节律性收缩(排尿运动)次数; (3) 抑制电刺激引起的膀胱收缩不论是否切断盆神经,本药均可降低电刺激狗盆神经引起的膀胱的收缩力。 2 对离体膀胱的作用可剂量相关性的抑制膀胱平滑肌因乙酰胆碱、氯化钙(大鼠、狗、豚鼠)、电刺激(大鼠、狗、家兔)引起的收缩; 3 作用机制可抑制乙酰胆、氯化钙对离体膀胱的收缩作用,对肌蛋白受体有亲和性,可抑制阿托品无法抑制的因电刺激引起的收缩。而且可抑制刺激切断的盆神经末梢引起的膀胱收缩,表明本药可直接作用于膀胱平滑肌。另外,本药主要代谢产物1-甲基-4-哌啶基-二苯基丙氧基乙酸-N-氧化物(本药的N-氧化物,以下简称为M-1)直接作用于平滑肌,1-甲基-4-哌啶基-苯甲酸-N-氧化物(M-1的脱丙基诱导体,以下简称M-2)有抗胆碱作用。由此,本药可直接作用于平滑肌,并有抗胆碱作用,但主要是因为其直接抑制平滑肌而抑制排尿运动。 盐酸丙哌维林片贮藏方法 遮光,密闭保存。 市场上的盐酸丙哌维林片 华克 生产企业:石家庄市华新制药厂 批准字号:国药准字H13023021 包装规格:10ml 培宁 生产企业:广东康美药业股份有限公司 批准字号:国药准字H20041851 包装规格:10mg 参看 治疗血液疾病的药品列表 | [
"1个分类",
"药品"
] | 1,733 | zh-CN |
培坤丸 | http://www.a-hospital.com/w/%E5%9F%B9%E5%9D%A4%E4%B8%B8 | 培坤丸,喜运培坤丸是藻露堂传世秘方,是传统汤药改变剂型而成的中药复方制剂,含有四君子汤、四物汤、当归补血汤和归脾汤,具有补气、养血、滋阴、益肾的功效,经长期研究及临床观察显示,喜运培坤丸对妇女气血两亏、心悸烦躁、头晕乏力、腰膝酸软、月经不调、闭经、痛经、白带异常、子宫内膜异位、子宫发育不良、习惯性流产等症以及女性不孕症有显著的疗效。 本药品被归类到痛经等药品分类。 培坤丸禁忌症 抑郁气滞,内有湿者忌服. 培坤丸的用法用量 注意:同种药品可由于不同的包装规格有不同的用法或用量。本文只供参考。如果不确定,请参看药品随带的说明书或向医生询问。 口服,用黄酒或温开水送服,一次9克,一日2次。 培坤丸贮藏方法 避光 市场上的培坤丸 培坤丸 生产企业:宝商集团陕西辰济药业有限公司 批准字号:国药准字Z61021278 包装规格: 参看 治疗痛经的药品列表 | [
"1个分类",
"药品"
] | 376 | zh-CN |
培土饮 | http://www.a-hospital.com/w/%E5%9F%B9%E5%9C%9F%E9%A5%AE | 【处方】 人参9克 白术30克 茯苓15克 半夏9克 附子1克 玄参30克 【功效与作用】 治中邪,狂呼大叫,见人大骂,大渴索饮,身体出汗,有似亡阳。 【用法用量】 水煎服。 【摘录】 《辨证录》卷十 中药方专题 参看中药方剂主页面。 按功效分类的常用方剂 解表剂、清热剂、泻下剂、祛风湿剂、祛湿利水剂、温里剂、理气剂、消导剂、驱虫剂、止血剂、活血剂、化痰止咳平喘剂、安神剂、熄风剂、开窍剂、补益剂、固涩剂 中药方大全 按拼音查询 点击字母查看完整药方列表: A: 安宫牛黄丸 阿魏化痞膏 安神丸 安肾丸 艾汤 安神定志丸 艾醋汤 艾附暖宫丸 安神补心丸 阿魏丸 安神膏 艾叶粥 安冲汤 B: 补中益气汤 白芥子 白汤 白虎汤 八珍汤 白蔹 八味丸 冰硼散 保和丸 白药 薄荷汤 八仙过海 补阳还五汤 八正散 C: 赤水玄珠 承气汤 柴胡疏肝散 穿心莲片 沉香化滞丸 刺五加浸膏 柴胡桂枝汤 柴胡汤 锉散 柴胡桂枝干姜汤 除湿汤 D: 胆南星 导赤散 颠茄流浸膏 大承气汤 独参汤 大补阴丸 当归补血汤 大柴胡汤 点药 导痰汤 点眼药 地黄丸 当归散 E: 二陈汤 二妙散 二仙汤 二至丸 二妙丸 鹅膏 耳聋左慈丸 二陈汤加味 二陈丸 鹅黄散 阿胶散 二十五味珍珠丸 阿胶汤 F: 防风通圣散 复方丹参片 附子理中汤 痱子粉 复元活血汤 防己黄芪汤 发表散 肥儿丸 复方丹参滴丸 附子理中丸 附子汤 G: 感冒退热颗粒 桂枝汤 归脾汤 龟龄集 归脾丸 甘草汤 感冒清热颗粒 公丁香 甘草流浸膏 葛根汤 桂枝茯苓丸 甘草水 H: 活血散 滑石粉 黄连解毒汤 黄连膏 黄芩汤 藿香正气散 化症回生片 黄汤 黄连阿胶汤 红粉 胡麻油 海金砂 黑膏药 J: 解毒剂 金不换 解毒散 金丹 解散 鸡蛋黄 金黄散 粳米粥 接骨丹 加味逍遥散 荆防败毒散 解毒汤 金铃子散 桔梗汤 K: 苦参汤 控涎丹 坎离砂 开郁散 开胃散 苦参丸 苦参煎 枯痔液 苦酒汤 咳血方 枯痔散 抗癌汤 开郁种玉汤 开关散 L: 六味地黄丸 龙胆泻肝汤 理中汤 六神丸 六君子汤 鹿角霜 绿豆汤 凉膈散 炉甘石洗剂 雷丸 六一散 龙胆泻肝汤加减 M: 麻黄汤 麦门冬汤 麦味地黄丸 明目地黄丸 牡蛎散 妙香散 麻黄杏仁薏苡甘草汤 梅花点舌丹 麻仁润肠丸 礞石滚痰丸 N: 牛黄解毒丸 牛黄清心丸 牛黄散 牛黄上清丸 暖肝煎 牛黄丸 脑立清丸 内疏黄连汤 女金丹 牛黄降压丸 牛黄镇惊丸 O: 藕羹 藕汁膏 藕汁饮 呕吐散 P: 平胃散 枇杷清肺饮 枇杷膏 排石汤 枇杷叶膏 蒲黄散 排气饮 蒲公英粥 蒲灰散 枇杷叶露 排脓散 排石颗粒 平补镇心丹 Q: 清胃散 千柏鼻炎片 清营汤 杞菊地黄丸 七厘散 清瘟败毒饮 青黛散 清暑益气汤 清燥救肺汤 羌活胜湿汤 七制香附丸 R: 如意金黄散 人参汤 人参养荣汤 润肠丸 肉桂粉 人参固本丸 人参健脾丸 润肌膏 人参养荣丸 人参败毒散 人参酒 人参粥 S: 四物汤 四君子汤 生脉散 四逆汤 参苏丸 十全大补汤 苏合香丸 肾气丸 参附汤 疏风散 参苓白术散 生肌散 参灵丸 T: 天王补心丹 桃仁承气汤 痛泻要方 调胃承气汤 涤痰汤 托里消毒散 通窍活血汤 通脉四逆汤 天麻丸 通宣理肺丸 透脓散 W: 威灵仙 五苓散 五味消毒饮 温胆汤 乌梅丸 乌鸡白凤丸 五积散 胃苓汤 吴茱萸汤 五福化毒丸 乌鸡汤 温经汤 乌梅汤 X: 消肿散 小柴胡汤 犀角地黄汤 逍遥散 消风散 泻白散 泻心汤 血府逐瘀汤 小青龙汤 锡类散 西瓜霜 小承气汤 小米粥 Y: 盐汤 银翘散 玉屏风散 右归丸 茵陈蒿汤 一贯煎 养阴清肺汤 异功散 越鞠丸 益元散 玉女煎 药线 阳和汤 羊肉汤 Z: 止痛药 知柏地黄丸 知柏地黄汤 左归丸 真武汤 至宝丹 枣汤 竹叶石膏汤 朱砂安神丸 左金丸 左归饮 炙甘草汤 增液汤 附:中药材大全 A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z 相关页面 中药百科、中医百科、药品、中成药 本草图书 《本草纲目》 《神农本草经》 中药相关电子书 方药古籍 《中药基本理论知识》 《中药学》 | [
"2个分类",
"中药",
"方剂"
] | 1,771 | zh-CN |
培土生金 | http://www.a-hospital.com/w/%E5%9F%B9%E5%9C%9F%E7%94%9F%E9%87%91 | 培土生金,即补脾益肺,用培补脾土的方法,使脾的功能强健,恢复正常,以治疗肺脏亏虚的病症。例如肺虚久咳,痰多清稀,兼见食欲减退,肚腹作胀,大便稀溏,四肢无力,甚至浮肿,舌质淡苔白,脉濡细。用党参、茯苓、白朮、山药、木香、陈皮、半夏等 | [
"1个分类",
"中医"
] | 115 | zh-CN |
培土抑木 | http://www.a-hospital.com/w/%E5%9F%B9%E5%9C%9F%E6%8A%91%E6%9C%A8 | 培土抑木,即健脾疏肝。用健脾疏肝药以治疗肝旺脾虚的方法。症见两胁胀满、不思饮食、腹胀肠鸣、大便稀溏,舌苔白腻,脉弦等。代表方剂如逍遥散、痛泻要方等 | [
"1个分类",
"中医"
] | 73 | zh-CN |
培土化瘕汤 | http://www.a-hospital.com/w/%E5%9F%B9%E5%9C%9F%E5%8C%96%E7%98%95%E6%B1%A4 | 【处方】 白术30克 柴胡9克 茯苓9克 山药12克 神曲6克 山楂6克 枳壳1.5克 两头尖9克 厚朴3克 鳖甲4.5克 白薇3克 何首乌(生用)6克 白芍15克 白芥子6克 【功效与作用】 益脾平肝,消瘕破症。治食积气结,痰饮停聚而成症瘕。 【用法用量】 水煎服。 【摘录】 《辨证录》卷七 中药方专题 参看中药方剂主页面。 按功效分类的常用方剂 解表剂、清热剂、泻下剂、祛风湿剂、祛湿利水剂、温里剂、理气剂、消导剂、驱虫剂、止血剂、活血剂、化痰止咳平喘剂、安神剂、熄风剂、开窍剂、补益剂、固涩剂 中药方大全 按拼音查询 点击字母查看完整药方列表: A: 安宫牛黄丸 阿魏化痞膏 安神丸 安肾丸 艾汤 安神定志丸 艾醋汤 艾附暖宫丸 安神补心丸 阿魏丸 安神膏 艾叶粥 安冲汤 B: 补中益气汤 白芥子 白汤 白虎汤 八珍汤 白蔹 八味丸 冰硼散 保和丸 白药 薄荷汤 八仙过海 补阳还五汤 八正散 C: 赤水玄珠 承气汤 柴胡疏肝散 穿心莲片 沉香化滞丸 刺五加浸膏 柴胡桂枝汤 柴胡汤 锉散 柴胡桂枝干姜汤 除湿汤 D: 胆南星 导赤散 颠茄流浸膏 大承气汤 独参汤 大补阴丸 当归补血汤 大柴胡汤 点药 导痰汤 点眼药 地黄丸 当归散 E: 二陈汤 二妙散 二仙汤 二至丸 二妙丸 鹅膏 耳聋左慈丸 二陈汤加味 二陈丸 鹅黄散 阿胶散 二十五味珍珠丸 阿胶汤 F: 防风通圣散 复方丹参片 附子理中汤 痱子粉 复元活血汤 防己黄芪汤 发表散 肥儿丸 复方丹参滴丸 附子理中丸 附子汤 G: 感冒退热颗粒 桂枝汤 归脾汤 龟龄集 归脾丸 甘草汤 感冒清热颗粒 公丁香 甘草流浸膏 葛根汤 桂枝茯苓丸 甘草水 H: 活血散 滑石粉 黄连解毒汤 黄连膏 黄芩汤 藿香正气散 化症回生片 黄汤 黄连阿胶汤 红粉 胡麻油 海金砂 黑膏药 J: 解毒剂 金不换 解毒散 金丹 解散 鸡蛋黄 金黄散 粳米粥 接骨丹 加味逍遥散 荆防败毒散 解毒汤 金铃子散 桔梗汤 K: 苦参汤 控涎丹 坎离砂 开郁散 开胃散 苦参丸 苦参煎 枯痔液 苦酒汤 咳血方 枯痔散 抗癌汤 开郁种玉汤 开关散 L: 六味地黄丸 龙胆泻肝汤 理中汤 六神丸 六君子汤 鹿角霜 绿豆汤 凉膈散 炉甘石洗剂 雷丸 六一散 龙胆泻肝汤加减 M: 麻黄汤 麦门冬汤 麦味地黄丸 明目地黄丸 牡蛎散 妙香散 麻黄杏仁薏苡甘草汤 梅花点舌丹 麻仁润肠丸 礞石滚痰丸 N: 牛黄解毒丸 牛黄清心丸 牛黄散 牛黄上清丸 暖肝煎 牛黄丸 脑立清丸 内疏黄连汤 女金丹 牛黄降压丸 牛黄镇惊丸 O: 藕羹 藕汁膏 藕汁饮 呕吐散 P: 平胃散 枇杷清肺饮 枇杷膏 排石汤 枇杷叶膏 蒲黄散 排气饮 蒲公英粥 蒲灰散 枇杷叶露 排脓散 排石颗粒 平补镇心丹 Q: 清胃散 千柏鼻炎片 清营汤 杞菊地黄丸 七厘散 清瘟败毒饮 青黛散 清暑益气汤 清燥救肺汤 羌活胜湿汤 七制香附丸 R: 如意金黄散 人参汤 人参养荣汤 润肠丸 肉桂粉 人参固本丸 人参健脾丸 润肌膏 人参养荣丸 人参败毒散 人参酒 人参粥 S: 四物汤 四君子汤 生脉散 四逆汤 参苏丸 十全大补汤 苏合香丸 肾气丸 参附汤 疏风散 参苓白术散 生肌散 参灵丸 T: 天王补心丹 桃仁承气汤 痛泻要方 调胃承气汤 涤痰汤 托里消毒散 通窍活血汤 通脉四逆汤 天麻丸 通宣理肺丸 透脓散 W: 威灵仙 五苓散 五味消毒饮 温胆汤 乌梅丸 乌鸡白凤丸 五积散 胃苓汤 吴茱萸汤 五福化毒丸 乌鸡汤 温经汤 乌梅汤 X: 消肿散 小柴胡汤 犀角地黄汤 逍遥散 消风散 泻白散 泻心汤 血府逐瘀汤 小青龙汤 锡类散 西瓜霜 小承气汤 小米粥 Y: 盐汤 银翘散 玉屏风散 右归丸 茵陈蒿汤 一贯煎 养阴清肺汤 异功散 越鞠丸 益元散 玉女煎 药线 阳和汤 羊肉汤 Z: 止痛药 知柏地黄丸 知柏地黄汤 左归丸 真武汤 至宝丹 枣汤 竹叶石膏汤 朱砂安神丸 左金丸 左归饮 炙甘草汤 增液汤 附:中药材大全 A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z 相关页面 中药百科、中医百科、药品、中成药 本草图书 《本草纲目》 《神农本草经》 中药相关电子书 方药古籍 《中药基本理论知识》 《中药学》 | [
"2个分类",
"中药",
"方剂"
] | 1,818 | zh-CN |
培土养阴汤 | http://www.a-hospital.com/w/%E5%9F%B9%E5%9C%9F%E5%85%BB%E9%98%B4%E6%B1%A4 | 【处方】 制首乌9克 丹参 扁豆 谷芽各3克 白芍 车前各2.5克 莲肉4.5克 猪腰1具 【功效与作用】 益肾健脾。治虚劳,食少痰多,阴分不足,自汗盗汗,遗精。 【用法用量】 水煎服。 阳经火甚,痰嗽喘急,加保金汤;心脾气虚失血,加苡仁、藕节6~9克;积瘀,胸膈胀满,加白茅根3克;血中气滞,加降香25克;气血大虚弱,加人参、燕窝各9克;尾闾骨痛,加鹿角霜3克;泄泻不止,加脐带;汗多,加桑叶3克;嗽不止,加枇杷叶、佛耳草各2克;遗精,加芡实、莲须各3克。 【备注】 形不足者,温之以气,精不足者,补之以味。今虚劳之人,温气则火生,补精则濡泄,虽六味,四物、生脉,皆非所宜。本方以制首乌为君,固精养血,有地黄之功,而无地黄之滞;以猪腰为臣,补肾生精,有生血之功,而无败胃之虞;扁豆、谷芽补脾阴而不燥肺金,丹参、莲肉交通心肾而不耗阴血,白芍酸收以缓肝,车前利小便而不走精气,皆为佐使之品。配合成方,扶脾保肺,平补肝肾,用于虚劳阴分不足,食少痰多者,极为适合。 【摘录】 《不居集》上集卷十 中药方专题 参看中药方剂主页面。 按功效分类的常用方剂 解表剂、清热剂、泻下剂、祛风湿剂、祛湿利水剂、温里剂、理气剂、消导剂、驱虫剂、止血剂、活血剂、化痰止咳平喘剂、安神剂、熄风剂、开窍剂、补益剂、固涩剂 中药方大全 按拼音查询 点击字母查看完整药方列表: A: 安宫牛黄丸 阿魏化痞膏 安神丸 安肾丸 艾汤 安神定志丸 艾醋汤 艾附暖宫丸 安神补心丸 阿魏丸 安神膏 艾叶粥 安冲汤 B: 补中益气汤 白芥子 白汤 白虎汤 八珍汤 白蔹 八味丸 冰硼散 保和丸 白药 薄荷汤 八仙过海 补阳还五汤 八正散 C: 赤水玄珠 承气汤 柴胡疏肝散 穿心莲片 沉香化滞丸 刺五加浸膏 柴胡桂枝汤 柴胡汤 锉散 柴胡桂枝干姜汤 除湿汤 D: 胆南星 导赤散 颠茄流浸膏 大承气汤 独参汤 大补阴丸 当归补血汤 大柴胡汤 点药 导痰汤 点眼药 地黄丸 当归散 E: 二陈汤 二妙散 二仙汤 二至丸 二妙丸 鹅膏 耳聋左慈丸 二陈汤加味 二陈丸 鹅黄散 阿胶散 二十五味珍珠丸 阿胶汤 F: 防风通圣散 复方丹参片 附子理中汤 痱子粉 复元活血汤 防己黄芪汤 发表散 肥儿丸 复方丹参滴丸 附子理中丸 附子汤 G: 感冒退热颗粒 桂枝汤 归脾汤 龟龄集 归脾丸 甘草汤 感冒清热颗粒 公丁香 甘草流浸膏 葛根汤 桂枝茯苓丸 甘草水 H: 活血散 滑石粉 黄连解毒汤 黄连膏 黄芩汤 藿香正气散 化症回生片 黄汤 黄连阿胶汤 红粉 胡麻油 海金砂 黑膏药 J: 解毒剂 金不换 解毒散 金丹 解散 鸡蛋黄 金黄散 粳米粥 接骨丹 加味逍遥散 荆防败毒散 解毒汤 金铃子散 桔梗汤 K: 苦参汤 控涎丹 坎离砂 开郁散 开胃散 苦参丸 苦参煎 枯痔液 苦酒汤 咳血方 枯痔散 抗癌汤 开郁种玉汤 开关散 L: 六味地黄丸 龙胆泻肝汤 理中汤 六神丸 六君子汤 鹿角霜 绿豆汤 凉膈散 炉甘石洗剂 雷丸 六一散 龙胆泻肝汤加减 M: 麻黄汤 麦门冬汤 麦味地黄丸 明目地黄丸 牡蛎散 妙香散 麻黄杏仁薏苡甘草汤 梅花点舌丹 麻仁润肠丸 礞石滚痰丸 N: 牛黄解毒丸 牛黄清心丸 牛黄散 牛黄上清丸 暖肝煎 牛黄丸 脑立清丸 内疏黄连汤 女金丹 牛黄降压丸 牛黄镇惊丸 O: 藕羹 藕汁膏 藕汁饮 呕吐散 P: 平胃散 枇杷清肺饮 枇杷膏 排石汤 枇杷叶膏 蒲黄散 排气饮 蒲公英粥 蒲灰散 枇杷叶露 排脓散 排石颗粒 平补镇心丹 Q: 清胃散 千柏鼻炎片 清营汤 杞菊地黄丸 七厘散 清瘟败毒饮 青黛散 清暑益气汤 清燥救肺汤 羌活胜湿汤 七制香附丸 R: 如意金黄散 人参汤 人参养荣汤 润肠丸 肉桂粉 人参固本丸 人参健脾丸 润肌膏 人参养荣丸 人参败毒散 人参酒 人参粥 S: 四物汤 四君子汤 生脉散 四逆汤 参苏丸 十全大补汤 苏合香丸 肾气丸 参附汤 疏风散 参苓白术散 生肌散 参灵丸 T: 天王补心丹 桃仁承气汤 痛泻要方 调胃承气汤 涤痰汤 托里消毒散 通窍活血汤 通脉四逆汤 天麻丸 通宣理肺丸 透脓散 W: 威灵仙 五苓散 五味消毒饮 温胆汤 乌梅丸 乌鸡白凤丸 五积散 胃苓汤 吴茱萸汤 五福化毒丸 乌鸡汤 温经汤 乌梅汤 X: 消肿散 小柴胡汤 犀角地黄汤 逍遥散 消风散 泻白散 泻心汤 血府逐瘀汤 小青龙汤 锡类散 西瓜霜 小承气汤 小米粥 Y: 盐汤 银翘散 玉屏风散 右归丸 茵陈蒿汤 一贯煎 养阴清肺汤 异功散 越鞠丸 益元散 玉女煎 药线 阳和汤 羊肉汤 Z: 止痛药 知柏地黄丸 知柏地黄汤 左归丸 真武汤 至宝丹 枣汤 竹叶石膏汤 朱砂安神丸 左金丸 左归饮 炙甘草汤 增液汤 附:中药材大全 A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | Q | R | S | T | W | X | Y | Z 相关页面 中药百科、中医百科、药品、中成药 本草图书 《本草纲目》 《神农本草经》 中药相关电子书 方药古籍 《中药基本理论知识》 《中药学》 | [
"2个分类",
"中药",
"方剂"
] | 2,115 | zh-CN |
培土 | http://www.a-hospital.com/w/%E5%9F%B9%E5%9C%9F | 培土,指培补脾土,促使脾的运化机能恢复正常。凡脾虚而有饮食减少,大便泄泻等症,即须培土,也即“健脾”、“补脾”、“益脾”的总称 | [
"1个分类",
"中医"
] | 63 | zh-CN |
培哚普利片 | http://www.a-hospital.com/w/%E5%9F%B9%E5%93%9A%E6%99%AE%E5%88%A9%E7%89%87 | 培哚普利片(Perindopril Tablets),商品名雅施达。主要用于治疗高血压与充血性心力衰竭。 本药品被归类到心力衰竭等药品分类。 培哚普利片的副作用(不良反应) 临床副作用: 1 头痛、疲倦,眩晕,情绪或睡眠紊乱,痛性痉挛; 2 体位性或非体位性低血压(参阅:注意事项); 3 少数病例皮疹; 4 胃痛,厌食,恶心,腹痛,味觉障碍; 5 已报道干咳与服用ACE抑制剂有关,其特点为持续性。但停药后干咳消失,如有上述情况,应考虑这种症状可能是由药物引起的; 6 极少见:血管神经性水肿(参阅:警告). 对实验室指标的影响:血尿素和血肌酐中度升高,停止治疗后可恢复。这种升高多见于合并肾动脉狭窄、利尿剂治疗的高血压和肾衰患者。 培哚普利片禁忌症 在下列情况下禁用培哚普利:对培哚普利过敏;与使用ACE抑制剂有关的血管神经性水肿病史;妊娠的4至9个月;哺乳。 在下列情况下不推荐使用培哚普利: 1 与保钾利尿剂、钾盐、锂盐、雌二醇氮芥合用; 2 双侧肾动脉狭窄或单肾肾动脉狭窄; 3 高血钾; 4 在妊娠的最初三个月和哺乳期。 服用培哚普利片须注意的事项 由于该药含有乳糖,故禁用于先天性半乳糖血症。此病患者对葡萄糖和半乳糖吸收不良,或缺乏乳糖酶。在免疫抑制病人,有引起中性粒细胞减少/粒细胞缺乏的危险当以下述方式服用ACE抑制剂时,罕见病例出现粒细胞缺乏和/或骨髓抑制: 1 大剂量给药; 2 多系统疾病(胶原性疾病,如:系统性红斑狼疮或硬皮病)引起的肾功能衰竭患者、合并免疫抑制治疗和/或可能引起臼细胞减少的治疗的患者。预防这类事件最好的方法是严格遵守推荐的服用剂量。但是,假如这些病人需要服用ACE抑制剂,应慎重评估危险/利益比。 培哚普利片的用法用量 注意:同种药品可由于不同的包装规格有不同的用法或用量。本文只供参考。如果不确定,请参看药品随带的说明书或向医生询问。 1 高血压:4mg一日4次;如有必要,在治疗1月后,增至8mg一日1次。高危病人和/或老年病人开始剂量:2mg一日1次; 2 肾功能障碍病人,根据肌肝清除率调整剂量:每日2mg,30~60m1/分;隔日一次2mg,15~30ml分;当日透析后给2mg,<15ml/分; 3 心力衰竭:起始剂量为2mg每日1次,维持剂量为4mg每日4次。 培哚普利片药物相作用 禁忌配伍: 1 保钾利尿剂(安体舒通,氨苯蝶啶,单独或联合),治疗心力衰竭时除外(小剂量ACE抑制剂+保钾利尿剂),钾盐、高钾血症(可以致命,尤其在肾衰的病例,药物对血钾的升高具有协同作用)。除低血钾的患者,不要将补钾制剂或保钾利尿剂与ACE抑制剂合用; 2 锂:ACE抑制剂升高血锂浓度甚至达到毒性水平(减少锂的肾排泄)。如果必须使用ACE抑制剂,必须严密监测血锂水平并调整剂量; 3 雌二醇氮芥:血管神经性水肿的危险性增加。 培哚普利片成分或处方 培哚普利 培哚普利片药理作用 药学特性: 血管紧张素转换酶抑制剂 培哚普利星一种血管紧张素转换酶抑制剂(ACEI)。血管紧张素转换酶可将血管紧张素转化为血管紧张素‖。血管紧张素‖具有明显的缩血管作用,并可刺激肾上腺皮质分泌醛固酮。 培哚普利可导致: 1 醛固酮分泌减少; 2 由于缺少醛固酮的副反馈,肾素活性增高; 3 长期服用,总外围动脉阻力降低,且优先作用于肌肉和肾脏血流,不伴有钠和液体潴留或反射性心动过速。与所有的转化酶抑制剂相同,培哚普利抑制强烈肽类血管扩张物质—缓激肽降解为无活性的肽类。对于低肾素水平或正常肾素水平的患者,培哚普利均能降低血压。培哚普利以其活性成分培哚普利拉发生作用,其他代谢产物无活性。 抗高血压作用的特点: 培哚普利可用于治疗各种程度的高血压:轻度,中度,或重度。降低卧位和立位的收缩压和舒张压。服用单一剂量后,4-6小时出现最大降压作用,而且持续24小时以上。24小时后残留的转换酶抑制作用仍然很高(接近80%)。对于有效的患者,治疗1个月后血压可恢复正常化,而且不产生耐药性。停止治疗后,不引起血压反跳。培哚普利有血管扩张作用。恢复大动脉弹性并降低左室肥厚。必要时与噻嗪类利尿剂合用可产生协同作用。转换酶抑制剂与噻嗪类利尿剂合用可以减少单独服用利尿剂引起的低血钾的危险性。治疗心力衰竭:三顶对慢性心衰的研究显示,和其他同类药物比较,培哚普利降低血压更为缓和,极少发生突然性血压下降。心衰的血流动力学作用机制。 培哚普利降低心脏负荷: 1 可能通过改变前列腺素的代谢,扩张静脉,降低前负荷; 2 降低总外周血管阻力,降低后负荷。 对心衰病人的研究显示: 1 降低左室和右室的充盈压; 2 降降低总外围血管阻力; 3 增加心输出量和提高心脏指数; 4 增加局部肌肉血流; 5 提高运动耐力。 培哚普利片贮藏方法 遮光,密闭保存。 市场上的培哚普利片 雅施达 生产企业:Les Laboratoires Servier Division Oril 批准字号:注册证号 H20020226 包装规格:4mg/片 雅施达 生产企业:施维雅(天津)制药有限公司 批准字号:国药准字H20034053 包装规格:4mg 雅施达 生产企业:Les Laboratoires Servier Division Oril 批准字号:注册证号 BH20050156 包装规格:2mg。 参看 治疗心力衰竭的药品列表 | [
"1个分类",
"药品"
] | 2,213 | zh-CN |
培哚普利吲达帕胺片 | http://www.a-hospital.com/w/%E5%9F%B9%E5%93%9A%E6%99%AE%E5%88%A9%E5%90%B2%E8%BE%BE%E5%B8%95%E8%83%BA%E7%89%87 | 培哚普利吲达帕胺片,复方降压药,适用于原发性高血压。商品名为百普乐,施维雅(天津)制药有限公司旗下药品。 主要成分 本品为复方制剂,其组分为:培哚普利叔丁胺盐2.000mg,吲达帕胺0.625mg。赋形量适用于一片90mg片剂。 用法用量 口服。每日一次,每次服用一片百普乐, 最好在清晨餐前服用。血压不能控制时剂量可以加倍,每日二片百普乐或每日一片百普乐。 1. 老年人:开始治疗时应以正常剂量每日服用一片百普乐。 2. 肾功不全者:严重的肾功能不全(肌酐清除率低于30 毫升/ 分钟)是本品治疗的禁忌症。对于肌酐清除率大于或等于30 毫升/ 分钟的患者, 无需改变用药剂量。常规医疗检查包括定期监测肌酐和血钾水平。 3. 儿童:百普乐不能用于儿童,因为儿童单独应用或联合应用培哚普利的疗效和耐受性尚未确定。 不良反应 服用培哚普利可抑制肾素-血管紧张素-醛固酮轴而使吲达帕胺所致的失钾减少。服用百普乐的2%患者出现低钾血症(钾离子水平<3.4mmol/l)。 1. 胃肠道:罕见 (> 1/100, < 1/10):便秘、口干、恶心、上腹痛、厌食、腹痛、味觉障碍。极罕见(< 1/10, 000):胰腺炎。在肝功能不全病例中,有引发肝性脑病的可能性(见禁忌和注意事项)。 2. 呼吸系统:罕见(> 1/100, < 1/10):在服用血管紧张素转换酶抑制剂的患者中有报告出现干咳。它以持续存在,停药后即消退为特征。出现这种症状应考虑医源性原因。 3. 心血管系统:少见 (> 1/1, 000,< 1/100):引起体位性或非体位性低血压。 4. 皮肤:少见 (> 1/1, 000,< 1/100):过敏反应,主要是皮肤过敏,见于过敏性反应和和哮喘反应的易感人群。斑丘疹、紫癜、有可能加重原有的急性弥散性红斑狼疮。皮疹。极罕见(< 1/10, 000):血管神经性水肿(奎根水肿)。 5. 神经系统:少见 (> 1/1, 000,< 1/100):头痛、无力、眩晕、情绪失调和/ 或睡眠紊乱。 6. 肌肉系统:少见 (> 1/1, 000,< 1/100):痛性痉挛、感觉异常。 7. 血液系统:极罕见 (< 1/10, 000):血小板减少症、白细胞减少症、粒性白血球缺乏症、再生障碍性贫血、溶血性贫血。在特殊情况下(肾移植或进行血液透析的患者)服用血管紧张素转换酶抑制剂时可出现贫血。 禁忌 1. 与培哚普利相关: (1) 本品不用于下列情况: 对培哚普利或其它任何血管紧张素转换酶抑制剂过敏。 与使用血管紧张素转换酶抑制剂相关的血管神经性水肿(奎根水肿)的既往病史。 遗传性或特发性血管神经性水肿。 妊娠。 哺乳。 (2) 通常,本品不推荐用于: 联合使用保钾性利尿剂, 钾盐,锂(见药物相互作用)。 双侧肾动脉狭窄或单肾。 高钾血症。 2. 与吲达帕胺相关: 本品不用于下列情况: (1) 对磺胺类药物过敏。 (2) 严重肾功能衰竭(肌酐清除率小于30 毫升/ 分钟)。(3)肝性脑病。 (4) 严重的肝功能损伤。 (5) 低钾血症。 通常,不推荐本品与可引发扭转性室速的非抗心律失常药合用(见药物相互作用)。 3. 与百普乐相关。 (1) 对任何辅料过敏者。 (2) 由于缺少相关的资料,百普乐不能用于: 透析患者。 未经治疗的失代偿性心功能不全患者。 孕妇用药 血管紧张素转化酶抑制剂的存在决定了妊娠期和哺乳期妇女使用该复合制剂的禁忌。 1. 与培哚普利相关: (1) 妊娠: 尚未在人体进行相应的对照研究。 妊娠妇女使用血管紧张素转化酶抑制剂时,药物可以通过胎盘,导致胎儿或新生儿不健全和死亡。 妊娠4-9 个月时使用本品,有报道出现新生儿血压过低、肾功能不全、面部和头颅穹隆畸形和/ 或死亡。已经观察到母体羊水过少导致胎儿肾功能衰减的病例。 羊水过少造成四肢短缩、颅面畸形、肺部发育不全和子宫内发育迟缓的病例也有报道。 子宫内接触血管紧张素转化酶抑制剂的婴儿必须在血压过低、少尿和高血钾症方面进行严密的监测。少尿可以通过调节血压和肾血流量治疗。 有子宫内发育迟缓、早熟、动脉导管闭塞、胎儿死亡的报道,然而是否与应用血管紧张素转化酶抑制剂或母体当时患有的疾病有关尚不明确。 没有相关的数据能说明妊娠1-3 个月时有限的药物接触是否对胎儿产生影响。 如果患者在服用血管紧张素转化酶抑制剂期间怀孕,必须向她讲明药物对胎儿可能造成的危害。 (2) 哺乳: 血管紧张素转化酶抑制剂可由乳汁分泌,其对受乳婴儿的影响尚不明确。因此正在服用血管紧张素转化酶抑制剂的母亲禁止哺乳婴儿。 2. 与吲达帕胺相关: (1) 妊娠: 通常,孕妇禁止使用利尿剂,不能用其进行治疗妊娠期间的生理性水肿(并不需要治疗)。利尿剂可导致胎儿胎盘缺血,可出现损伤胎儿生长的危险。 尽管如此,对于由于心脏、肝脏和肾脏功能不全而出现水肿的妊娠妇女,利尿剂仍然是治疗的重要手段之一。 (2) 哺乳: 仅有少量的吲达帕胺可经乳汁分泌。但是,由于以下原因妇女在哺乳期还是应禁用此药: 减少甚至抑制泌乳。 报道不良反应,特别是生化方面(血钾水平)。 由于此药属磺胺类药物,有引起过敏和核黄疸的危险。 药物相互作用 1. 与百普乐相关: (1) 建议不要联合使用的药物: + 锂:在无钠饮食(减少肾脏的锂排出量)的情况下,锂含量的增加可产生药物过量症状。如果必须联合使用血管紧张素转化酶抑制剂和保钾利尿剂,则应严格监测锂含量并调整用药剂量。 (2) 联合使用时需特别注意的药物: + 降糖药(胰岛素、磺脲类降糖药): 与卡托普利和依那普利联合使用的报导: 正在接受胰岛素或磺脲类降糖药的糖尿病患者,使用血管紧张素转化酶抑制剂可增强降糖作用。 低血糖发作极为少见(糖耐量的改善减少了胰岛素的需求量)。 + 氯苯氨丁酸:具有潜在抗高血压的作用。监测血压和肾功能,必要时调整抗高血压药物的剂量。 + N.S.A.I.D(全身途径给药),大剂量水杨酸盐:脱水的患者可出现急性肾功能不全(肾小球滤过率降低)。应给患者适当补水;从治疗的开始即监测肾脏功能。 (3) 联合使用时需要注意的药物: + 丙咪嗪类抗抑郁药(三环类),精神安定药:可增加抗高血压药物的作用,增加直立性低血压的危险性(协同作用)。 + 皮质激素,替可克肽:降低抗高血压药物的疗效(皮质激素造成水盐潴留)。 2. 与培哚普利相关: 建议不要联合使用的药物: + 保钾性利尿剂(单独或联合使用安体舒通,氨苯喋呤),钾(盐)可增高钾离子水平(可能致命),尤其是对肾功能不全的患者(保钾作用叠加)。除非钾离子水平较低,否则保钾性药物不应与血管紧张素转换酶抑制剂联合使用。 + 麻醉剂:血管紧张素转化酶抑制剂可能增强某些麻醉药品的降血压作用。 + 别嘌呤醇、细胞增殖抑制剂或免疫抑制剂、皮质激素(全身给药)或普鲁卡因胺与血管紧张素转化酶抑制剂同时给药可能导致白细胞减少症发生的危险性增高。 + 抗高血压药物:增强血管紧张素转化酶抑制剂降血压作用。 3. 与吲达帕胺相关: (1) 建议不要联合使用的药物: + 可引起QT 间期延长或扭转性室速的非抗心律失常药物(阿司咪唑、苄普地尔、红霉素IV、卤泛群、喷他脒、舒托必利、特非那定、长春胺)扭转性室速(低血钾,心动过缓和已存在的QT 间期延长为危险因素)。 如果发生低血钾, 可以使用不会引起扭转性室速的药物。 (2) 联合使用时需要特别注意的药物: + N.S.A.I.D(全身途径给药),大剂量水杨酸盐: 可能降低吲达帕胺的抗高血压作用。 脱水的患者可能出现急性肾功能不全(肾小球滤过率降低)。 应给患者适当补水;从治疗的开始即监测肾脏功能。 + 降低血钾药物:二性霉素B(静脉给药)、糖皮质激素和盐皮质激素(全身给药)、替可克肽、刺激性泻药增加低钾血症的危险性(协同作用)。监测血钾,必要时进行纠正;在应用强心甙类药物时, 需要特别小心。使用非刺激性泻药。 + 强心甙类药物:低钾可引起强心甙类药物的毒性作用。应注意监测血钾,心电图, 必要时重新调整治疗。 (3) 联合使用时需要注意的药物: + 保钾利尿剂(阿米洛利、安体舒通,氨苯喋呤):这种联合用药对某些患者是有益的,但并不排除低钾血症或特别是肾功能不全或糖尿病患者发生高钾血症。应注意监测血钾,心电图, 必要时重新调整治疗。 + 可引起扭转性室速的抗心律失常药物:IA 类抗心律失常药物(奎尼丁、二氢奎尼丁、双异丙吡胺)、乙胺碘呋酮、溴苄胺、索他洛尔扭转性室速(低血钾,心动过缓和已存在的QT 间期延长为危险因素)。预防低血钾的发生,必要时进行纠正:监测QT 间期。在扭转性室速发作时, 不用抗心律失常药物(而用起搏器治疗)。 + 二甲双胍:在利尿剂, 特别是袢利尿剂有关的潜在功能性肾功能不全时, 二甲双胍可能引起乳酸酸中毒。男性患者肌酐水平超过15 毫克/ 升(135 微摩尔/ 升),女性患者超过12 毫克/ 升(110 微摩尔/ 升),不能使用二甲双胍。 + 碘造影剂:对于因使用利尿剂而出现脱水的患者,碘造影剂增加急性肾功能不全的危险性,尤其是在使用大剂量碘造影剂时。在给予碘化合物前, 必须先进行补液治疗。 + 丙咪嗪类抗抑郁药(三环类),精神安定药:可增加抗高血压药物的作用,增加直立性低血压的危险性(协同作用)。 + 钙(盐):尿中排钙减少,导致高血钙的危险。 + 环胞霉素:在不改变血循环中的环孢霉素水平, 甚至在没有水/ 钠缺失情况下, 仍存在肌酐升高的危险性。 + 皮质激素,替可克肽(全身途径给药):降低抗高血压药物的疗效(皮质激素造成的水盐潴留作用)。 参看 培哚普利 吲达帕胺 抗高血压药物 参考文献 施维雅(天津)制药有限公司生产百普乐说明书 第七版药理学.人民卫生出版社 | [] | 4,017 | zh-CN |
培哚普利 | http://www.a-hospital.com/w/%E5%9F%B9%E5%93%9A%E6%99%AE%E5%88%A9 | 培哚普利片说明书 请仔细于都说明书并在医师指导下使用 【药品名称】 通用名称:培哚普利片 商品名称:雅施达(R) 英文名称:Perindopril Tables[ACERTIL(R)] 【成分】 化学名称:培哚普利叔丁胺盐,(2S,2aS,7aS)-1{(s)-N-[(s)-1-乙酯基丁基]丙氨酰}八氢-1H-吲哚-2-羧酸,叔丁胺盐(1:1) 分子式:C19H32N2O5.C4H11N 分子量:441.6 【性状】 本品为白色条状片,片面中央有压痕。 【适应症】 高血压与冲血性心力衰竭。 本品是一种强效和长效的血管紧张素转换酶抑制剂,可使外周血管阻力降低,而心输出量和心率不变。用于治疗各种高血压与充血性心力衰竭,与外用李氏药贴、降压申贴、悬压贴等外用中药贴合用可加强降血压效果。 【规格】 4mg(按培哚普利叔丁胺盐C19H32N2O5.C4H11N计)。 【用法与用量】 培哚普利片必须饭前服用,因为食物改变其活性代谢产物培哚普利的生物利用度。培哚普利每天服用一次。 无水钠丢失或肾衰(即正常情况下): 有效计量为4mg/天,早晨一次服用。根据疗效,剂量可于三至四周内逐渐增至最大剂量8mg/天。 已经使用利尿剂治疗的高血压患者: (1)开始治疗三天,停止服用利尿剂。如果必要,以后可以再次加服利尿剂。 (2)或由2mg开始治疗,并根据降压效果调整剂量。 在治疗之前和治疗开始的最初15天内,建议监测血肌酐和血钾水平。 老年人(参阅:注意事项) 有小剂量(2mg/天,早晨服药)开始治疗,如果必要,一个月后,增加至4mg/天。假如以前的检查显示肾功能异常并非是由于年龄造成,必要时可以根据病人的肾功能状况调整剂量(参阅:下表) 肌酐清除率能精确现实老年人的肾脏功能,肌酐清除率是根据血肌酐并用年龄,体重和性别修正,用Cockroft'公式计算: Clcr=(140-年龄)*体重/0.814*血肌酐 (方程式中第2、3个*号代表算术:乘以) 用:年 表示年龄 千克 表示体重 mmol/l 表示血肌酐 该公式适用于成年男性,女性则乘以0.85予以修正。 肾血管性高血压 建议起始剂量为2mg/天,此后按照患者血压反应调整剂量。 应检查血肌酐和血钾,以便发现功能性肾功能不全的出现。(参阅:注意事项) 肾功能不全时,培哚普利的剂量应按照肾功能不全的程度调整: 如果肌酐清除率>=60ml/分,不需要调整剂量。 如果肌酐清除率<60ml/分,参阅下列表格: 肌酐清除率(ml/分) 建议剂量 30<Clcr<60 2mg/天 15<Clcr<30 2mg/隔天 对这类患者通常的医疗处理包括定期检测血钾和血肌酐,如在治疗稳定阶段每两个月检测一次。这种病例,可以合用的利尿剂是袢利尿剂。 血液透析的高血压患者(Clcr<15ml/分) 培哚普利是可以经透析被清除的(参阅警告:血液透析)。透析清除率是70ml/分。在透析当天给予2mg培哚普利。 充血性心力衰竭 小剂量开始治疗,尤其以下病例: 起始血压低或正常 肾衰 低钠血症,无论是否药物(利尿剂)引起。 ACE抑制剂可与利尿剂合用,必要时可以加用洋地黄苷。 建议由每天早晨2mg开始治疗,同时监测血压。必要时增加至常规治疗剂量,即2-4mg,一次服用。 选择的每天治疗剂量应当使立位收缩压不低于90mmHg. 高危心衰患者(严重心衰,患者接受高剂量利尿剂治疗)用药后可能发生症状性低血压。这类病人的起始剂量应减半(即:1mg/天)。 每次增加剂量时应检测血钾和血肌酐,并且按照心功能分级,每间隔3-6个月进行一次检测,一边评估治疗的安全性。 成人口服高血压:每次mg,每日1次,服药一个月后,若有需要,可增至每天2片,一次服用,充血性心力衰竭:须在医疗监护下开始,初始剂量为每天早晨口服半片,可增至每天一片。 【不良反应】 胃肠道不适、眩晕、痉挛、局部皮疹、咳嗽等。 【禁忌】 对本品过敏者,儿童、孕妇、哺乳期妇女禁用;肾血管性高血压、手术、麻醉、肾功能不全者应小心地调整剂量。 【贮藏】30摄氏度以下密封保存。 【有效期】24个月。 【批准文号】国药准字H20034053 【生产企业】 企业名称:施维雅(天津)制药有限公司 生产地址:天津经济技术开发区第十大街12号 电话:(8622)66299458 传真:(8622)66299456 邮政编码:300457 代表处:法国施维雅国际公司北京办事处 北京市朝阳区光华路七号 北京汉威广场B801室 邮政编码:100004 电话:(8610)65610341 传真:(8610)65610348 网址:www.servier.com.cn | [
"3个分类",
"药理学",
"降血压药",
"循环系统用药"
] | 1,926 | zh-CN |
培养箱 | http://www.a-hospital.com/w/%E5%9F%B9%E5%85%BB%E7%AE%B1 | 培养箱是科研实验的必需设备,主要适用于医疗卫生、医药、生物、农业、科研单位等部门作储藏菌种、生物培养之用。 注意事项 电池指示器批示电能耗尽时,不要使用仪器。若长时间不使用仪器,请将电池取出后存放。 不要在高温、高湿、易燃、易爆和强电磁场环境中存放或者使用本仪器。 请使用湿布或者清洁剂来清洗仪器外壳,请勿使用磨擦物或溶剂。 仪器潮湿时,请先干燥后存放 | [] | 176 | zh-CN |
培养皿 | http://www.a-hospital.com/w/%E5%9F%B9%E5%85%BB%E7%9A%BF | 培养皿。 培养皿(英语:Petri dish)是一种用于细胞培养的实验室器皿,由一个平面圆盘状的底和一个盖组成,一般用玻璃或塑料制成。它最初由在德国生物学家罗伯特·科赫手下工作的细菌学家朱利斯·理查德·佩特里(Julius Richard Petri,1852-1921)于1887年设计,故又称为“佩特里皿”。 培养皿最常用的用途是细胞培养,此外它也用于贮存样品,进行化学实验等。将用于维持细胞生长的培养基加入到消毒过的培养皿中,便得到琼脂平板。琼脂平板用于微生物和小型植物的培养。 培养皿的灭菌一般有干热灭菌和高压蒸汽灭菌两种方法。灭菌的具体过程是先将需要灭菌的培养皿用报纸包起来,置于干燥箱内加热到160°C灭菌90-120分钟(干热灭菌),或在121°C高压灭菌20-30分钟(高压蒸汽灭菌),然后放到烘箱中干燥,去除蒸汽凝结的水。塑料制的培养皿一般都是一次性的,但也有塑料培养皿是可以重复使用的。 参见 其他培养器皿:培养瓶、培养板 培养基 参考来源 维基百科-培养皿 | [
"4个分类",
"实验室设备",
"实验室玻璃器皿",
"微生物学设备",
"德国发明"
] | 439 | zh-CN |
培养物 | http://www.a-hospital.com/w/%E5%9F%B9%E5%85%BB%E7%89%A9 | 培养物(culture) 在人为规定的条件下培养、繁殖得到的微生物群体。 是指一定时间一定空间内微生物的细胞群或生长物。如微生物的斜面培养物、摇瓶培养物等。如果某一培养物是由单一微生物细胞繁殖产生的,就称之为该细菌的纯培养物(pure culture) | [
"3个分类",
"微生物",
"生物",
"细胞"
] | 126 | zh-CN |
培养基 | http://www.a-hospital.com/w/%E5%9F%B9%E5%85%BB%E5%9F%BA | 培养基(Medium)是供微生物、植物和动物组织生长和维持用的人工配制的养料,一般都含 有碳水化合物、含氮物质、无机盐(包括微量元素)以及维生素和水等。有的培养基还含有抗菌素和色素。 培养基由于配制的原料不同,使用要求不同,而贮存保管方面也稍有不同。一般培养基在受热、吸潮后,易被细菌污染或分解变质,因此一般培养基必须防潮、避光、阴凉处保存。对一些需严格灭菌的培养基(如组织培养基),较长时间的贮存,必须放在2~6℃的冰箱内。由于液体培养基不易长期保管,现在均改制成粉末。 按对培养基成分的了解情况分类 固体培养基 天然培养基 指一类利用动、植物或微生物体包括其提取物制成的培养基。如牛肉膏蛋白胨培养基、麦芽汁培养基等。 组合培养基 又称为合成培养基或综合培养基,是一类按微生物的营养要求精确设计后用多种高纯化学试剂配制成的培养基。如葡萄糖铵盐培养基、淀粉硝酸盐培养基等。 半组合培养基 指一类主要以化学试剂配制,同时还加有某种或某些天然成分的培养基。例如,马铃薯蔗糖培养基。 按培养基外观的物理状态进行分类 液体培养基 一类呈液态的培养基。 液体培养基 固体培养基 一类外观呈固态的培养基。根据性质又分为固化培养基、非可逆性固化培养基、天然固态培养基、滤膜。 半固体培养基 指在液体培养基中加入少量的凝固剂而配制成的半固体状态的培养基。 脱水培养基 又称预制干燥培养基,指含有除水分外的一切成分的商品培养基。 按培养基对微生物的功能作分类 选择性培养基:一类根据某微生物的特殊营养要求或其对某化学、物理因素的抗性而设计的培养基,具有使混合菌样中的劣势菌变成优势菌的功能,广泛用于菌种筛选等领域。 鉴别培养基:一类在成分中加有能与目的菌的无色代谢产物发生显色反应的指示剂,从而达到只须用肉眼辨别颜色就能方便的从近似菌落中找出目的菌菌落的培养基。例如,伊红美蓝乳糖培养基(EMB)。 常见培养基 细菌培养基 牛肉膏琼脂培养基 牛肉膏0.3g ,蛋白胨1.0g,氯化钠 0.5g,琼脂 1.5g, 水 100ml 在烧杯内加水100毫升,放入牛肉膏、蛋白胨和氯化钠,用蜡笔在烧杯外作上记号后,放在火上加热。待烧杯内各组分溶解后,加入琼脂,不断搅拌以免粘底。等琼脂完全溶解后补足失水,用10%盐酸或10%的氢氧化钠调整pH值到7.2~7.6,分装在各个试管里,加棉花塞,用高压蒸汽灭菌30分钟。 马铃薯培养基 取新鲜牛心(除去脂肪和血管)250克,用刀细细剁成肉末后,加入500毫升蒸馏水和5克蛋白胨。在 细菌培养基 烧杯上做好记号,煮沸,转用文火炖2小时。过滤,滤出的肉末干燥处理,滤液pH值调到7.5左右。每支试管内加入10毫升肉汤和少量碎末状的干牛心,灭菌,备用。 根瘤菌培养基 葡萄糖 10g 磷酸氢二钾 0.5g 碳酸钙 3g 硫酸镁 0.2g 酵母粉 0.4g 琼脂 20g 水 1000ml 1%结晶紫溶液 1ml 先把琼脂加水煮沸溶解,然后分别加入其他组分,搅拌使溶解后,分装,灭菌,备用。 放线菌培养基 淀粉硝酸盐培养基(高氏一号培养基) 可溶性淀粉 2.0g 硝酸钾 0.1g 磷酸氢二钾 0.05g 氯化钠 0.05g 硫酸镁 0.05g 硫酸亚铁 0.001g 琼脂 2g 水100ml 先把淀粉放在烧杯里,用5毫升水调成糊状后,倒入95毫升水,搅匀后加入其他药品,使它溶解。在烧杯外做好记号,加热到煮沸时加入琼脂,不停搅拌,待琼脂完全溶解后,补足失水。调整pH值到7.2~7.4,分装后灭菌,备用。 面粉琼脂培养基 面粉 60g 琼脂 20g 水1000ml 把面粉用水调成糊状,加水到500ml,放在文火上煮30分钟。另取500ml水,放入琼脂,加热煮沸到溶解后,把两液调匀,补充水分,调整pH值到7.4,分装,灭菌,备用。 微藻培养基 BG-11培养基 NaNO3 1.5g K2HPO4 . 3H2O 0.04g MgSO4.7H2O 0.075g CaCl2 .2H2O 0.036g Citric Acid (柠檬酸 )0.006g Ferric ammonium citrate(柠檬酸铁铵) 0.006g EDTA (dinatrium-salt) 0.001g Na2CO3 0.02g A5 + Co solution * (A5溶液1000×)1ml Distilled Water (蒸馏水)919ml SE培养基 Soil Extract(土壤提取液)配置方法 取花园土未施过肥0。5kg置于烧杯或三角瓶中,加入蒸馏水1000毫升,瓶口用透气塞封口,在水浴中沸水加热2小时,冷却数小时,在无菌条件下过滤,取上清液,将灭菌蒸馏水加入上清液至总体积1000毫升。土壤提取液保存在4ºC备用。 Composition of the A5 solution Add to 100 ml of distilled water: EDTA-Fe的配置方法: 将EDTA和FeCl3.6H2O分别溶于水和HCl(0.1N),混匀即可。 Pr培养基 Preparation: to 997 mL of glass-distilled water, add 1.0 g proteose peptone, 15.0 g agar, and the following stock solutions: A5溶液和EDTA-Fe溶液配制方法同上。 真菌培养基 萨市(Sabouraud’s)培养基 蛋白胨 10g 琼脂 20g 麦芽糖 40g 水1000ml 先把蛋白胨、琼脂加水后,加热,不断搅拌,待琼脂溶解后,加入40g麦芽糖(或葡萄糖),搅拌,使它溶解,然后分装,灭菌,备用。 本培养菌是培养许多种类真菌所常用的。 马铃薯糖琼脂培养基 把马铃薯洗净去皮,取200g切成小块,加水1000ml,煮沸半小时后,补足水分。在滤液中加入10g琼脂,煮沸溶解后加糖20g(用于培养霉菌的加入蔗糖,用于培养酵母菌的加入葡萄糖),补足水分,分装,灭菌,备用。 把这培养基的pH值调到7.2~7.4,配方中的糖,如用葡萄糖还可用来培养放线菌和芽孢杆菌。 豆芽汁培养基 黄豆芽 100g 琼脂15 g 葡萄糖 20g 水1000ml 洗净黄豆芽,加水煮沸30分钟。用纱布过滤,滤液中加入琼脂,加热溶解后放入糖,搅拌使它溶解,补足水分到1000ml,分装,灭菌,备用。 把这培养基的pH值调到7.2~7.4,可用来培养细菌和放线菌。 豌豆琼脂培养基 豌豆 80粒 琼脂 5g 水 200ml 取80粒干豌豆加水,煮沸1小时,用纱布过滤后,在滤液中加入琼脂,煮沸到溶解,分装,灭菌,备用。 琼脂 食用菌菌种培养基 马铃薯-蔗糖-琼脂培养基 20%马铃薯煮汁 1000ml 蔗糖 20g 琼脂 18g 把马铃薯洗净去皮后,切成小块。称取马铃薯小块200g,加水1000ml,煮沸20分钟后,过滤。在滤汁中补足水分到1000ml,即成20%马铃薯煮汁。在马铃薯煮汁中加入琼脂和蔗糖,煮沸,使它溶解后,补足水分,分装,灭菌,备用。使用该培养基对pH值要求不严格,可以不测定。 综合马铃薯培养基 20%马铃薯煮汁 1000 ml 磷酸二氢钾 3g 硫酸镁 1.5g 葡萄糖 20g 维生素 10mg 琼脂 18g 先配制20%马铃薯煮汁,方法同上。在煮汁中加入上述各种组分,加热溶解后补足水分,调整pH值到6。分装,灭菌,备用。 该培养基用于培养和保存灵芝、平菇、香菇等食用菌菌种。 烟草的培养基 在植物组织培养时,通过调节IAA和CTK的比值能影响愈伤组织分化出根或芽.CTK/IAA高时,愈伤组织分化芽 CTK/IAA低时,分化根;CTK/IAA比例适中维持愈伤组织不分化 愈伤组织诱导培养基制备 以MS培养基母液为基础,向洁净铝锅中顺序加入大量元素20×母液100mL,微量元素100×母液20mL,铁盐100×母液20mL ,维生素100×母液20mL,肌醇200×母液10mL,甘氨酸200×母液10mL,配制得MS培养基后,再加入0.5mg.L-1的BA8mL,0.5mg.L-1的NAA8mL.然后加入实际配制培养基体积约2/3-3/4的蒸馏水,加入40g蔗糖后搅拌使其溶化,用0.5mol.L-1的NaOH和0.5 mol.L-1的HCl调整pH值至5.8-6.0.加入14g琼脂,将铝锅置于电炉上,搅拌加热使琼脂完全溶化,然后用蒸馏水定容至终体积2L,继续加热几分钟使之混合均匀后分装于三角瓶中. 烟草叶片愈伤组织诱导 烟草 取一无菌培养皿,用解剖刀切取1-2片无菌苗叶片置于无菌培养皿中,并用解剖刀将叶片切成2mm2左右的小片,然后将其接种于准备好的培养基上,每瓶接种5小片,一共接种6瓶.接种后的三角置于24条件下黑暗培养1周,然后在同样温度下有光照和全黑暗下培养3周直至愈伤组织形成(两种情况各置3瓶).观察愈伤组织诱导结果,统计愈伤组织诱导率. 器官分化及植株再生培养 将诱导的愈伤组织按类型分别转入分化培养基上,置于连续光照,温度20-22 C条件下培养3周,统计愈伤组织再生植株情况. 愈伤组织诱导的总体情况 烟草愈伤组织诱导培养4周后,愈伤组织基本形成,即排除因生长时间不够而未形成愈伤的情况.具体情况见表一中所示,6瓶培养物均有愈伤形成,且都未发生污染,但诱导率几乎各不相同.其中, 在光照条件下培养的3瓶平均愈伤诱导率为60.0℅, 在黑暗条件下培养的3瓶平均愈伤诱导率为46.7%.由于实验过程中,外植体即烟草叶片取得偏小,接种时可能已有部分外植体的大部分细胞脱水死亡,使整个实验的愈伤组织诱导率偏低,愈伤块偏小. 动物细胞培养基 RPMI1640培养基是一个全营养型培养基,广泛应用于哺乳动物细胞和杂交瘤细胞的培养,如人骨髓瘤细胞、鼠杂交瘤细胞、人白细胞以及B细胞和T细胞。最初设计用于悬浮细胞培养和人白血病细胞的单层细胞培养。 特殊培养基 选择性培养基 酵母菌富集培养基 葡萄糖5% 尿素0.1% 硫化铵0.1% 磷酸二氢钾0.25% 磷酸氢二钠0.05% 七水合硫酸镁0.1% 七水合硫酸铁0.01% 酵母膏0.05% 孟加拉红0.003% pH4.5 Ashby无氮培养基 富集好养自生固氮菌 甘露醇1% 磷酸二氢钾0.02% 七水合硫酸镁0.02% 氯化钠0.02% 二水合硫酸钙0.01% 碳酸钙0.5% 鉴别培养基 EMB培养基 常用于鉴别E.coli 蛋白胨 10g 乳糖5g 蔗糖5g 磷酸氢二钾2g 伊红Y 0.4g 美蓝0.065g 蒸馏水1000g pH7.2 2216E培养基配方 分离海洋微生物的培养基配方 蛋白胨 5g 酵母膏 1g 磷酸高铁 0.01g 琼脂 15~20g 陈海水 1000ml 煮沸氢氧化钠(5%)的溶液调PH值7.6~7.8 天然细胞培养基——血清 天然培养基是指来自动物体液或利用组织分离提取的一类培养基,如血浆、血清、淋巴液、鸡胚浸出液等。组织培养技术建立早期,体外培养细胞都是利用天然培养基。但是由于天然培养基制作过程复杂、批间差异大,因此逐渐为合成培养基所替代。目前广泛使用的天然培养基是血清,另外各种组织提取液、促进细胞贴壁的胶原类物质在培养某些特殊细胞也是必不可少。 血清种类 目前用于组织培养的血清主要是牛血清,培养某些特殊细胞也用人血清、马血清等。选择用牛血清培养细胞的原因:来源充足、制备技术成熟、经过长时间的应用考验人们对其有比较深入的理解。牛血清对绝大多数哺乳动物细胞都是适合的,但并不排除在培养某种细胞时使用其他动物血清更合适。 牛血清是细胞培养中用量最大的天然培养基,含有丰富的细胞生长必须的营养成份,具有极为重要的功能。牛血清分为小牛血清、新牛血清、胎牛血清。胎牛血清应取自剖腹产的胎牛;新牛血清取自出生24小时之内的新生牛;小牛血清取自出生10-30天的小牛。显然,胎牛血清是品质最高的,因为胎牛还未接触外界,血清中所含的抗体、补体等对细胞有害的成分最少。 血清的主要成分 血清样本 血清是由血浆去除纤维蛋白而形成的一种很复杂的混合物,其组成成份虽大部分已知,但还有一部分尚不清楚,且血清组成及含量常随供血动物的性别、年龄、生理条件和营养条件不同而异。血清中含有各种血浆蛋白、多肽、脂肪、碳水化合物、生长因子、激素、无机物等,这些物质对促进细胞生长或抑制生长活性是达到生理平衡的。 血清主要作用 1. 提供基本营养物质:氨基酸、维生素、无机物、脂类物质、核酸衍生物等,是细胞生长必须的物质。 2. 提供激素和各种生长因子:胰岛素、肾上腺皮质激素(氢化可的松、地塞米松)、类固醇激素(雌二醇、睾酮、孕酮)等。生长因子如成纤维细胞生长因子、表皮生长因子、血小板生长因子等。 3. 提供结合蛋白:结合蛋白作用是携带重要地低分子量物质,如白蛋白携带维生素、脂肪、以及激素等,转铁蛋白携带铁。结合蛋白在细胞代谢过程中起重要作用。 4. 提供促接触和伸展因子使细胞贴壁免受机械损伤。 5. 对培养中的细胞起到某些保护作用:有一些细胞,如内皮细胞、骨髓样细胞可以释放蛋白酶,血清中含有抗蛋白酶成分,起到中和作用。这种作用是偶然发现的,现在则有目的的使用血清来终止胰蛋白酶的消化作用。因为胰蛋白酶已经被广泛用于贴壁细胞的消化传代。血清蛋白形成了血清的粘度,可以保护细胞免受机械损伤,特别是在悬浮培养搅拌时,粘度起到重要作用。血清还含有一些微量元素和离子,他们在代谢解毒中起重要作用,如SeO3,硒等。 血清培养基主要问题 1. 血清的成份可能有几百种之多,目前对其准确的成份、含量及其作用机制仍不清楚,尤其是对其中一些多肽类生长因子、激素和脂类等尚未充分认识,这给研究工作带来许多困难。 2. 血清都是批量生产,各批量之间差异很大,而且血清保存期至多一年,因此,要保证每批血清的相似性极为困难,从而使实验的标准化和连续性受到限制。 3. 对大多数细胞,在体内状态,血清不是它们接触的生理学液体,只是在损伤愈合以及血液凝固过程中才接触血清,因此使用血清有可能改变某种细胞在体内的正常状态,血清可能促进某些细胞的生长(成纤维细胞)同时抑制另一类细胞生长(表皮细胞)。 4. 血清含一些对细胞产生毒性的物质,如多胺氧化酶,能与来自高度繁殖细胞的多胺反应(如精胺、亚精胺)形成有细胞毒性作用的聚精胺。补体、抗体、细菌毒素等都会影响细胞生长,甚至造成细胞死亡。 5. 动物个体不同,血清产地、批号不同,每批质量差异甚大,其成分不能保持一致。 6. 取材中可能带入支原体、病毒,对细胞产生潜在影响,可能导致实验失败或实验结果不可靠性。 7. 大规模生产中,血清来源越来越困难,价格昂贵,是构成动物细胞培养对生产成本的主要部分之一。 血清的质量标准 血清质量高低取决于两方面因素:一是取材对象,二是取材过程。用于取材的动物应健康无病并且在指定的出生天数之内,取材过程应严格按照操作规程执行,制备出的血清要经过严格的质量鉴定。WHO公布的《用动物细胞体外培养生产生物制品规程》中的要求: 1. 牛血清必须来自有文件证明无牛海绵状脑病的牛群或国家。并应具备适当的监测系统。 2. 有些国家还要求牛血清来自未用过反刍动物蛋白饲料的牛群。 3. 证明所用牛血清中不含对所生产疫苗病毒的抑制物。 4. 血清要通过滤膜过滤除菌,保证无菌。 5. 无细菌、霉菌、支原体和病毒的污染,有些国家要求无细菌噬菌体污染。 6. 对细胞有良好的支持繁殖作用。 我国在对牛血清的质量2000年版《中国生物制品主要原辅料质控标准》中提出比较严格的标准要求。包括蛋白质含量,细菌、真菌、支原体、牛病毒、大肠杆菌噬菌体、细菌内毒素,支持细胞增殖检查 | [
"4个分类",
"微生物",
"生物",
"培养",
"检验医学"
] | 6,453 | zh-CN |
培元通脑胶囊 | http://www.a-hospital.com/w/%E5%9F%B9%E5%85%83%E9%80%9A%E8%84%91%E8%83%B6%E5%9B%8A | 培元通脑胶囊,益肾填精,熄风通络。用于缺血性中风中经络恢复期肾元亏虚,瘀血阻络证,症见半身不遂、口舌歪斜、语言不清、偏身麻木、眩晕耳鸣、腰膝酸软、脉沉细。 本药品被归类到腰膝酸软等药品分类。 培元通脑胶囊的副作用(不良反应) 1个别患者服药后出现恶心,一般不影响继续服药。 2临床试验中发现1例患者用药期间出现嗜睡,乏力,未停药继续服药症状自行缓解,但不能确定是否与服用本品有关。 培元通脑胶囊禁忌症 孕妇禁用,产妇慎用。 服用培元通脑胶囊须注意的事项 忌辛辣,油腻,禁烟酒。 培元通脑胶囊的用法用量 注意:同种药品可由于不同的包装规格有不同的用法或用量。本文只供参考。如果不确定,请参看药品随带的说明书或向医生询问。 口服,一次3粒,一日3次。 培元通脑胶囊成分或处方 制何首乌、熟地黄、天冬、龟甲、鹿茸、肉苁蓉、肉桂、赤芍、全蝎、水蛭、地龙、山楂、茯苓、甘草。 培元通脑胶囊贮藏方法 密封。 市场上的培元通脑胶囊 培元通脑胶囊 生产企业:河南羚锐制药股份有限公司 批准字号:国药准字Z20000022 包装规格:每粒装0.6g 参看 治疗腰膝酸软的药品列表 | [
"1个分类",
"药品"
] | 480 | zh-CN |
培他啶 | http://www.a-hospital.com/w/%E5%9F%B9%E4%BB%96%E5%95%B6 | 性状:片剂,注射液。 功能主治:临床用于内耳眩晕症;对脑动脉硬化、缺血性脑血管病、头部外伤或高血压所致直立性眩晕、耳鸣等亦可用。 用法及用量:口服:每次~2片,1日~4次。肌注:1次~4mg,1日2次。 不良反应和注意:偶有口干、胃部不适、心悸、皮肤瘙痒等不良反应。 规格:片剂:每片4mg。注射液:每支2mg(2ml)、4mg(2ml)。 生产厂家: 是否医保用药:医保 是否非处方药:处方 其它:1.消化性溃疡、支气管哮喘及嗜铬细胞瘤病人慎用。2.不可同时用抗组胺药物 | [
"3个分类",
"药品",
"西药",
"处方药"
] | 236 | zh-CN |
域 (生物) | http://www.a-hospital.com/w/%E5%9F%9F_(%E7%94%9F%E7%89%A9) | 生物分类法上八个主要的分类单元,生物被分成三个域,并进一步被划分成其他分类单元。本图没有显示较小的中间分类单元 在生物分类学上,域(英语:domain、superregnum、superkingdom、empire或regio)是卡尔·沃斯的三域系统中最高的分类单元[注 1],较界的层级高。在三域系统中生物的演化树包含细菌、古菌与真核生物三个域[参 2],此分类主要基于基因组的分子证据分析。 其他分类系统 除了三域系统外,其他较常用的分类系统还包括: 双域系统:将生物分成原核生物与真核生物两群[参 3][参 4]。 在三域系统下,进一步将真核生物域分为五个超类群(supergroups):单鞭毛生物、古虫界、囊泡藻界、有孔虫界、与原始色素体生物[参 3][参 5][参 6]。 病毒的归属 目前的生物分类系统均没有包含非细胞生物,也就是病毒。2011年,有人认为核质巨DNA病毒可能是生物分类的第四个域,此观点在2012年进一步获得支持,研究指出核质巨DNA病毒体积接近细胞的大小,基因组的大小也接近细胞,蛋白质转译的基因痕迹与噬病毒体的存在使其起源成为一个有趣的问题,它们可能比原本认为的还要独特且原始许多,动摇我们对病毒起源的传统观念,它们存在的时间可能与最后共同祖先同时或较早,并构成地球生物圈重要的一部份[参 7]。 相关条目 生物分类学 亲缘关系学 系统分类学 脚注 ↑ 但有时还存在一个称为总域(superkingdom)的更高分类单元,汤玛斯·卡弗利尔-史密斯将真核生物与古菌归入一个称为Neomura的总域,暗示它们的亲缘关系较接近[参 1]。 参考资料 ↑ Cavalier-Smith T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol.. March 2002, 52 (Pt 2): 297–354. PMID 11931142. ↑ Woese C, Kandler O, Wheelis M. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.. Proc Natl Acad Sci USA. 1990, 87 (12): 4576–9 [11 February 2010]. doi:10.1073/pnas.87.12.4576. PMID 2112744. PMC 54159. ↑ 3.0 3.1 Mayr, Ernst. Two empires or three?. Proc Natl Acad Sci USA. 1998, 95 (17): 9720–9723 [5 September 2011]. doi:10.1073/pnas.95.17.9720. PMID 9707542. PMC 33883. ↑ Cavalier-Smith, T.. Only six kingdoms of life. Proc. R. Soc. Lond. B. 2004, 271 (1545): 1251–62 [2010-04-29]. doi:10.1098/rspb.2004.2705. PMID 15306349. PMC 1691724 ↑ Campbell, N. A., et al. (2008) "Biology." 8th edition. Person International Edition, San Francisco ↑ Holt, Jack R. and Carlos A. Iudica, (2010) "Taxa of Life." Retrieved 09-03-2011. ↑ Nasir, Arshan; Kim, Kyung Mo; and Caetano-Anolles, Gustavo, "Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya." BMC Evol Biol. 2012; 12: 156. Published online 2012 August 24. doi: 10.1186/1471-2148-12-156 参考来源 维基百科-域 (生物) | [
"2个分类",
"参考文献格式不符的条目",
"生物分类学"
] | 1,959 | zh-CN |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.